1,569 research outputs found

    Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO

    Get PDF
    A global parameter estimation method for a PMSM drive system is proposed, where the electrical parameters, mechanical parameters and voltage-source-inverter (VSI) nonlinearity are regarded as a whole and parameter estimation is formulated as a single parameter optimization model. A dynamic learning estimator is proposed for tracking the electrical parameters, mechanical parameters and VSI of PMSM drive by using dynamic self learning particle swarm optimization (DSLPSO). In DSLPSO, a novel movement modification equation with dynamic exemplar learning strategy is designed to ensure its diversity and achieve a reasonable tradeoff between the exploitation and exploration during the search process. Moreover, a nonlinear multi-scale based interactive learning operator is introduced for accelerating the convergence speed of the Pbest particles; meanwhile a dynamic opposition-based learning (OBL) strategy is designed to facilitate the gBest particle to explore a potentially better region. The proposed algorithm is applied to parameter estimation for a PMSM drive system. The results show that the proposed method has better performance in tracking the variation of electrical parameters, and estimating the immeasurable mechanical parameters and the VSI disturbance voltage simultaneously

    Extended Birkhoff's Theorem in the f(T) Gravity

    Full text link
    The f(T) theory, a generally modified teleparallel gravity, has been proposed as an alternative gravity model to account for the dark energy phenomena. Following our previous work [Xin-he Meng and Ying-bin Wang, EPJC(2011), arXiv:1107.0629v1], we prove that the Birkhoff's theorem holds in a more general context, specifically with the off diagonal tetrad case, in this communication letter. Then, we discuss respectively the results of the external vacuum and internal gravitational field in the f(T) gravity framework, as well as the extended meaning of this theorem. We also investigate the validity of the Birkhoff's theorem in the frame of f(T) gravity via conformal transformation by regarding the Brans-Dicke-like scalar as effective matter, and study the equivalence between both Einstein frame and Jordan frame.Comment: 7 pages, 1 figure, submitted to EPJ-C. arXiv admin note: substantial text overlap with arXiv:1107.062

    Analysis of the dynamic changes in the soft palate and uvula in obstructive sleep apnea-hypopnea using ultrafast magnetic resonance imaging

    No full text
    Apnea and the respiratory cycle are dynamic processes in obstructive sleep apnea-hypopnea (OSAH), which occur only during sleep. Our study aimed to observe the dynamic changes in the soft palate and the uvula during wakefulness and sleep using ultrafast magnetic resonance imaging (UMRI) to provide reference data for the pathogenesis and treatment of OSAH. The dynamic changes in the soft palate and uvular tip of 15 male patients (average age: 50.43 ± 9.82 years) with OSAH were evaluated using UMRI of the upper airway while asleep and awake after 1 night of sleep deprivation. A series of midline sagittal images of the upper airway were obtained. The distance from the center of the soft palate to the x-axis (an extended line from the anterior nasal spine to the posterior nasal spine), from the uvular tip to the x-axis, from the center of the soft palate to the y-axis (a perpendicular line from the center of the pituitary to the x-axis), and from the uvular tip to the y-axis (designated as PX, UX, PY, and UY, respectively) were measured during sleep and wakefulness. The minimum PX, PY, UX, and UY were shorter during sleep than during wakefulness, whereas the maxima were longer during sleep (P < 0.01), the differences between the maximum and minimum PX, PY, UX, and UY were larger during sleep (P < 0.01). The upward, downward, forward, and backward ranges of movement of the soft palate and the uvular tip were larger during sleep in OSAH patients. This increased compliance may trigger each airway obstructive event

