Evolutionary synchrony of Earth's biosphere and sedimentary-stratigraphic record Neil S. Davies¹, Anthony P. Shillito¹, Ben J. Slater², Alexander G. Liu¹, William J. McMahon³ ¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom.

²Department of Earth Sciences, Palaeobiology, Uppsala University, Geocentrum, Villav. 16,
75236 Uppsala, Sweden.

³Faculty of Geosciences, Utrecht University, Princetonlaan 8a, Utrecht, 3584 CB,
Netherlands.

10 Abstract

The landscapes and seascapes of Earth's surface provide the theatre for life, but to what extent did the actors build the stage? The role of life in the long-term shaping of the planetary surface needs to be understood to ascertain whether Earth is singular among known rocky planets, and to frame predictions of future changes to the biosphere. Modern geomorphic observations and modelling have made strides in this respect, but an underutilized lens through which to interrogate these questions resides in the most complete tangible record of our planetary history: the sedimentary-stratigraphic record (SSR). The characteristics of the SSR have been frequently explained with reference to changes in boundary conditions such as relative sea level, climate, and tectonics. Yet despite the fact that the long-term accrual of the SSR was contemporaneous with the evolution of almost all domains of life on Earth, causal explanations related to biological activity have often been overlooked, particularly within siliciclastic strata. This paper explores evidence for the ways in which organisms have influenced the SSR throughout Earth history and emphasizes that further investigation can help lead us towards a mechanistic understanding of how the

planetary surface has co-evolved with life. The practicality of discerning life signatures in the SSR is discussed by: 1) distinguishing biologically-dependent versus biologically-influenced sedimentary signatures; 2) emphasizing the importance of determining relative time-length scales of processes and demonstrating how different focal lengths of observation (individual geological outcrops and the complete SSR) can reveal different insights; and 3) promoting an awareness of issues of equifinality and underdetermination that may hinder the recognition of life signatures. Multiple instances of life signatures and their historic range within the SSR are reviewed, with examples covering siliciclastic, biogenic and chemogenic strata, and trigger organisms from across the spectrum of Earth's extant and ancient life. With this novel perspective, the SSR is recognised as a dynamic archive that expands and complements the fossil and geochemical records that it hosts, rather than simply being a passive repository for them. The SSR is shown to be both the record and the result of long-term evolutionary synchrony between life and planetary surface processes.

1. Introduction

The sedimentary-stratigraphic record (SSR) is formed of sedimentary rock strata: geological materials generated at the interface of lithosphere and atmosphere at the planetary surface, through the physical dynamic interactions of mineral grains and fluids, or chemical precipitation from solution. Where it is tractable, in exposed outcrop, cores or seismic sections, the SSR has immense value as a record of ancient surface processes. It is the primary repository of deep time geochemical and fossil evidence, and the only tangible chronicle of 3.8x10⁹ years of Earth history (Moorbath, 2009; Peters and Husson, 2017). The objective of this contribution is to illustrate that the long-term evolution of Earth's SSR is causally-related to the evolution of life at the planetary surface, and how this is reflected in

- the distribution of material properties of sedimentary rocks by age. When considered at a

49 granular scale (a particular outcrop, basin, or time interval) it is most common to interrogate 50 the depositional controls on the SSR with reference to autogenic sediment-transport dynamics 51 (e.g., Hajek and Straub, 2017) or allogenic controls such as tectonics, climate or sea-level 52 (e.g., Allen, 2017) – processes that have been continual, cyclic, or recurrently episodic 53 throughout the historic accrual of the SSR (Bradley, 2011). However, if we view the Earth 54 surface as the factory in which the SSR was created, it must be acknowledged that the 55 machinery functioning there has changed substantially through geological time as the 56 biosphere has evolved. In other words, the characteristics of ancient strata need not 57 exclusively be explained by tectonics, climate and sea-level. Biological and evolutionary 58 controls may 1) have been overlooked, and 2) be equally or more likely to be culpable for 59 many sedimentary motifs.

Sediments, the raw material of the SSR, occur at the Earth surface: a space that they share
with as much as 87% of the planet's extant biomass (Bar-On et al., 2018), and where
interactions of sediment with solid, liquid and gaseous fluids are augmented by biotic
interactions. A multitude of observations demonstrate the ways in which different lifeforms
provide biomaterials and modify Earth surface processes and landforms at the present day
(Table 1). By variously mediating fluid and sediment properties and rates and scales of
erosion, weathering, deposition and transport, organisms can induce sedimentary or
geomorphic signatures on scales that range from the shape of individual grains (e.g., Harvey
et al., 2011) to the form of entire mountain belts (e.g., Istanbulluoglu and Bras, 2005; Fremier
et al., 2017). Entire scientific subdisciplines, such as biogeomorphology, ecogeomorphology
and zoogeomorphology, set out to address the importance of life as a controlling element
within recent landscapes (e.g., Naylor et al., 2002; Murray et al., 2008; Phillips, 2009;
Corenblit et al., 2011; Butler and Sawyer, 2012; Viles, 2019).

The variety and number of such influences is unsurprising because the mass of mobilized sediment is dwarfed by the mass of life: for example, the annual global continent-ocean flux of terrigenous sediment is c. 28.1 GT (Syvitski et al., 2004), in contrast to the 476 GT of planetary carbon that occurs as biomass (Bar-On et al., 2018). Yet, for over 90% of early Earth history, the majority of biomass existed only as microbial communities below the Earth surface (McMahon and Parnell, 2018), spatially divorced from contemporaneous sedimentary processes. Despite this, the origin and ancestry of life influences on Earth surface processes and sedimentation have only infrequently been considered, particularly with respect to clastic sediments.

We contend that, when exploring the heritage of the planetary surface, it is essential to consider how different biological agents (which have evolved through Earth history) influenced the type, frequency, and intensity of physical processes that operate at the Earth's surface, and how this compares to modern observations. In order to do this, we must consider the SSR as a single entity; the 3.8 Ga accrual of which has exceeded the evolutionary lineages of all domains of life, with the possible exception of certain microbiota (Knoll and Nowak, 2017). In this respect the SSR is a thin (< 20 km [Allen et al., 2002]) and partial (62.5-69.5% coverage [Blatt and Jones, 1975]) exogenic veneer of planet Earth: a sedimentary shell that (1) has been accumulating since Earth formed a crust; and (2) consists of fragments of strata from deep time that have fortuitously survived to the present, avoiding destructive recycling through erosion and subduction (Ronov et al 1980, Veizer and Mackenzie, 2014, Peters and Husson 2017).

1.1. Deep time biosphere signatures

As we look back at successively older portions of the whole SSR, we can see that its older
strata were formed on 'alternative Earths' (Beerling and Butterfield, 2012), in existence prior

to the evolution of particular organisms, groups of organisms, and behaviours. These alternative Earths are recorded in the SSR as synchronous strata from different parts of the globe which, taken together at any common interval of geological time, could potentially harbour the same range of abiotic allogenic (e.g., tectonic, climatic and sea-level) sedimentary signatures as are known from the recent Earth (albeit at different rates and intensities). However, for any particular synchronous interval, only a finite selection of the full census of biologically-affected sedimentary materials and traits (as known to cumulatively exist within the global SSR) can be recognised, because some will not yet have arisen, and some will have ceased to operate, at the time of deposition. When the global SSR is considered as a single entity, escalation from its oldest to youngest strata reveals that some of its intrinsic materials and traits have first occurrences (or major shifts in frequency of occurrence), in stratigraphic synchrony with the fossil record of prospective life triggers (Figure 1).

In this paper, we explore what is already known about biosphere signatures, discuss the philosophical background, potential and practicalities for further investigation, provide a catalogue of selected signatures, and explain why there could be significant implications arising from an improved understanding of life signals in the SSR. We place extra emphasis on biosphere signatures in siliciclastic strata, which have traditionally been less well-investigated than those in biogenic or chemogenic strata.

