8 research outputs found

    Telomerase expression is sufficient for chromosomal integrity in cells lacking p53 dependent G(1 )checkpoint function

    Get PDF
    BACKGROUND: Secondary cultures of human fibroblasts display a finite lifespan ending at senescence. Loss of p53 function by mutation or viral oncogene expression bypasses senescence, allowing cell division to continue for an additional 10 – 20 doublings. During this time chromosomal aberrations seen in mitotic cells increase while DNA damage and decatenation checkpoint functions in G(2 )cells decrease. METHODS: To explore this complex interplay between chromosomal instability and checkpoint dysfunction, human fibroblast lines were derived that expressed HPV16E6 oncoprotein or dominant-negative alleles of p53 (A143V and H179Q) with or without the catalytic subunit of telomerase. RESULTS: Cells with normal p53 function displayed 86 – 93% G(1 )arrest after exposure to 1.5 Gy ionizing radiation (IR). Expression of HPV16E6 or p53-H179Q severely attenuated G(1 )checkpoint function (3 – 20% arrest) while p53-A143V expression induced intermediate attenuation (55 – 57% arrest) irrespective of telomerase expression. All cell lines, regardless of telomerase expression or p53 status, exhibited a normal DNA damage G(2 )checkpoint response following exposure to 1.5 Gy IR prior to the senescence checkpoint. As telomerase-negative cells bypassed senescence, the frequencies of chromosomal aberrations increased generally congruent with attenuation of G(2 )checkpoint function. Telomerase expression allowed cells with defective p53 function to grow >175 doublings without chromosomal aberrations or attenuation of G(2 )checkpoint function. CONCLUSION: Thus, chromosomal instability in cells with defective p53 function appears to depend upon telomere erosion not loss of the DNA damage induced G(1 )checkpoint

    Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins.

    Get PDF
    Genomic integrity is maintained by a network of cellular activities that assess the status of the genome at a given point in time, provide signals to proceed with or halt cell cycle progression, and provide for repair of damaged DNA. Mutations in any part of these pathways can have the ultimate effect of disturbing chromosomal integrity. Recent work suggests that p53 performs this integrator function in mammalian cells. Our present study demonstrates that in mortal cells, the expression of E6 and E7 viral oncoproteins of type 16 human papillomavirus each disrupts the integration of these signals by diverged pathways. Cells expressing E6 protein, which binds and degrades the p53 protein, exhibited alterations in cell cycle control when placed in drug and displayed the ability to amplify the CAD gene. The expression of E7, which binds different cellular proteins important for transformation, including Rb, led to a p53-independent alteration in cell cycle control, a widespread cytocidal response, and polyploidy as a mechanism of drug resistance. These results demonstrate that diverse perturbations of molecular pathways can have different effects on chromosomal integrity

    Homogeneous Bispecifics by Disulfide Bridging

    No full text
    We report on a chemical platform to generate site-specific, homogeneous, antibody–antibody conjugates by targeting and bridging disulfide bonds. A bispecific antibody construct was produced in good yield through simple reduction and bridging of antibody fragment disulfide bonds, using a readily synthesized <i>bis</i>-dibromomaleimide cross-linker. Binding activity of antibodies was maintained, and <i>in vitro</i> binding of target antigens was observed. This technology is demonstrated through linking scFv and Fab antibody fragments, showing its potential for the construction of a diverse range of bispecifics
    corecore