87 research outputs found

    How tightly controlled do fluctuations in blood glucose levels need to be to reduce the risk of developing complications in people with Type 1 diabetes?

    Get PDF
    In 2011, the James Lind Alliance published a ‘top 10’ list of priorities for Type 1 diabetes research based on a structured consultation process. Whether reducing fluctuations in blood glucose can prevent long‐term microvascular and macrovascular complications was one of these. In this narrative review, 8 years on, we have assessed the updated evidence for the assertion that increased glucose variability plays an independent and clinically important role in the complications of Type 1 diabetes, over and above mean blood glucose and the effects of hypoglycaemia: the ‘glucose variability hypothesis’. Although studies in cultured cells and ex vivo vessels have been suggestive, most studies in Type 1 diabetes have been small and/or cross‐sectional, and based on ‘finger‐prick’ glucose measurements that capture glucose variability only in waking hours and are affected by missing data. A recent analysis of the Diabetes Control and Complications Trial that formally imputed missing data found no independent effect of short‐term glucose variability on long‐term complications. Few other high‐quality longitudinal studies have directly addressed the glucose variability hypothesis in Type 1 diabetes. We conclude that there is little substantial evidence to date to support this hypothesis in Type 1 diabetes, although increasing use of continuous glucose monitoring provides an opportunity to test it more definitively. In the meantime, we recommend that control of glycaemia in Type 1 diabetes should continue to focus on the sustained achievement of target HbA1c and avoidance of hypoglycaemia

    How tightly controlled do fluctuations in blood glucose levels need to be to reduce the risk of developing complications in people with Type 1 diabetes?

    Get PDF
    In 2011, the James Lind Alliance published a ‘top 10’ list of priorities for Type 1 diabetes research based on a structured consultation process. Whether reducing fluctuations in blood glucose can prevent long‐term microvascular and macrovascular complications was one of these. In this narrative review, 8 years on, we have assessed the updated evidence for the assertion that increased glucose variability plays an independent and clinically important role in the complications of Type 1 diabetes, over and above mean blood glucose and the effects of hypoglycaemia: the ‘glucose variability hypothesis’. Although studies in cultured cells and ex vivo vessels have been suggestive, most studies in Type 1 diabetes have been small and/or cross‐sectional, and based on ‘finger‐prick’ glucose measurements that capture glucose variability only in waking hours and are affected by missing data. A recent analysis of the Diabetes Control and Complications Trial that formally imputed missing data found no independent effect of short‐term glucose variability on long‐term complications. Few other high‐quality longitudinal studies have directly addressed the glucose variability hypothesis in Type 1 diabetes. We conclude that there is little substantial evidence to date to support this hypothesis in Type 1 diabetes, although increasing use of continuous glucose monitoring provides an opportunity to test it more definitively. In the meantime, we recommend that control of glycaemia in Type 1 diabetes should continue to focus on the sustained achievement of target HbA1c and avoidance of hypoglycaemia

    Linear stability analysis of transverse dunes

    Get PDF
    Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.Comment: 8 pages, 4 figure

    Cerebrospinal fluid biomarkers for Alzheimer's disease in Down syndrome

    Get PDF
    Down syndrome (DS), present in nearly six million people, is associated with an extremely high risk to develop Alzheimer's disease (AD). Amyloid-ÎČ and tau pathology are omnipresent from age 40 years onward, but clinical symptoms do not appear in all DS individuals. Dementia diagnostics is complex in this population, illustrating the great need for predictive biomarkers. Although blood biomarkers have not yet proven useful, cerebrospinal fluid (CSF) biomarkers (low amyloid-ÎČ42, high t-tau, and high p-tau) effectively contribute to AD diagnoses in the general population and are increasingly used in clinical practice. Surprisingly, CSF biomarkers have been barely evaluated in DS. Breaking the taboo on CSF analyses would finally allow for the elucidation of its utility in (differential) diagnoses and staging of disease severity. A sensitive and specific biomarker profile for AD in DS would be of paramount importance to daily care, adaptive caregiving, and specific therapeutic interventions

    Exclusive ρ0\rho^0 meson electroproduction from hydrogen at CLAS

    Get PDF
    The longitudinal and transverse components of the cross section for the ep→eâ€Čpρ0e p\to e^\prime p \rho^0 reaction were measured in Hall B at Jefferson Laboratory using the CLAS detector. The data were taken with a 4.247 GeV electron beam and were analyzed in a range of xBx_B from 0.2 to 0.6 and of Q2Q^2 from 1.5 to 3.0 GeV2^2. The data are compared to a Regge model based on effective hadronic degrees of freedom and to a calculation based on Generalized Parton Distributions. It is found that the transverse part of the cross section is well described by the former approach while the longitudinal part can be reproduced by the latter.Comment: 6 pages, 4 figure

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Recent developments in planetary Aeolian studies and their terrestrial analogs

    Full text link

    Graphical and numerical representations of DNA sequences: statistical aspects of similarity

    Full text link
    • 

    corecore