The divergence of the thermal conductivity in the thermodynamic limit is
thoroughly investigated. The divergence law is consistently determined with two
different numerical approaches based on equilibrium and non-equilibrium
simulations. A possible explanation in the framework of linear-response theory
is also presented, which traces back the physical origin of this anomaly to the
slow diffusion of the energy of long-wavelength Fourier modes. Finally, the
results of dynamical simulations are compared with the predictions of
mode-coupling theory.Comment: 5 pages, 3 figures, to appear in Europhysics Letter