    Magnetic phase diagram in Eu1x_{1-x}Lax_xFe2_2As2_2 single crystals

    Full text link
    We have systematically measured resistivity, susceptibility and specific heat under different magnetic fields (H) in Eu1x_{1-x}Lax_xFe2_2As2_2 single crystals. It is found that a metamagnetic transition from A-type antiferromagnetism to ferromagnetism occurs at a critical field for magnetic sublattice of Eu2+Eu^{2+}. The jump of specific heat is suppressed and shifts to low temperature with increasing H up to the critical value, then shifts to high temperature with further increasing H. Such behavior supports the metamagnetic transition. Detailed H-T phase diagrams for x=0 and 0.15 crystals are given, and possible magnetic structure is proposed. Magnetoresistance measurements indicate that there exists a strong coupling between local moment of Eu2+Eu^{2+} and charge in Fe-As layer. These results are very significant to understand the underlying physics of FeAs superconductors.Comment: 5 pages, 4 figure

    Long-distant contribution and χc1\chi_{c1} radiative decays to light vector meson

    Full text link
    The discrepancy between the PQCD calculation and the CLEO data for χc1γV\chi_{c1}\to \gamma V (V=ρ0,ω,ϕV=\rho^0,\,\omega,\,\phi) stimulates our interest in exploring extra mechanism of χc1\chi_{c1} decay. In this work, we apply an important non-perturbative QCD effect, i.e., hadronic loop mechanism, to study χc1γV\chi_{c1}\to \gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of χc1γV\chi_{c1}\to \gamma V are consistent with the corresponding CLEO data of χc1γV\chi_{c1}\to \gamma V. We expect further experimental measurement of χc1γV\chi_{c1}\to \gamma V at BES-III, which will be helpful to test the hadronic loop effect on χc1\chi_{c1} decay.Comment: 7 pages, 2 figures. Accepted for publication in Eur. Phys. J.

    Strength Prediction Model of a Particle-Reinforced Shellproof Ceramic Composite

    No full text
    On the basis of the microstructure of particle-reinforced shellproof ceramic composite, and the intergranular fracture feature, a dislocation pile-up fracture model of the small-particle ceramic composite is developed, the mechanism of formation, growth and coalescence of microcracks. The complex effect of the small particle pull-out and large particle cracking is concerned, when constructing the crack extension fracture model. Thereafter, the influence of particles’ volume fraction and matrix grain diameter on fracture strength is studied. The experimental data shows that the proposed strength prediction model is successful and can be generally applied.На основе микроструктуры пуленепробиваемого керамического композиционного материала, упрочненного мелкими частицами, и характера его внутрикристаллического разрушения разработана модель разрушения при скоплении дислокаций, т.е. исследован механизм образования, роста и слияния трещин. При разработке модели разрушения при распространении трещины учитывали совместное влияние процессов выкрашивания мелких частиц и растрескивания крупных частиц. Изучено влияние относительного объема частиц и диаметра матричного зерна на сопротивление разрушению. Экспериментальные результаты показали, что данная модель прогнозирования прочности является эффективной и общеприменимой.На основі мікроструктури куленепробивного керамічного композиційного матеріалу, зміцненого дрібними частинками, і характеру внутрішньокристалічного руйнування розроблено модель руйнування при скупченні дислокацій, тобто досліджено механізм виникнення, росту і злиття тріщин. При розробці моделі руйнування при розповсюдженні тріщини враховували спільний вплив процесів викришування дрібних частинок і розтріскування великих. Вивчено вплив відносного об’єму частинок і діаметра матричного зерна на опір руйнуванню. Експериментальні дані показали, що запропонована модель прогнозування міцності є ефективною і загальновживаною

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented

    Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes

    Get PDF
    The electroluminescent properties of a series of solution-processable fluorescent molecular emitters have been systematically investigated. While the introduction of the electron-deficient benzothiadiazole unit in the structure confers efficient electron-injection on the emitter materials, they exhibit different hole-transport properties. The device characteristics of the OLEDs based on these various emitters are discussed on the basis of (i) the energy levels of their HOMO and LUMO and (ii) their hole-transport properties in relation with the charge-transport and blocking properties of the electron- and hole-transport layers. (C) 2012 Elsevier B.V. All rights reserved
    corecore