2. Classes of biosphere signatures

We here distinguish two overarching classes of biosphere signatures, as preserved in the SSR
(Figure 1): 1) Biologically-dependent signatures (BDS) which directly incorporate material or
structure generated by life; and 2) Biologically-influenced signatures (BIS) which are

favoured by life-induced parameter changes to the rates, frequency of occurrence, and spatial influence of sedimentary processes.

2.1. **Biologically-dependent signatures (BDS)**

Lithologies, materials, structures and facies which could never occur without particular biogenic detritus, biochemical processes, or the manipulation of sediment by organism life habits are classed as biologically-dependent signatures. BDS can be directly recognised within the SSR, so the known historical record of such characteristics is relatively complete, well-documented, and well-accepted. Discussions of BDS can be found in analyses of secular trends in certain carbonate (e.g., Riding, 2000) or coal lithologies (e.g., Diessel, 2010), or trace fossils (e.g., Buatois and Mángano, 2018), throughout the SSR. The demonstrable role of life in forming these signatures mean that it is usually undisputed that they have defined stratigraphic onsets or durations in the SSR, in approximate evolutionary synchrony with their formative organisms.

2.2. **Biologically-influenced signatures (BIS)**

Many of the life influences on Earth surface processes, listed in Table 1, do not involve the direct supply of matter or direct forces from life. Instead, they involve altering the magnitude, or frequency of occurrence, of contributive physical parameters within a system. For example, in alluvial sediments, certain signatures may reflect conditions of enhanced bank stability: in modern rivers, bank stability is greatly enhanced by a variety of binding and baffling effects of vegetation, however abiotic river bank stability can also be afforded by inorganic chemical precipitates, cohesive sediment, or ice (e.g., Matsubara et al., 2015; McMahon and Davies, 2018a; Kleinhans et al., 2018). Signatures such as these are here classed as biologically-influenced signatures. BIS have been less commonly discussed in previous literature than BDS, and many examples likely remain to be identified. This is

because BIS require a holistic view of the SSR and are rarely detectable from any individual outcrop: since the resultant signature may occur without life, their positive identification is hindered by equifinality - the potential for different processes, or the same process with different drivers, to have resulted in similar sedimentary end-states (see Section 3.1.1.). At present, the reported record of BIS is biased to organisms and behaviours that are voluminous and sessile (such as vegetation [Davies and Gibling, 2010a, McMahon and Davies, 2018b]), or involve direct interaction with accruing sediment (such as effects arising from bioturbation [Herringshaw et al., 2017; Mángano and Buatois, 2017]). 3. Time-length scales of biosphere signatures There is a general correlation between the time and length scales of most Earth surface phenomena, both with and without biological influences (Figure 2; Kleinhans et al., 2005, 2009). For example, it is possible to contrast phenomena such as an instance of bioturbation (occurring over an interval of minutes to weeks, over an area approximately metres-squared), with the formation of a soil, peat or reef (over hundreds to thousands of years, over kilometres-squared), to the biological forcing of the evolution of the proto-atmosphere (up to a billion years or more, over the whole globe). The time-length scale of any particular phenomenon determines the frame of reference that needs to be accessed in order to understand its formative mechanisms. Using the examples given, an instance of modern bioturbation is best understood at the small scale over short time periods (e.g., Dorgan, 2015), whilst the evolution of the proto-atmosphere requires a global compendium of data, from a substantial interval of geological time (e.g., Holland, 2006). Conversely, applying an inappropriate time-length frame of reference risks producing meaningless or fallible conclusions (e.g., changes to the morphology of a single burrow over hundreds of years, or determining proto-atmospheric evolution from one datapoint).

When we seek to elucidate life influences on the whole SSR, we are often either searching for trends in a multitude of small- or medium- time-length scale phenomena, or singularities in long- time-length scale phenomena. A challenge in achieving this is presented by the fact that we cannot always choose the time-length scales at which we make observations from the ancient SSR, because of its inconsistent exposure and preservation. We here emphasise that BDS and BIS may be variably recognisable depending on whether we look at: 1) an individual outcrop (or core, etc.) or regional group of outcrops, revealing strata that are particular to the age and geological setting at a location; or 2) the holistic SSR, uniting reported instances of phenomena from the entire stratigraphic expanse of the geological timescale across the globe. These distinct approaches offer two wholly-different focal lengths with which to interrogate the SSR, and either one may be more or less suited to identifying particular traits, depending on the time-length scales of the phenomena associated with those traits. 3.1. **Biosphere signatures at outcrop** Outcrops are present-day geomorphological features: exposures of rock that are finite in their extent and terminate against areas of non-exposure or erosion, and may be internally partitioned by faults and unconformities. Where they consist of sedimentary rock, they can provide high-resolution windows onto discretized fragments of the global SSR, the time-length scale of which dictates which phenomena may be identified (and the degree of confidence to which they may be identified) (Davies et al., 2019). Spatially, outcrops are small-scale: their area can be significantly less than many ancient geomorphological landforms (e.g., McMahon and Davies, 2018a), they may reveal only fragmentary records of spatially heterogeneous phenomena (e.g., Marenco and Hagadorn, 2019), and, in most instances, they record only a diminutive fraction of a total depositional environment (e.g.,

Runkel et al., 2008; Davies and Shillito, 2018; Davies et al., 2019). Temporally, outcrops consist of individual beds which formed on timescales ranging from minutes to days (e.g., in the case of those composed of hydrodynamic bedforms; Miall, 2015; Paola et al., 2018; Davies et al., 2019) to tens of thousands of years (e.g., in the case of palaeosols; e.g., Candy et al., 2004; Barnett and Wright, 2008). Within any given outcrop, beds representing these different time-durations can occur as a stochastically shuffled succession. Additionally, packages of individual beds, vertically-stacked to the dimensions of the outcrop, may record much longer time intervals than the sum of their parts, because the breaks between beds can record extensive sedimentary stasis or time lost to erosion (Paola et al., 2018). The timescales represented by different outcrops, or within a single outcrop, can thus be highly variable. In general, however, outcrop-archived timescales are weighted towards enabling the direct recognition of BDS that arose from Earth surface phenomena on short- to moderate- time-length scales (Figure 2). This is particularly true of BDS which occur in direct association with fossil evidence for biological involvement, or where such an association can be inferred. Examples of such phenomena include trace fossils, or vegetation-induced sedimentary structures that reflect the modification of local hydrodynamic conditions by standing vegetation (Rygel et al., 2004) (Figure 3). The limitation of outcrop studies is that they can be used to recognise only very localized examples of BDS, which can arguably have little significance beyond being geological curios. The recognition of any life signatures provides evidence only that that BDS could be formed at a particular place and time, and they are not implicit of any evolutionary context unless they are compared with a global compendium of outcrops (Section 3.2.). Furthermore, the direct recognition of most BIS and some BDS at outcrop is hampered by equifinality and underdetermination.

3.1.1. Outcrop: Problems of equifinality

Equifinality refers to end-states that can potentially be explained by multiple different causes (Beven, 1996). In the SSR at outcrop, where every individual bed or sedimentary structure is effectively an end-state relative to depositional conditions, many sedimentary signatures can have plural plausible explanations, the most likely explanation for which can only be abduced by the observer (e.g., Kleinhans et al., 2005, 2009; Shillito and Davies, 2019a). This presents a particular problem for the recognition of BIS at outcrop. For example, none of the BIS illustrated in Figure 1 are wholly reliant on life for their formation: their occurrence may be promoted by particular lifeforms or behaviours, but they can also be generated by purely abiotic processes.

An example of equifinality between biotic and abiotic sedimentary signatures can be seen in marine dropstones. Whilst primarily associated with deposition from melting icebergs (e.g., Bischof, 1990), marine mammals, birds, driftwood, ship ballast release, and floating seaweed have all been documented as potential rafting agents (Figure 4; Emery, 1941, 1955; Flemming, 1951; Joliffe, 1989; Woodborne et al., 1989; Bennett et al., 1996; Frey and Dashtgard, 2012). These biotic explanations are arguably far less likely than a glaciogenic origin, but nonetheless they must be considered possible alternative explanations for specific dropstones on any ancient alternative Earths where they were possible. In such instances, accessory sedimentary features would be needed to weigh the balance of probability as to the exact cause (e.g., searching for signatures such as abundance, varves, striations, faceted clasts, or glendonites).

