3,306 research outputs found

    On a theorem by Treves

    Full text link
    According to a theorem of Treves, the conserved functionals of the KdV equation vanish on each formal Laurent series 1/x^2 + u0 + u2 x^2 + u3 x^3 + >... . We propose a new, very simple geometrical proof for this statement.Comment: 7 page

    ALEX: Improving SIP Support in Systems with Multiple Network Addresses

    Get PDF
    The successful and increasingly adopted session initiation protocol (SIP) does not adequately support hosts with multiple network addresses, such as dual-stack (IPv4-IPv6) or IPv6 multi-homed devices. This paper presents the Address List Extension (ALEX) to SIP that adds effective support to systems with multiple addresses, such as dual-stack hosts or multi-homed IPv6 hosts. ALEX enables IPv6 transport to be used for SIP messages, as well as for communication sessions between SIP user agents (UAs), whenever possible and without compromising compatibility with ALEX-unaware UAs and SIP servers

    Conditional probability of distributed surface rupturing during normal-faulting earthquakes

    Get PDF
    Coseismic surface faulting is a significant source of hazard for critical plants and distributive infrastructure; it may occur either on the principal fault or as distributed rupture on nearby faults. Hazard assessment for distributed faulting is based on empirical relations which, in the case of normal faults, were derived almost 15 years ago using a dataset of US earthquakes. We collected additional case histories worldwide, for a total of 21 earthquakes, and calculated the conditional probability of distributed faulting as a function of distance from the principal fault. We found no clear dependency on the magnitude nor the time of occurrence of the earthquakes, but our data consistently show a higher probability of rupture when compared with the scaling relations currently adopted in engineering practice. We derive updated empirical regressions and show that the results are strongly conditioned by the averaging of earthquakes effectively generating distributed faulting at a given distance and those which did not generate faulting; thus, we introduce a more conservative scenario that can be included in a logic tree approach to consider the full spectrum of potential ruptures. Our results can be applied in the framework of probabilistic assessment of fault displacement hazard

    On the Treves theorem for the AKNS equation

    Full text link
    According to a theorem of Treves, the conserved functionals of the AKNS equation vanish on all pairs of formal Laurent series of a specified form, both of them with a pole of the first order. We propose a new and very simple proof for this statement, based on the theory of B\"acklund transformations; using the same method, we prove that the AKNS conserved functionals vanish on other pairs of Laurent series. The spirit is the same of our previous paper on the Treves theorem for the KdV, with some non trivial technical differences.Comment: LaTeX, 16 page

    Variable fault tip propagation rates affected by near-surface lithology and implications for fault displacement hazard assessment

    Get PDF
    The fabric of reverse fault zones close to the surface is usually partitioned in between a narrow discrete rupture zone and a more distributed one, where folding is predominant. This makes quite challenging the adoption of proper setbacks in surface rupture hazard studies for critical facilities or microzoning. Some of the parameters controlling fault zone fabric are related to mechanics of near-surface geology (lithology, overburden thickness, cohesion and water content) whose interaction is complex and only partially understood. Nevertheless, these can be seldom measured or derived. Kinematic models, conversely, express such an interaction of complex variables as simple synthetic parameters, such as the amount of upward propagation of the fault tip for unit of slip, usually referred to as the P/S ratio (Propagation on Slip). Here, we discuss results on the trishear kinematic inverse modeling of a contractional fault propagation fold at Monte Netto Hill (Capriano del Colle, N. Italy), observing a two-stage fault and fold growth evolution, marked by a significant shift in the P/S parameter. At this site, exceptional sequence of exposures due to ca. 10 years of quarry excavations allowed to obtain a series of cross-sections across the fault zone. We use this detailed, high-resolution, example as a natural \u201canalogue\u201d for more general, large-scale surface ruptures involving a thick alluvial cover, a very common setting for the siting of critical facilities. During the early stage of displacement, the fault cut through clast-supported fluvial gravels with a high propagation rate (P/S\u202f=\u202f7) and a discrete rupture width. Then, during the latest movements of the thrust, fault tip propagation slowed down to P/S\u202f 48\u202f2.9, as the fault started cutting through several stacked bodies of clays and silty clays, pedogenized aeolian silts and overbank deposits, causing a pronounced folding of the layers over a wider deformation zone. These results strongly suggest that lithological changes in the underlying shallow stratigraphy, common in an alluvial plain depositional setting, would significantly affect the potential for surface faulting across the same tectonic structure, with relevant implications in the fault displacement hazard assessment

