We present a detailed description of how a differential geometric approach to
Hamiltonian dynamics can be used for determining the existence of a crossover
between different dynamical regimes in a realistic system, a model of a rare
gas solid. Such a geometric approach allows to locate the energy threshold
between weakly and strongly chaotic regimes, and to estimate the largest
Lyapunov exponent. We show how standard mehods of classical statistical
mechanics, i.e. Monte Carlo simulations, can be used for our computational
purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The
value of the energy threshold turns out to be in excellent agreement with the
numerical estimate based on the crossover between slow and fast relaxation to
equilibrium obtained in a previous work by molecular dynamics simulations.Comment: RevTeX, 19 pages, 6 PostScript figures, submitted to Phys. Rev.