Generally, the simpler the form within the SSR, the more problematic it may be to ascribe a
biological origin: many simple trace fossils, body fossils, stromatolites and microbial
sedimentary structures can be hard to distinguish from sedimentary structures of inorganic

origin (Jensen et al., 2006; McLoughlin et al., 2008; Ohmoto et al., 2008; Buatois and Mángano, 2016; Davies et al., 2016; Allwood et al., 2018; Brasier et al., 2019). In the case of microbial sedimentary structures, Davies et al. (2016) suggested that a practical first approach to circumvent this problem would be to classify sedimentary surface textures according to the perceived likelihood of a microbial origin, based on the weight of accessory evidence: Category B being definitively biotic (microbial) and Category A definitively abiotic; Category Ba is then assigned for structures with supporting evidence for a biotic origin, but where an abiotic origin cannot be ruled out (or Ab for the converse situation); Surface textures with a plausible biotic origin, but where there is no clear evidence are Category ab. Such an approach need not be limited to microbially-induced sedimentary structures and could be extended to suspected BIS during the initial stages of any investigation; thus mitigating against problems of equifinality (and acknowledging that some solutions are inescapably ambiguous).

3.1.2. Outcrop: Problems of underdetermination

Equifinality can lead to the related problem of undetermination of biological influence. Underdetermination refers to the situation that arises when there is insufficient available or total evidence to ascertain which particular explanation, amongst plural potential explanations, is the true cause of an observed phenomenon (Kleinhans et al., 2005). Two examples illustrate this (Figure 4):

1) In modern environments, large herbivores such as cows and hippopotamuses are known to promote the formation of small fluvial channels. Herding trails are grazed of vegetation and compacted under the animals' weight, leading to decreased infiltration of meteoric water and increased surface runoff and erosion (Trimble and Mendel, 1995). During overbank flooding and avulsion, these conduits may become the preferred route for water in the landscape,

resulting in the abandonment of previously dominant fluvial channels (McCarthy et al., 1992). If such features were to be translated into the SSR, the sedimentary signature would be one of multiple small abandoned channels (i.e., discrete channel architectural elements, aggradationally filled with fine-grained sediment), but direct evidence for the organismal trigger (i.e., footprints organised within trackways) would have been obliterated by the physical processes of erosion which they promoted and which created the channels. This limitation of the SSR is borne out by examples of Mesozoic fluvial successions, such as the Early Cretaceous Wealden Group of southern England, which contains both abundant abandoned channel elements and discrete fossilized footprints of herbivorous herding dinosaurs (Shillito and Davies, 2019b). In similar successions, the possibility of dinosaur-induced avulsion has previously been suggested (Jones and Gustason, 2006). Yet while modern analogue can tell us that herding dinosaurs (heavier than extant large animals [e.g. Lockley et al., 2012]) likely promoted channel avulsion during the Mesozoic, and outcrops can contain evidence that both small channel avulsion processes and dinosaurs co-existed in ancient environments, underdetermination means that the SSR is unlikely to provide definitive evidence of specific instances of dinosaur-induced avulsion, because other non-dinosaur causes remain plausible (Shillito and Davies, 2019b). 2) Beavers are well-known ecosystem engineers in modern rivers, promoting the formation of wetlands through their damming of river channels with cut wood. The wood-cutting clade of beavers arose in the latest Oligocene (Rybczynski, 2008) and so they may be expected to have left facies signatures within the SSR. Pliocene strata in Arctic Canada contain both outcrop sedimentary evidence of wetlands, in the form of extensive peats, and beaver activity (fossil woody debris with characteristic bite marks) (Mitchell et al., 2016a). However, the peats represent deposition over a c. 49 Ka timescale, and so even in such instances of remarkable co-occurrence, the discrete outcrop signature cannot be directly attributed to a

specific beaver damming event, instead recording an amalgam of deposits that show the dominant sedimentary conditions, apparently under the influence of the presence of a particular organism (Mitchell et al., 2016a). The non-unique facies signatures arising from the effects of beaver dams means that the recognition of their effects at outcrop is hampered by underdetermination.

-3 294

3.2. Biosphere signatures in the whole SSR

In a review article entitled "The search for a topographic signature of life", Dietrich and Perron (2006) asked the question: 'if life had not arisen on Earth, would landscapes be significantly different?' Using a variety of geomorphic transport laws, they concluded that there may be no unique geomorphic signature of life, but the influence that different organisms can have on the frequency distribution of landform properties can be highly significant. The question that they posed can be directly addressed when we consider Earth's SSR as a whole, the longevity of which means that parts of it did accrue on a planet where particular types of life had not yet arisen. By collecting and collating global outcrop and other geological observations (from original fieldwork and published records), it is possible to catalogue the disparity and diversity of sedimentary phenomena that are particular to time intervals in which different organisms, groups of organisms and behaviours were nascent, advanced, extinct, or had not yet evolved. Cross-comparison with similar catalogues of phenomena from antecedent and subsequent intervals makes it possible to identify hypotheses that life may have played a role in the observed patterns of BDS and suspected BIS. This is because first appearances and abundance shifts in sedimentary phenomena may become apparent that are stratigraphically synchronous with the evolutionary origins of life traits, and which (from modern analogue) are known to be potential causes of those phenomena. Holistic study of the SSR thus presents the opportunity to 1) understand trends within unequivocal BDS (e.g., Riding, 2000; Diessel, 2010; Buatois and Mángano, 2018),

and 2) infer potential trends in BIS, when alternative explanations can be ruled out, or recognised as less likely explanations (e.g., Davies and Gibling, 2010a, 2013; McMahon and Davies, 2018b; Tarhan, 2018; Chen et al., 2019). Trends in suspected BIS (Figure 1) before and after the evolution of particular life traits are expected to resemble the frequency distribution curve illustrated by Dietrich and Perron (2006; their fig. 5) for abiotic versus biotic settings. In other words, if one or more of the parameters that cause a particular phenomenon can be accentuated or dampened by a particular life trait, then it can be expected that the frequency distribution of that phenomenon within the SSR will differ in strata deposited before and after the evolution of that life trait. This is well-ascertained for particular sedimentary signatures within alluvial strata, which appear more or less abundant after the evolution of land plants (Figure 5). In modern systems, vegetation plays a fundamental role in affecting fluvial form and process (e.g., Corenblit et al., 2007, 2009; Wohl, 2013; Gurnell, 2014; Horton et al., 2017; Kleinhans et al., 2018), but it does so by changing particular physical parameters within the whole river system. As a result, many signatures in ancient alluvium will be BIS, even where they cannot be directly recognised as such at an individual outcrop. For example, Davies and Gibling (2010b) noted that published interpretations of meandering river planforms increased in stratigraphic alignment with the evolution of land plants, but emphasised that "the presence of Precambrian and extraterrestrial meandering systems indicates that vegetation is not essential for meandering" (Davies and Gibling, 2010b, p. 51) (e.g., Matsubara et al., 2015). In this instance, it is implicit that an individual outcrop of pre-vegetation alluvium that could be interpreted as the product of a meandering river would tell us little about the larger role of vegetation in producing BIS. However, trends in the frequency distribution of alluvial signatures before and after the evolution of land plants, across the whole SSR, begin to reveal

 patterns in suspected BIS, for which a vegetation cause appears the most probableexplanation.

340 3.2.1. Whole SSR: Problems of equifinality

Time-dependent frequency distribution trends in particular sedimentary phenomena are emergent patterns within the whole SSR, but such observed patterns are end-states that are potentially as prone to issues of equifinality as individual signatures are at outcrop (i.e., correlation is not causation). To be recognised as being contingent on biological evolution, other alternative explanations must be determined to be less likely. In the case of long term secular trends in the SSR, traditionally the three overarching explanations have been tectonics, climate and sea-level, and it remains true that many of these controls may leave non-unique signals that could be mistaken for biosphere signals. Critically, however, all three of these forcing mechanisms exhibit cyclicity or episodicity over geological timescales, albeit at different frequencies, from longest (tectonic cycles) to shortest (sea-level cycles) (e.g., Allen, 2008; Foreman and Straub, 2017). They are thus inadequate explanations for singular, non-recurrent shifts in the frequency distribution of sedimentary signatures in the whole SSR.