    Low-Cost Uas Photogrammetry for Road Infrastructures' Inspection

    Get PDF
    Abstract. All over the world, road infrastructures are getting closer to their life cycle and need to be constantly inspected: a consistent number of bridges are structurally deficient, and the risk of collapse can no longer be excluded. In contrast with the past, the interest in structure durability has recently grown rapidly. In order to make bridges durable, it is necessary to carry out ordinary maintenance, preceded by inspection activities, which can be traditionally divided in two categories: destructive and non-destructive (NDT). All the NDT inspections (visual, IR thermography, GPR) can be conducted by using UAS (Unmanned Aerial Systems), a technology that makes bridges inspections quicker, cheaper, objective and repeatable. This study presents the visual inspection and survey of two bridges by using a UAS DJI Mavic 2 Pro, equipped with a 20Mpixel Hasselblad camera that records 60fps 4K video and a 10bit radiometric resolution. Starting from the acquired data, a 3D model of each structure was built by using Structure from Motion (SfM) principles and software. To validate the two models, each of them characterized by a centimetric accuracy, the UAS camera generated cloud of points and was co-registered with the point cloud of a terrestrial laser-scanner using Ground Control Points (GCPs). To make this, CloudCompare comparison software was used; the plugin M3C2 automatically calculates the distance between the points of two compared clouds. Finally, some general rules concerning the UAS main characteristics for inspection of bridges and software for data processing are proposed

    Constraints on a hadronic model for unidentified off-plane galactic gamma-ray sources

    Full text link
    Recently the H.E.S.S. collaboration announced the detection of an unidentified gamma-ray source with an off-set from the galactic plane of 3.5 degrees: HESS J1507-622. If the distance of the object is larger than about one kpc it would be physically located outside the galactic disk. The density profile of the ISM perpendicular to the galactic plane, which acts as target material for hadronic gamma-ray production, drops quite fast with increasing distance. This fact places distance dependent constraints on the energetics and properties of off-plane gamma-ray sources like HESS J1507-622 if a hadronic origin of the gamma-ray emission is assumed. For the case of this source it is found that there seems to be no simple way to link this object to the remnant of a stellar explosions.Comment: 11 pages, 4 figures, accepted for publication in AdSp

    Can Planets Influence the Horizontal Branch Morphology?

    Get PDF
    As stars which have planetary systems evolve along the red giant branch and expand, they interact with the close planets. The planets deposit angular momentum and energy into the red giant stars' envelopes, both of which are likely to enhance mass loss on the red giant branch. The enhanced mass loss causes the star to become bluer as it turns to the horizontal branch. I propose that the presence of planetary systems, through this mechanism, can explain some anomalies in horizontal branch morphologies. In particular, planetary systems may be related to the ``second parameter'', which determines the distribution of horizontal branch stars on the Hertzsprung-Russel diagram. The proposed scenario predicts that surviving massive planets or brown dwarfs orbit many of the extreme blue horizontal branch stars, at orbital periods of tens days.Comment: 21 pages, preprint, uses aasms4.st

    On the abundance of Lithium in T Coronae Borealis

    Get PDF
    We have obtained high resolution echelle spectroscopy of the recurrent nova T CrB. We find that the surface lithium abundance in T CrB is signifcantly enhanced compared to field M giants, where it is not detectable. We offer possible explanations for this in terms of either a delay in the onset of convection in the giant star, enhanced coronal activity due to star-spots or the enhancement of Li resulting from the nova explosion(s).Comment: 3 pages, 1 figure (a and b), accepted by MNRA
    corecore