19,386 research outputs found

    Analytical technology aided optimization and scale-up of impinging jet mixer for reactive crystallization process

    Get PDF
    Reactive crystallization is widely used in the manufacture of active pharmaceutical ingredients (APIs). Since APIs often have low solubility, traditional stirred tank reactors and the route of process operation and control using metastable zone width are not effective. The current work investigated the integration of an impinging jet mixer and a stirred tank crystallizer that can take advantage of both the reaction and crystallization characteristics, the focus being on design optimization and scale-up using process analytical techniques based on the Fourier transform Infrared spectroscopy and Focused Beam Reflectance Measurement, as well as X-ray diffraction and particle imaging Morphologi G3. The parameters for process operation and design of the impinging jet mixer were optimized. The research was carried out with reference to the manufacture of an antibiotic, sodium cefuroxime, firstly in a 1L reactor, then a 10L reactor. The crystals produced showed higher crystallinity, narrower size distribution, higher stability and purity

    Fracture analysis of bounded magnetoelectroelastic layers with interfacial cracks under magnetoelectromechanical loads: Plane problem

    Get PDF
    Fracture behaviors of multiple interfacial cracks between dissimilar magnetoelectroelastic layers subjected to in-plane magnetoelectromechanical loads are investigated by using integral transform method and singular integral equation technique. The number of the interfacial cracks is arbitrary, and the crack surfaces are assumed to be magnetoelectrically impermeable. The field intensity factors including stress, electric displacement and magnetic induction intensity factors as well as the energy release rates (ERRs) are derived. The effects of loading combinations, crack configurations and material property parameters on the fracture behaviors are evaluated according to energy release rate criterion. Numerical results show that both negative electrical and magnetic loads inhibit crack extension, and that the material constants have different and important effects on the ERRs. The results presented here should have potential applications to the design of multilayered magnetoelectroelastic structures. © The Author(s), 2010.postprin

    VPN: Learning Video-Pose Embedding for Activities of Daily Living

    Get PDF
    In this paper, we focus on the spatio-temporal aspect of recognizing Activities of Daily Living (ADL). ADL have two specific properties (i) subtle spatio-temporal patterns and (ii) similar visual patterns varying with time. Therefore, ADL may look very similar and often necessitate to look at their fine-grained details to distinguish them. Because the recent spatio-temporal 3D ConvNets are too rigid to capture the subtle visual patterns across an action, we propose a novel Video-Pose Network: VPN. The 2 key components of this VPN are a spatial embedding and an attention network. The spatial embedding projects the 3D poses and RGB cues in a common semantic space. This enables the action recognition framework to learn better spatio-temporal features exploiting both modalities. In order to discriminate similar actions, the attention network provides two functionalities - (i) an end-to-end learnable pose backbone exploiting the topology of human body, and (ii) a coupler to provide joint spatio-temporal attention weights across a video. Experiments show that VPN outperforms the state-of-the-art results for action classification on a large scale human activity dataset: NTU-RGB+D 120, its subset NTU-RGB+D 60, a real-world challenging human activity dataset: Toyota Smarthome and a small scale human-object interaction dataset Northwestern UCLA.Comment: Accepted in ECCV 202

    Measurement and Modeling of Wireless Off-Body Propagation Characteristics under Hospital Environment at 6-8.5 GHz

    Full text link
    © 2013 IEEE. A measurement-based novel statistical path-loss model with a height-dependent factor and a body obstruction (BO) attenuation factor for off-body channel under a hospital environment at 6-8.5 GHz is proposed. The height-dependent factor is introduced to emulate different access point (AP) arrangement scenarios, and the BO factor is employed to describe the effect caused by different body-worn positions. The height-dependent path-loss exponent is validated to fluctuate from 2 to 4 with AP height increasing by employing both computer simulation and classical two-ray model theory. As further validated, the proposed model can provide more flexibility and higher accuracy compared with its existing counterparts. The presented channel model is expected to provide wireless link budget estimation and to further develop the physical layer algorithms for body-centric communication systems under hospital environments

    Plastic flow at the theoretical yield stress in ceramic films

    Get PDF
    Using fine-grained ceramic films based on chromium nitride, and suppressing fracture by using microcompression, it is shown that plastic flow at the theoretical yield stress can be obtained in brittle materials, with shear yield stresses of ~ G/24 at room temperature, which extrapolate to ~ G/19 at 0 K. Surprisingly, it is also found that the rate of deformation, and hence the hardness and the yield stress, are determined not by the soft, glassy grain boundary phase in the fine-grained materials, but by the harder crystal phase.This research was funded by A*STAR, Singapore and the Engineering and Physical Sciences Research Council (EPSRC) and Rolls-Royce Strategic Partnership (EP/H500375/1)
    corecore