The unidirectional nature of evolutionary innovation means that biological signature shifts in the SSR may be more readily identifiable than those generated by cyclic phenomena. Unless they are of sufficient magnitude, cyclic signals can suffer from shredding at different scales, whereby components of the original cyclic record are reworked or removed by autogenic processes (Jerolmack and Paola, 2010). In order to leave a recognisable signal, the period of cyclic oscillation must be longer than the key timescales of internal autogenic dynamics in any sedimentary system that is contributing strata to the SSR (Hajek and Straub, 2017; Foreman and Straub, 2017). Expanding this concept, consideration of the whole SSR can best

reveal those cyclic phenomena that occur at the largest time-length scales (e.g.,

supercontinent cycles: Bradley, 2011). In contrast, unidirectional signals arise from a binary system shift (i.e., absence/presence of an evolutionary component), thus while the timing onset of the signal may be only coarsely recognised, the shift should be globally apparent (Figure 6).

For example, in the case of alluvial signatures attributed to vegetation, the onset of major sedimentological change occurs towards the end of the Silurian. This is in stratigraphic correlation with the evolution of tracheophytes (e.g., Edwards et al., 2015; Wellman and Strother, 2015), but post-dates a multitude of tectonic and climatic cycles in the preceding 3.4 Ga of time recorded in the SSR (e.g., Weller and St-Onge, 2017), some of which would have harmonized to create abiotic global backdrops that were similar to the late Silurian world (Torsvik and Cocks, 2016). In the absence of earlier, comparable facies shifts, the evolution of vegetation appears the most likely trigger. Further support for this hypothesis is then seen in the persistence in abundance and occurrence of the signatures in the SSR, which do vary through subsequent intervals (likely due to tectonic and climatic cycles), but which never revert to pre-vegetation character (Davies and Gibling, 2010a, 2013; Davies et al., 2017). Additional testing is possible by comparing the distribution of signatures in pre- and syn-biotic worlds, across similar tectonic or climatic settings. For example, McMahon and Davies (2018b) showed a significant increase in the amount of mudrock in alluvium in stratigraphic correspondence with the rise of land plants. While mudrock abundance in alluvium may potentially be explained by proximity to an orogenic source, cross-comparison of mudrock abundance before and after the evolution of land plants, using the analogous Grenville and Caledonide orogenies as controls, suggests that tectonic controls are secondary to evolutionary controls (Figure 7).

3.2.2. Whole SSR: Problems of underdetermination

Underdetermination affects whole SSR analyses in instances where 1) there are frequency distribution shifts in SSR signatures without synchronous fossil evidence, and 2) any suspected BIS cannot be identified as such due to a lack of predictive modern analogue. In the first instance, Figure 1 omits a number of Precambrian secular changes in the SSR, which may be attributable to life, but occur where synchronous fossil evidence is lacking. The recognition of frequency distribution shifts in the SSR requires that strata dating from before and after the evolution of a particular organism or clade can be studied. This is possible for most metazoan and plant groups, which have a predominantly Phanerozoic record, but is considerably more problematic for life in the Precambrian – the fossil record of which is more poorly understood and which may, in part, have a greater temporal lineage than the SSR itself (Butterfield, 2015; Knoll and Nowak, 2017). For example, modern observations attest to ways in which microbiota generate biosignatures by altering bedform stability fields through biophysical sediment cohesion (Malarkey et al., 2015; Parsons et al., 2016). When preserved in the SSR, however, such bedforms are often erosionally truncated and the precise flow regimes that formed them are usually unknown: the same array of physical structures can be developed with or without microbial influence. Furthermore, since the SSR may not extend far enough back in time to observe any pre-microbial to microbial shift in the frequency distribution of bedform dimensions, and since the timing of the evolution of key microbial traits (e.g., the ability to generate extra-cellular polymeric substances) is wholly unknown, it is not possible to directly ascertain a microbial role in the formation of relict bedforms; even though such life-sediment interactions should be expected to have occurred regularly since the evolution of the first interstitial microbial life (Chen et al., 2017). Additionally, certain microbial controls on sedimentary environments and geomorphology have limited potential to enter the SSR. For example, at sub-bankfull flood stage in some modern rivers, microbial mats and biological soil crusts may be seen to

colonize and stabilize sediment on bar tops and river margins (Dupraz et al., 2009). However, the dominant record of sedimentation in rivers scales towards seasonal maxima, meaning that deposits that get preserved in the SSR will often be those formed when sub-bankfull biosignatures are reworked (Rice et al., 2016) (in this instance, when microbial surfaces are undercut and destroyed by lateral channel migration). Thus the sedimentary signatures in the SSR may reveal end-state evidence of reworked channel margins colonized by matgrounds (e.g., intraformational clasts bearing microbially-induced sedimentary structures), but are unable to reveal the influence that microbial communities had on fluvial process during average flow conditions (McMahon et al., 2017). Notwithstanding these issues, some trends in the SSR are so obvious and singular that they may be considered BIS even without a fully understood trigger. Precambrian chemical sediments, such as bedded phosphorites and sulphates, are suggested to have been influenced by the evolution of life, and are reviewed elsewhere: see, for example, Eriksson et al. (2013), Lepland et al. (2013), and Strauss et al. (2013). Particularly prominent amongst such signatures are Banded Iron Formations, the disappearance of which has long been considered to have been influenced by biological evolution (Cloud, 1973; Erikkson et al., 2013). Recent studies have shown that Banded Iron Formations may occur near continuously between the Archean and early Palaeozoic (Canfield et al., 2018; Li et al., 2018), indicating pockets of ferruginous ocean conditions which became rare during the Phanerozoic. However, while the disappearance of Banded Iron Formations from the SSR is a strong secular signature, underdetermination means that we cannot directly point to tangible fossil evidence for the synchronous evolution of a particular organism or life strategy (e.g., photosynthesis). Additionally, any precise life trigger for the disappearance of Banded Iron Formations would have been twice-removed from the effect: the direct cause of their disappearance was a change in global ocean chemistry, which in turn was influenced by life.

Sedimentary structures that feasibly exhibit shifts in the Precambrian may include raindrop imprints, which have been posited to occur within a different range of sizes prior to the Great Oxidation Event because of a different air density at the time (Som et al., 2012). However, this shift in sedimentary signatures is at least thrice-removed from any life trigger (i.e., a different raindrop size due to different air density due to different atmospheric composition due to different life metabolism), so any link to biological evolution can only be very tenuously made. In addition, equifinality means there are non-unique explanations for the anomalously-sized raindrop impressions that Som et al. (2012) used to calculate atmospheric density: for example, the rate and duration of rainfall (Kavanagh and Goldblatt, 2015). Underdetermination also limits the opportunity to recognise BIS in the whole SSR when there is limited understanding concerning what signatures should be sought as potential BIS. In some instances, new data may offer future opportunities to interrogate the SSR with respect to these signatures. Examples include the underexplored signatures arising from changes in ocean circulation and water displacement associated with the evolution of swimming metazoans (Huntley and Zhou, 2004; Butterfield, 2018); decoupling our understanding of the evolution of physical (churning) and chemical (gut evolution and sediment processing) aspects of bioturbation; or distinguishing between the impact of meiofaunal versus macrofaunal bioturbation.

1105 455

3.3. Recognition of biosphere signatures

BDS and BIS provide records of ancient phenomena that occurred on different time-length scales. These records can be accessed by studying the SSR at different time-length scales; from individual beds, through to outcrops, groups of outcrops, and the whole SSR as presently reported (Figure 2). While it is essential to consider the limitations imposed by equifinality and underdetermination, it should also be recognised that such problems are not

unique to biosphere signatures: equivalent issues have always hampered interpretations of abiotic causal mechanisms (e.g., tectonics, climate, sea-level) drawn from end-state phenomena. If, in the SSR at outcrop, we cannot recognise those biological sedimentary phenomena that occur on time-length scales that are comparable to outcrop scales (Figure 2), then there are only two explanations: 1) they are indistinguishable due to equifinality and underdetermination (e.g., biogenic turbulence damping), or 2) they did not occur (e.g., Archean bioturbation).

