1,537 research outputs found
The Impact of the Culture Distance on Tourism Demand--An Econometric Method from a Global Perspective
Comparing Motivations and Intentions of Potential Cruise Passengers from Different Demographic Groups: The Case of China
The cruise industry is the fastest growing leisure market in the world. As an essential component, the cruise market in China is growing rapidly over the recent years with the introduction of favorable government policies, new cruise terminals, and increased cruise awareness of customers. Unfortunately, only few studies have investigated the perceptions of Mainland Chinese consumers toward such industry. Hence, by adopting qualitative and quantitative research methods, this study explored how the motivation and intention of potential cruise consumers differed in terms of their demographic background. Travelers from different age, income, and marital status groups demonstrated varying cruise motivations and intentions. The influences of motivation factors on the cruise intention of consumers were also explored. Both the theoretical and practical contributions of the study were put forward accordingly
Morphology and Orientation Selection of Non-Metallic Inclusions in Electrified Molten Metal
The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modelling and numerical calculation. Two geometric factors, namely the circularity (fc) and alignment ratio (fe) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follows the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations
Simulation of reference crop evapotransiration in a plastic solar green house using a simplified energy balance approach
Proceedings of International conference on Agricultural and Biological Sciences (ABS 2015) held in Beijing, China on July 25-27, 2015With larger planting areas being used in greenhouses, evaluating crop evapotranspiration in a greenhouse has garnered greater attention. Currently, calculating the reference crop evapotranspiration for a greenhouse crop through using the Penman-Monteith formula recommended by FAO is difficult because the wind speed in a greenhouse is approximate zero. In order to calculate reference crop evapotranspiration in a greenhouse by the Penman-Monteith modified formula, a simplified model for calculating reference crop evapotranspiration in a greenhouse was proposed based on the energy balance equation, which was the correlative function between reference crop evapotranspiration and radiation and temperature. The model's parameters were obtained through meteorological data taken from the inside of a greenhouse in 2011. Then, the model was validated by using meteorological data within the greenhouse in 2012, and the fitted value of the model agreed with the calculated value of the formulas with a determination coefficient (R2) of 0.9554. This model is an easy means of calculating the reference crop evapotranspiration in a greenhouse because less meteorological factors are needed. Furthermore, the model provides a theoretical basis for crop irrigation in greenhouses
Magnetic phase diagram in EuLaFeAs single crystals
We have systematically measured resistivity, susceptibility and specific heat
under different magnetic fields (H) in EuLaFeAs single
crystals. It is found that a metamagnetic transition from A-type
antiferromagnetism to ferromagnetism occurs at a critical field for magnetic
sublattice of . The jump of specific heat is suppressed and shifts to
low temperature with increasing H up to the critical value, then shifts to high
temperature with further increasing H. Such behavior supports the metamagnetic
transition. Detailed H-T phase diagrams for x=0 and 0.15 crystals are given,
and possible magnetic structure is proposed. Magnetoresistance measurements
indicate that there exists a strong coupling between local moment of
and charge in Fe-As layer. These results are very significant to understand the
underlying physics of FeAs superconductors.Comment: 5 pages, 4 figure
Characterization study of GaN-based epitaxial layer and light-emitting diode on nature-patterned sapphire substrate
[[abstract]]Chemical wet etching on c-plane sapphire wafers by three etching solutions (H3PO4, H2SO4, and H3PO4/H2SO4 mixing solution) was studied. Among these etching agents, the mixing H3PO4/H2SO4 solution has the fastest etching rate (1.5 μm/min). Interestingly, we found that H2SO4 does not etch the c-plane sapphire wafer in thickness; instead, a facet pyramidal pattern is formed on the c-plane sapphire wafer. GaN light-emitting diode (LED) epitaxial structure was grown on the sapphire wafer with the pyramidal pattern and the standard flat sapphire wafer. X-ray diffraction and photoluminescence measurement show that the pyramidal pattern on the sapphire wafer improved crystalline quality but augmented the compressive stress level in the GaN LED epilayer. The horizontal LED chips fabricated on the pyramidal-patterned sapphire wafer have a larger light output than the horizontal LED chips fabricated on the standard flat sapphire wafer by 20%.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Spin-filtering and charge- and spin-switching effects in a quantum wire with periodically attached stubs
Spin-dependent electron transport in a periodically stubbed quantum wire in
the presence of Rashba spin-orbit interaction (SOI) is studied via the
nonequilibrium Green's function method combined with the Landauer-Buttiker
formalism. The coexistence of spin filtering, charge and spin switching are
found in the considered system. The mechanism of these transport properties is
revealed by analyzing the total charge density and spin-polarized density
distributions in the stubbed quantum wire. Furthermore, periodic spin-density
islands with high polarization are also found inside the stubs, owing to the
interaction between the charge density islands and the Rashba SOI-induced
effective magnetic field. The proposed nanostructure may be utilized to devise
an all-electrical multifunctional spintronic device.Comment: 4 pages, 4 figure
Detection of herb-symptom associations from traditional chinese medicine clinical data
YesTraditional Chinese medicine (TCM) is an individualized medicine by observing the symptoms and signs (symptoms in brief) of patients. We aim to extract the meaningful herb-symptom relationships from large scale TCM clinical data. To investigate the correlations between symptoms and herbs held for patients, we use four clinical data sets collected from TCM outpatient clinical settings and calculate the similarities between patient pairs in terms of the herb constituents of their prescriptions and their manifesting symptoms by cosine measure. To address the large-scale multiple testing problems for the detection of herb-symptom associations and the dependence between herbs involving similar efficacies, we propose a network-based correlation analysis (NetCorrA) method to detect the herb-symptom associations. The results show that there are strong positive correlations between symptom similarity and herb similarity, which indicates that herb-symptom correspondence is a clinical principle adhered to by most TCM physicians. Furthermore, the NetCorrA method obtains meaningful herb-symptom associations and performs better than the chi-square correlation method by filtering the false positive associations. Symptoms play significant roles for the prescriptions of herb treatment. The herb-symptom correspondence principle indicates that clinical phenotypic targets (i.e., symptoms) of herbs exist and would be valuable for further investigations
Quantum State Reconstruction of Many Body System Based on Complete Set of Quantum Correlations Reduced by Symmetry
We propose and study a universal approach for the reconstruction of quantum
states of many body systems from symmetry analysis. The concept of minimal
complete set of quantum correlation functions (MCSQCF) is introduced to
describe the state reconstruction. As an experimentally feasible physical
object, the MCSQCF is mathematically defined through the minimal complete
subspace of observables determined by the symmetry of quantum states under
consideration. An example with broken symmetry is analyzed in detail to
illustrate the idea.Comment: 10 pages, n figures, Revte
Magneto-transport in a quantum network: Evidence of a mesoscopic switch
We investigate magneto-transport properties of a shaped three-arm
mesoscopic ring where the upper and lower sub-rings are threaded by
Aharonov-Bohm fluxes and , respectively, within a
non-interacting electron picture. A discrete lattice model is used to describe
the quantum network in which two outer arms are subjected to binary alloy
lattices while the middle arm contains identical atomic sites. It is observed
that the presence of the middle arm provides localized states within the band
of extended regions and lead to the possibility of switching action from a high
conducting state to a low conducting one and vice versa. This behavior is
justified by studying persistent current in the network. Both the total current
and individual currents in three separate branches are computed by using
second-quantized formalism and our idea can be utilized to study magnetic
response in any complicated quantum network. The nature of localized
eigenstates are also investigated from probability amplitudes at different
sites of the quantum device.Comment: 7 pages, 9 figure
- …
