1,307 research outputs found

    Coupled transport in rotor models

    Get PDF
    Acknowledgement One of us (AP) wishes to acknowledge S. Flach for enlightening discussions about the relationship between the DNLS equation and the rotor model.Peer reviewedPublisher PD

    Energy diffusion in hard-point systems

    Full text link
    We investigate the diffusive properties of energy fluctuations in a one-dimensional diatomic chain of hard-point particles interacting through a square--well potential. The evolution of initially localized infinitesimal and finite perturbations is numerically investigated for different density values. All cases belong to the same universality class which can be also interpreted as a Levy walk of the energy with scaling exponent 3/5. The zero-pressure limit is nevertheless exceptional in that normal diffusion is found in tangent space and yet anomalous diffusion with a different rate for perturbations of finite amplitude. The different behaviour of the two classes of perturbations is traced back to the "stable chaos" type of dynamics exhibited by this model. Finally, the effect of an additional internal degree of freedom is investigated, finding that it does not modify the overall scenarioComment: 16 pages, 15 figure

    Negative Temperature States in the Discrete Nonlinear Schroedinger Equation

    Get PDF
    We explore the statistical behavior of the discrete nonlinear Schroedinger equation. We find a parameter region where the system evolves towards a state characterized by a finite density of breathers and a negative temperature. Such a state is metastable but the convergence to equilibrium occurs on astronomical time scales and becomes increasingly slower as a result of a coarsening processes. Stationary negative-temperature states can be experimentally generated via boundary dissipation or from free expansions of wave packets initially at positive temperature equilibrium.Comment: 4 pages, 5 figure

    Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis

    Full text link
    We study heat transport in a chain of harmonic oscillators with random elastic collisions between nearest-neighbours. The equations of motion of the covariance matrix are numerically solved for free and fixed boundary conditions. In the thermodynamic limit, the shape of the temperature profile and the value of the stationary heat flux depend on the choice of boundary conditions. For free boundary conditions, they also depend on the coupling strength with the heat baths. Moreover, we find a strong violation of local equilibrium at the chain edges that determine two boundary layers of size N\sqrt{N} (where NN is the chain length), that are characterized by a different scaling behaviour from the bulk. Finally, we investigate the relaxation towards the stationary state, finding two long time scales: the first corresponds to the relaxation of the hydrodynamic modes; the second is a manifestation of the finiteness of the system.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica

    Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks

    Full text link
    Evaluating similarity between graphs is of major importance in several computer vision and pattern recognition problems, where graph representations are often used to model objects or interactions between elements. The choice of a distance or similarity metric is, however, not trivial and can be highly dependent on the application at hand. In this work, we propose a novel metric learning method to evaluate distance between graphs that leverages the power of convolutional neural networks, while exploiting concepts from spectral graph theory to allow these operations on irregular graphs. We demonstrate the potential of our method in the field of connectomics, where neuronal pathways or functional connections between brain regions are commonly modelled as graphs. In this problem, the definition of an appropriate graph similarity function is critical to unveil patterns of disruptions associated with certain brain disorders. Experimental results on the ABIDE dataset show that our method can learn a graph similarity metric tailored for a clinical application, improving the performance of a simple k-nn classifier by 11.9% compared to a traditional distance metric.Comment: International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI) 201

    On the anomalous thermal conductivity of one-dimensional lattices

    Full text link
    The divergence of the thermal conductivity in the thermodynamic limit is thoroughly investigated. The divergence law is consistently determined with two different numerical approaches based on equilibrium and non-equilibrium simulations. A possible explanation in the framework of linear-response theory is also presented, which traces back the physical origin of this anomaly to the slow diffusion of the energy of long-wavelength Fourier modes. Finally, the results of dynamical simulations are compared with the predictions of mode-coupling theory.Comment: 5 pages, 3 figures, to appear in Europhysics Letter

    Breathers on lattices with long range interaction

    Full text link
    We analyze the properties of breathers (time periodic spatially localized solutions) on chains in the presence of algebraically decaying interactions 1/rs1/r^s. We find that the spatial decay of a breather shows a crossover from exponential (short distances) to algebraic (large distances) decay. We calculate the crossover distance as a function of ss and the energy of the breather. Next we show that the results on energy thresholds obtained for short range interactions remain valid for s>3s>3 and that for s<3s < 3 (anomalous dispersion at the band edge) nonzero thresholds occur for cases where the short range interaction system would yield zero threshold values.Comment: 4 pages, 2 figures, PRB Rapid Comm. October 199

    Geometric dynamical observables in rare gas crystals

    Full text link
    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard mehods of classical statistical mechanics, i.e. Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.Comment: RevTeX, 19 pages, 6 PostScript figures, submitted to Phys. Rev.
    corecore