The key to further recognition of hypotheses concerning biosphere signatures is a two-stage process: 1) finding a consensus between modern analogue and models that attests to a biological contribution to the formation of a particular signature (e.g., Table 1); and 2) surveying the whole SSR to see whether there is a sudden origin or abundance shift of that signature, in stratigraphic alignment with the fossil record of the evolution of the trigger organism/behaviour. Confirmation that any stratigraphic shift is unidirectional provides supporting evidence that the suspected biological trigger is more likely than repetitive tectonic, climatic or sea-level changes that would have continuously occurred before and after the change (e.g., see Davies et al., 2017). Once unidirectional shifts in presence/absence or abundance have been recognised that fulfil these criteria, they can be considered robust hypotheses for the presence of BDS and BIS.

4. Examples of biosphere signatures

Figure 1 shows the range, within the SSR, of certain BDS and BIS and the relationship of these ranges to the origins of certain taxa as evidenced in the fossil record. The purpose of this paper is to encourage further interrogation of the SSR for biosphere signatures, and therefore the trends and taxa depicted in Figure 1 should not be considered to be exhaustive. Alternative signatures could be illustrated: for example, different types of metazoan reefs,

1182		
1183 1184	485	microbially-induced sedimentary structures, anthropogenic signatures other than plastic, or a
1185 1186	486	more granular subdivision of features such as burrows. However, recent reviews of such
1187 1188 1189	487	information are available elsewhere (for example, respectively within Kiessling, 2002; Chen
1190 1191	488	et al., 2019; Waters et al., 2016; Buatois and Mángano, 2018).
1192 1193	489	The trends shown in Figure 1 are simplified, particularly with respect to secondary
1194 1195	490	organisms. For example, certain microbiota could be argued to have played a secondary role
1196 1197 1198	491	in almost all of the signatures listed. We have also shown only proactive instances where
1199 1200	492	signatures have been directly induced or dampened by taxa: later interactions with other taxa
1201 1202	493	clearly exist but are not illustrated (e.g., the influence of grazing metazoans on microbialites
1203 1204	494	(Riding, 2006) or human modification of coal deposits, coral reefs, or river systems (Goudie
1205 1206 1207	495	and Viles, 2016; Williams et al., 2016; Gibling, 2018)).
1207 1208 1209	496	With these caveats, the examples shown in Figure 1 are amongst the most often reported
1210 1211	497	biosphere signatures, and this section provides a brief review and explanation of each of
1212 1213	498	them.
1214 1215 1216 1217	499	4.1. Drivers of biosphere signatures
1217 1218 1219	500	The taxa shown in Figure 1 primarily follow the same groupings as those used in Bar-On et
1220 1221	501	al. (2018), who reported that these groups comprise the most voluminous biomass at the
1222 1223	502	present day. We have also included taxa omitted by Bar-On et al. (2018), namely: Porifera,
1224 1225	503	because of their notable contribution to siliceous sedimentary rocks (e.g., Maliva et al., 1989;
1226 1227	504	Kidder and Erwin, 2001); tetrapods and reptiles, because of their prominent body fossil
1228 1229	505	records; and angiosperms, grasses and trees, as subdivisions of land plants with particular
1230 1231	506	roles in the creation of the SSR.
1232 1233 1234	507	Since the purpose of Figure 1 is to illustrate correlation between the tangible fossil record and
1235 1236	508	the physical SSR, the apparent origins of the taxa included refer to the earliest unequivocal

body fossil remains of total group representatives of such organisms, rather than origins inferred from indirect evidence (e.g., trace fossils; here considered a BDS component of the SSR) or phylogenetic predictions. Earliest occurrences have been determined from the papers listed in Table 2, which we consider to make the least equivocal and most widely-accepted claims, though we offer the following caveats: (1) the fossil record of microbial organisms is inherently opaque and a number of doubtful "earliest" claims have been made (e.g., see discussion in Allwood et al., 2018): to maintain a cautious estimate, we here use the earliest unequivocal stromatolites (Allwood et al., 2006; Knoll and Nowak, 2017) as a proxy for the origins of Archaea, Bacteria and viruses, but concede that this is extremely uncertain; (2) we have depicted the origin of fungi based on the earliest fossils of fungi-like filaments that have recently been reported from the Palaeoproterozoic (Bengtson et al., 2017; Loron et al., 2019), but note that confident identification of fungal fossils is problematic due to widespread convergence on a filamentous habit; if the recently reported instances were excluded, then the other oldest putative fungi would be Mesoproterozoic (Butterfield, 2005) or Silurian (Smith, 2016), and the earliest confidently identified crown group fungi would be Devonian (Peckmann et al., 2008); (3) the earliest known fossils of some taxa, such as protists and nematodes, likely post-date their true origins by a substantial interval, due to the poor preservation potential of these taxa; and (4) when reported fossils need to be attributed to groups with debatable (e.g. paraphyletic) definitions (e.g., bird, fish, mammal, reptile, tetrapod), we have made a judgement call based on how likely the reported fossil organism would have been to interact with Earth surface processes in a manner comparable to extant organisms of that group.

 4.2.

Examples of BDS: Lithologies

532 Sediments that are all or partially formed from the dead tissues or detritus of once-living533 organisms, or which have been precipitated as a result of organism metabolism, are clearly

recognisable as biogenic lithologies. Examples of BDS lithologies are shown in Figure 8, anddiscussed in the following section.

4.2.1. Microbialites and Microbialite limestones

Stratigraphic range: Isolated stromatolites are known from the Palaeoarchean (3.45 Ga)
Strelley Pool Chert of Western Australia (Allwood et al., 2006). Extensive microbial
carbonates are known from Neoarchean (2.55 Ga) successions in South Africa (Riding,
2011). Microbialites and microbialite limestones thus have a range from the Archean to
present (Riding, 2000) (Figure 8A-C).

Primary Organisms and Role: Various microbiota which induce the precipitation of minerals
 including carbonates (Riding, 2008). While Bacteria, Archaea and certain protists have long
 been identified as playing key roles in microbialite production, recent work also shows how
 viruses can act as loci for crystal nucleation (Perri et al., 2018) and rupture cyanobacterial
 cells to release bicarbonate (Lisle and Robbins, 2016).

Further Information: Microbiota may both contribute to and promote carbonate precipitation, so different microbialites and microbial limestones may variably be classed as both BDS and BIS. Extensive reviews of microbialites and microbial carbonates are presented by Riding (2000, 2006, 2008, 2011), who describes how microbialites have evolved through time. Riding (2000) notes that the time from the Neoarchean to the end of the Mesoproterozoic was the acme of stromatolite microbialites, with a decline in abundance beginning in the Neoproterozoic. Microbialite limestones are reported to have exhibited other abundance peaks in the Cambrian to Early Ordovician, Late Devonian to Early Carboniferous and Mid-Triassic to Early Cretaceous, and microbial contribution to 'metazoan' and 'abiotic' limestones remains significant throughout the Phanerozoic (Riding, 2000, 2011).

4.2.2. Bioclastic limestones

Stratigraphic Range: The oldest bioclastic limestones known are formed from fragments of early biomineralizing organisms such as *Cloudina* and *Namacalathus* (Figure 8D), found in multiple latest Ediacaran fossil localities globally, including in Paraguay, China, Brazil and Namibia (e.g. Grant, 1990; Warren et al., 2013; Cai et al., 2019). After their first occurrence in the terminal Ediacaran, later occurrences throughout the Phanerozoic SSR fluctuate and evolve in their diversity and composition, coeval with evolutionary histories of different benthic calcareous organisms (Wilkinson, 1979). Primary Organisms and Role: Shelly metazoans, calcareous algae and foraminifera, often boosted by biomineralizing micro-organisms (James and Jones, 2016). Further Information: The formation of bioclastic limestones (comprising a significant proportion of clasts derived from skeletal material) first required the evolution of a calcareous shelly biota in the latest Ediacaran (Porter, 2007; Wood et al., 2017; Cai et al., 2019). The skeletal mineralogy of these organisms has fluctuated between calcite and aragonite with changes in ocean chemistry over geological time (e.g., Turchyn and DePaolo, 2019). There is a general increase in the diversity of calcareous organisms over time (Figure 8D-F), and modern carbonate-producers begin to come to prominence from the middle Mesozoic onwards (Stanley and Hardie, 1998; Veizer and Mackenzie, 2014). 4.2.3. Coal and peat Stratigraphic Range: Coal appears worldwide in the Middle Devonian SSR (Kennedy et al., 2013). An apparent global absence of coal in the earliest Triassic has been ascribed to the mass extinction of terrestrial flora during the PT Event (Retallack et al., 1996; Benton and Newell, 2014), but the lithology recovered in the Middle Triassic (albeit with a different maceral composition), and coals (or their unlithified equivalent, peat), have persisted on Earth to the present day (Figure 8G-H).

Primary Organisms and Role: The accumulation of the first coal deposits required sufficient areal coverage and persistence of a lignin-bearing terrestrial flora (particularly woody trees). Since the earliest coal deposits, various fungi have played a role in the accumulation and partial decay of woody material, prior to its coalification (Nelsen et al., 2016). *Further Information:* Coal is defined as a combustible rock resulting from the compaction of plant remains, containing over 50% by weight and over 70% by volume of carbonaceous material (Schopf 1966). Precursor lithologies of carbon-rich coaly shales, formed within incipient smaller-stature plant communities, first appear in Early Devonian strata (Kennedy et al., 2013). The subsequent global distribution of coal is tectonically and climatically controlled: Carboniferous coals are most common in regions that formed equatorial Euramerica, whilst the assembly of Pangea, and the Kasimovian collapse of equatorial rainforests (DiMichele, 2013), means that the location of Permian coal deposition can be tracked towards progressively higher palaeolatitudes during that period (Hilton and Cleal, 2007). Major evolutionary shifts in the dominant vegetation of ancient coal forests are also suggested to be reflected in the internal properties of coals. Collinson and Scott (1987) suggested that Carboniferous coals (dominantly formed from arborescent lycopsids) differ from Cretaceous and younger coals (dominantly formed by taxodiaceous conifers) in terms of their degree of compression, maceral composition, and number of coal splits (i.e., clastic layers within coal successions). 4.2.4. Chalk and calcareous ooze Stratigraphic Range: Jurassic chalk deposits are present (though uncommon), but the lithology has persisted in the SSR since that time (Bernoulli and Jenkyns, 2009).

Primary Organisms and Role: Chalk is a pelagic carbonate sedimentary rock predominantly formed from coccolithophore fragments; thus the Triassic evolution of calcifying haptophytes (De Vargas et al., 2007) was a prerequisite for its accumulation. *Further Information:* After the first appearance of chalk accumulations in the Jurassic, their abundance fluctuated in line with tectonic and climatic controls on the location of the calcium carbonate compensation depth within sediment-accumulating basins: the lithology is globally most common in Cretaceous North American and European successions (Figure 8I) where regional basin and sea-level conditions promoted its accumulation (Bernoulli and Jenkyns, 2009). Whilst chalk is a rock type and thus restricted to the lithified SSR, coccoliths remain a 4.3. minor element of the host sediment, but on occasion their accumulation may reach rock-

significant component of modern, deeper marine calcareous oozes (James and Jones, 2016).

Examples of BDS: Materials

Biogenic materials are dead tissue, waste product, or other matter that require direct manipulation by organisms. BDS materials are illustrated in Figure 9.

4.3.1. Fecal pellets and bromalites

Stratigraphic Range: The earliest fecal pellets in the SSR are known from the earliest Cambrian (Fortunian) Lontova and Voosi formations of Estonia (Figure 9A; Slater et al., 2018): they diversify and persist for the remainder of the Phanerozoic (Figure 9B).

Primary Organisms and Role: Bilaterian metazoans with a through-gut, enabling alimentation and excretion of novel biomaterials.

Further Information: Material processed through the digestive systems of animals can enter the SSR in the form of faecal pellets or coprolites (or the more inclusive category of bromalites). In most instances, where these structures are recognisable they may form only a

forming proportions. Examples of such include the huge volumes of primary carbonate mud produced within the intestines of teleost fish in the modern tropical carbonate factory (Perry et al., 2011; Salter et al., 2012), as well as many peloidal carbonates, phosphate deposits and some terrestrial soils. Even where cohesive gut-processed material cannot be identified in the form of recognisable coprolites, modern analogue indicates that all non-chemosynthetic ecosystems below the photic zone rely on the sedimentation of marine snow. Packaging of surface water organic materials by pelagic animals provides a fundamental link between the phytoplankton and the benthos. The rain of organic particles from surface waters to the seafloor is reliant on processing and clumping into larger particles by zooplankton, and particularly macrozooplankton (Turner, 2002), since the sinking rate of small particles is too slow for such material to reach a sedimentary sink before being dissolved or recycled in the water column. This enhanced export and basis of the modern biological-pump was essentially 'invented' by the evolution of zooplankton grazers in the Cambrian (Logan et al., 1995; Butterfield, 1997). The processing of material by planktonic metazoans is thus a critical step in the formation of many marine oozes and other deep sea sediments (e.g., Smayda 1971). None of these pathways, structures or processes could have formed on Earth prior to the evolution of the bilaterian through-gut. Identifiable coprolites first appear in marine facies in the Cambrian, post-dating the late Ediacaran or earlier evolution of total group bilaterians. This onset in the SSR possibly represents the first packaging of materials within a peritrophic membrane, and/or other forms of digestion that are more likely to produce cohesive coprolites. The earliest known vertebrate coprolites are Ordovician in age (Aldridge et al., 2006), the earliest terrestrial coprolites recorded are Silurian (Edwards et al., 1995), and recycling of fecal sediment by coprophages is known from at least the Late Cretaceous (Chin and Gill, 1996), each reflecting the Phanerozoic evolution of producers and their preferred habitats.

4.3.2. Inertinite and charcoal

Stratigraphic Range: The earliest instances of inertinite are known from the late Silurian of
Estonia and Sweden (Diessel, 2010) and it persists in the SSR thereafter. The first
accumulations of charcoal are known from the latest Silurian (Přídolí) Downton Castle
Formation of England (Figure 9C; Glasspool et al., 2004).

Primary Organisms and Role: Land plants, both as a fuel source and by creating a fire-658 sustaining atmosphere.

Further Information: Inertinite is a common maceral within coal and forms a minor carbonaceous component of other lithologies. It records plant material that has undergone incomplete combustion during wildfires, and thus requires both vegetative matter as fuel and the requisite atmospheric oxygen to sustain combustion (the latter factor itself promoted by plant photosynthesis) (Diessel, 2010). The oldest late Silurian instances of inertinite correspond approximately with the origins of vascular plants, reflecting the ongoing evolution of land plants as both a combustible fuel and a source of fire-sustaining oxygen (Figure 9C-D). Subsequent stratigraphic variance in the abundance of the maceral is well-documented as resulting from tectonic and climatic changes (e.g., a global decline in inertinite abundance at the start of the Permian, reflecting Pangean aridification [Virgili, 2008; Diessel, 2010]).

1637 670 *4.3.3. Plastics* 1638

Stratigraphic Range: Plastics are considered here as biologically-dependent materials because they are absent from the rock record until their first creation by humans in the latest Holocene (19th century), but are now common particles of sediments across different environments (Figure 9E-F; Zalaciewicz et al., 2016).

1649 675 *Primary Organisms and Role:* Humans as creators of plastic waste.

Further Information: Plastics are a novel component of the SSR (i.e., having a different range of densities and shapes in comparison to mineral grains), which were absent from the planet until a required threshold set of biological anthropogenic (technological) circumstances had been crossed. While a multitude of other anthropogenic materials and properties of the SSR exist (e.g., Waters et al., 2016), plastics are considered to be one of the most significant anthropogenic contributors to modern sediments (Zalaciewicz et al., 2016). Unique plastic-related lithologies include conglomerates formed by the melting of plastic on volcanic islands (Corcoran et al., 2014): while such instances are highly localized and may lack longevity in the SSR over geological timescales, the spread of particulate microplastic to rivers and marine basins suggests that some traces of the material may have long-term preservation potential (Zalaciewicz et al., 2016; Kane and Clare, 2019). Plastics are an example of a biologically-dependent material that have a delayed onset relative to the evolution of the organism that acted as the driver behind their existence (i.e., plastics appear c. 0.15 ka whereas *Homo sapiens* originated c. 315 ka (Hublin et al., 2017)), as they additionally required the origination of particular behaviours in their driver organism (i.e., hydrocarbon discovery, plastic invention, mass manufacture, and widespread indifferent disposal).

692

Examples of BDS: Structures

693 Structures are patterns or constructions within sediment, sculpted or imparted either directly
694 or indirectly by living or dead organisms, and with the potential to be preserved within
695 sedimentary strata. Examples of BDS structures are shown in Figure 10.

4.4.1. Burrows

4.4.

Stratigraphic Range: The oldest definitive infaunal burrows date from the late Ediacaran
(reviewed in Buatois and Mángano, 2016). Burrows, as an umbrella grouping, are known
from every subsequent stratigraphic interval of the SSR until the present day (Buatois and

Mángano, 2018), and show a progressive diversification of architectures (Buatois et al., 2017) and expansion into new environmental niches (e.g., their first appearance in non-marine strata in the latest Silurian; Minter et al., 2016, 2017; Shillito and Davies, 2017) (Figure 10A-D). Primary Organisms and Role: Representatives of numerous metazoan phyla and some protists, excavating burrows for feeding, locomotion, or dwelling, through a variety of different mechanisms in different sediment types (e.g., Dorgan et al. 2006; Dorgan, 2015). Note that Figure 1 shows only organisms that have been inferred to create burrows in the SSR: for example, although both ornithopod dinosaurs (Varricchio et al., 2007) and modern birds (McGowan et al., 2018) are known burrowers, as yet there appears to be no recognised trace fossil record of bird burrows. Additionally, the types of organisms forming burrows, their methods of burrow excavation, and environmental impact vary immensely through geological time and 'burrows' is an extremely broad category: for example, meiofaunal burrows from the Ediacaran (Parry et al., 2017) are fundamentally different in their signature and effects to the traces of life in the SSR reflected by the earliest vertebrate burrows (e.g., suspected fish burrows in Devonian strata: Friedman and Daeschler, 2006) or anthropogenic tunnel systems (Zalasiewicz et al., 2014). *Further Information:* Some cnidarians are capable of producing simple vertical burrows, while cnidarians and some protists can produce surficial trails (e.g. Matz et al., 2008; Liu et al., 2010). However, production of all other burrow types requires a hydrostatically manipulated body cavity (e.g. a coelom) and advanced sensory systems, meaning that their late Ediacaran appearance in the SSR is likely coincident with the evolution of total group Bilateria (Budd and Jensen 2000). The evolution of burrowing not only resulted in a new class of biologically-dependent structures in the SSR, but also had a profound effect on the nature of sedimentation and Earth surface processes. These impacts include the transformation of the marine sediment-water interface from an essentially 2D plane to a

1771 1772		
1773		
1774	725	heterogeneous 3D construction (Herringshaw et al., 2017), the physical redistribution of
1775	726	nutrients and particulate matter (Budd and Jensen 2017), changing the carbon, phosphorus
1776 1777	720	numents and particulate matter (Dudd and Jensen 2017), changing the carbon, phosphorus
1778	727	and sulfur cycles (Canfield and Farquhar, 2009; Boyle et al., 2014, 2018; Lenton and Daines,
1779		
1780	728	2018), the modification of porewater chemistry, and a trophic escalation among the benthos
1781 1782	729	(McIlroy and Logan, 1999; Mángano and Buatois, 2017). The precise timing and details of
1783	, , ,	(internety and Eogan, 1999, Mangano and Daatols, 2017). The procise timing and details of
1784	730	how intensified bioturbation caused these secondary effects is discussion topic of current
1785 1786		
1787	731	investigation (e.g., determining an early [Mángano and Buatois, 2017; Gougeon et al., 2018]
1788	732	versus late [Tarhan et al., 2015] acceleration). Specific burrow structures can be seen to
1789	,02	versus fate [1 amail et al., 2019] acceleration). Speenie barrow structures can be seen to
1790 1791	733	evolve in terms of their size, depth and environmental facies preferences within the SSR,
1792		
1793	734	subsequent to their initial evolution: for example, the increased depth of penetration and
1794	735	shifting (offshore) environmental preferences of Zoophycos burrows following their
1795 1796	,05	sinting (onshore) environmental preferences of <i>200phycos</i> ourrows following then
1797	736	Cambrian evolution (Zhang et al., 2015).
1798		
1799 1800	737	4.4.2. Coral reefs
1801		
1802	738	Stratigraphic Range: The earliest reef-forming corals occur in the early Cambrian of South
1803		
1804 1805	739	Australia (Fuller and Jenkins, 2007), and large-scale coral reefs are known intermittently
1806	740	through out the SSP from the Middle Ordevision environde (James and Weed 2010) with
1807	740	throughout the SSR from the Middle Ordovician onwards (James and Wood, 2010), with
1808 1809	741	particular abundance after the Mesozoic evolution of scleractinian corals (Lipps and Stanley,
1810		
1811	742	2016).
1812 1813		
1814	743	Primary Organisms and Role: Cnidarians as reef constructors, extracting calcium and
1815		
1816	744	carbonate ions from seawater to construct their skeletons.
1817 1818		
1819	745	Further Information: Coral reefs are the largest biotic constructions that currently exist on
1820	746	Earth (Dietrich and Perron, 2006). Coral evolution since the first large-scale reefs in the
1821 1822	7 10	Latar (Election and Ferron, 2000). Corar evolution since the first farge scale feers in the
1823	747	Middle Ordovician has meant that the types of reef-forming coral have changed through
1824		
1825	748	geological time (for example the Mesozoic shift from tabulate and rugose corals to
1826 1827		
1828		31
1829		

1830		
1831 1832	749	scleractinian corals) (Figure 8F, Figure 10E-F), and the abundance of such reefs has
1833 1834	/4/	
1835	750	fluctuated due to biological, tectonic and climatic change, as well as competition from other
1836 1837	751	reef-building organisms (e.g., Chen et al., 2019). Nonetheless, such structures (and associated
1838 1839 1840	752	environments such as storm-protected back reef environments) have a defined, biologically-
1841 1842	753	dependent onset in the SSR. Although scleractinian corals are the principle reef-builders in
1843 1844	754	modern oceans, as with bioclastic limestones, other metazoan and microbial reefs and reef
1845 1846	755	mounds exist with their own trends within the SSR (for example, Cambrian Archaeocyatha or
1847 1848	756	Jurassic-Cretaceous rudist bivalves (Wood, 1995, 2017; Zhuravlev, 2001)).
1849 1850 1851	757	4.4.3. Root structures
1852 1853 1854	758	Stratigraphic Range: Putative root-like structures exist in the latest Silurian (Figure 10G),
1855 1856	759	and definitive root traces are known in earliest Devonian strata within the Old Red Sandstone
1857 1858	760	of the Anglo-Welsh Basin, UK (Hillier et al., 2008). Root structures are subsequently
1859 1860	761	persistent throughout younger non-marine and marginal marine strata (Figure 10H), with
1861 1862 1863	762	variable diversity of form and depth of penetration (Algeo and Scheckler, 1998).
1864 1865	763	Primary Organisms and Role: Land plants anchored with in-sediment roots, plus symbiotic
1866 1867 1868	764	mycorrhizal fungi.
1869 1870	765	Further Information: Root structures are sedimentary structures formed by the casting of
1871 1872	766	decayed plant roots within heterolithic sediment (Hillier et al., 2008), or can occur as
1873 1874	767	rhizoliths with associated calcrete (Brasier, 2011). Recorded fossil material of fully vascular
1875 1876	768	plant roots (with meristems) are known as carbonaceous impressions from around the same
1877 1878	769	time as the earliest root casts, from the Early Devonian of Scotland and Wyoming
1879 1880 1881	770	(Matsunaga and Tomescu, 2016; Hetherington and Dolan, 2018). After their first
1881 1882 1883	771	appearance, root structures vary in their diversity of form and depth of penetration, reflecting
1884 1885	772	the continuation of botanic evolution (Algeo and Scheckler, 1998) as well as progressive
1886 1887 1888		32
4		

tracheophyte co-evolution with symbiotic mycorrhizal fungi (Brundrett and Tedersoo, 2018).
Related to roots, recent descriptions of surface trenching and penetrative tunnels, attributed to
the actions of bacteria, fungi and exudates in cryptogamic ground covers (Mitchell et al.,
2019) may also prove to be BDS in the SSR, although their simplicity of form would require
careful consideration of issues of equifinality.

4.4.4. Trample-grounds

Stratigraphic Range: The earliest trample-grounds reported from the SSR occur within Late
 Triassic strata from at least two locations: (1) the Chinle Formation of Arizona, where they
 are associated with fossilized reptile nests (Hasiotis and Martin, 1999); and (2) the Flemming
 Fjord Formation of east Greenland, where they are associated with large theropod dinosaur
 trackways (Milan et al., 2004). They remain relatively common in non-marine sedimentary
 facies throughout the Mesozoic and Cenozoic.

Primary Organisms and Role: Large animals with sufficient weight to load unconsolidated
sedimentary substrates and/or repeatedly congregate in large groups at the same place.
Known examples in the SSR include trample-grounds associated with nesting reptiles
(Hasiotis and Martin, 1999), extremely large terrestrial animals such as dinosaurs (Figure
101) and mammoths (McNeil et al., 2007; Milan, 2011), and herding, predator avoidance and
congregational feeding activity of large birds (Scott et al., 2012) and mammals (Bromley et
al., 2009).

Further Information: Trample-grounds form when the integrity of shallow subsurface
 sediment layers is disturbed by the weight of large organisms congregating and moving
 across a substrate. They are preserved in the rock record as localized patches of soft sediment deformation and mixing of heterolithic strata, extending up to a metre beneath a
 former substrate. Sometimes these are preserved immediately below discrete footfall

impressions (for the largest trample-ground makers, such as dinosaurs: Milan et al., 2004; Shillito and Davies, 2019b). Their formation requires both overburden pressure from heavy organisms, plus waterlogged sediment that can behave thixotropically when deformed under the weight of the animal. Large terrestrial tetrapods have existed since at least the Carboniferous but the largest trackways associated with these animals do not appear to have left a definitive trample-ground record: large animals such as Dimetrodon are known to have left 'ploughed' furrows (Van Allen et al., 2005) but do not appear to have had the critical mass to deform substrates at depth. 4.5. **Examples of BDS: Facies**

Sedimentary facies are groupings of sedimentary signatures that are seen to recur in multiple sedimentary successions. Facies assemblages are ascribed to particular depositional environments, because those environments are known to promote the co-occurrence of particular sedimentary signatures. Of all the biosphere signatures listed, these are most prone to potential error in their ranges because they first must be abductively interpreted and defined by geological observers. Nonetheless, instances of sedimentary facies that have defined stratigraphic ranges, or which, by definition of their formative environment, required particular life-forms, have been reported. Examples of BDS are discussed and defined in the following section, and illustrated in Figure 11.

1991 815

4.5.1. Anastomosing fluvial facies

1994
816 Stratigraphic Range: The earliest reported anastomosing fluvial facies occur in the early
1995 1996
817 Carboniferous (Kekiktuk Formation, Alaska; Melvin, 1993), and persist as a potential facies
1997 1998
818 style thereafter.

Primary Organisms and Role: Anastomosing rivers are a geomorphic sub-category of
 anabranching rivers, defined as consisting of multiple channels with vegetated semi-

permanent alluvial islands that have either been excised from an existing floodplain or formed within channels (Nanson and Knighton, 1996). Their appearance in the rock record required adaptations within trees and other large land plants which enabled them to colonize well-drained levees, stabilize islands, and provide large-woody debris to encourage channel switching through avulsion (Davies and Gibling, 2011, 2013). *Further Information:* Anastomosing river facies are identified by a combination of features including multiple fixed-channel ribbon sand bodies along common stratigraphic horizons, a high mudrock to sandstone ratio, evidence for vertical accretion of channels, evidence for 3D channel networks, and crevasse splay and levee deposits (Davies and Gibling, 2011). They are absent from the SSR prior to the Mississippian, suggesting a stratigraphic lag after the evolution of the first (Devonian) trees (Stein et al., 2012), possibly due to the protracted adaptation of traits such as increased arborescence, mechanically-complex wood or the capacity to colonize well-drained substrates: all of which conspire to force the development of anastomosing river landscapes (Davies and Gibling, 2013). 4.5.2. Salt marsh facies Stratigraphic Range: The earliest reported salt marsh facies in the SSR occur within the Late Cretaceous (latest Cenomanian, c. 94 Ma) Peruc-Korycany Formation, Czech Republic (Uličny and Špičáková, 1997; Martinius and Van den Berg, 2011). As salt marshes are geologically-ephemeral environments, with 'life-spans' of only a few thousand years (Fagherazzi, 2013), the oldest extant salt marshes are Holocene. Primary Organisms and Role: By definition, the earliest salt marshes could not have formed until after the evolution of halophytic vegetation. Halophily may independently have arisen multiple times since the evolution of the first land plants (Flowers et al., 2010; Cheeseman, 2015), and exceptionally preserved fossils from the Rhynie Chert suggest that salt-tolerance

was already present within some Early Devonian flora (Channing and Edwards, 2009). Almost all modern halophytes (and all of Earth's extant salt marsh flora) are angiosperms (Flowers et al., 2010; Cheeseman, 2015)that have physiological characters that promote sediment accretion- for example, adventitious roots that promote stability, and flexible above-ground plant parts that induce dampening of fluid flow and sediment accretion (Mudd et al., 2010; Moor et al., 2017; Schwarz et al., 2018; Corenblit, 2018). Salt marsh angiosperms also concentrate drainage into tidal creeks and channels, and sustain topography and stratal accumulation on salt marshes (Temmerman et al., 2007; Da Lio et al., 2013). *Further Information:* Presently, the earliest SSR evidence for salt marshes post-dates the evolution of halophyte angiosperms (Uličny and Špičáková, 1997; Martinius and Van den Berg, 2011), but further investigation may reveal analogous environments created by earlier halophytic plant life. Interpreting salt marsh sedimentary facies from the rock record can be hindered by issues of equifinality, and is reliant on multiple strands of evidence: dark coloured mudrocks, with a high total organic carbon content, which may yield compacted halophyte leaf litter fossils, rootlets and marine microfossils, and which occur in association with transgressive surfaces (Uličny and Špičáková, 1997). The Late Cretaceous rise of salt marshes appears to mirror that of mangroves (Ellison et al., 1999): however, in that instance there is limited interaction with sediment, so the biogeomorphic environment is primarily recorded by certain mangrove fossil species. 4.6.

Examples of BIS: Lithologies

Examples of BIS lithologies (chert) are shown in Figure 12.

4.6.1. Chert (non-detrital and non-hydrothermal) and siliceous ooze

Stratigraphic Range: Cherts of all kinds are known throughout the SSR from the Archean,

and occur with variable abundance throughout the rest of the Precambrian and Phanerozoic,

 in part because of strong biological influence on non-detrital and non-hydrothermalcherts(Kidder and Erwin, 2001; Maliva et al., 2005).

Primary Organisms and Role: Various silica-biomineralizing organisms. In modern ocean environments, seawater is bereft of dissolved silica principally because of its removal by silica-secreting diatoms, but other silica-biomineralizing taxa include radiolaria, silicoflagellates, sponges and grasses. The biogenic silica produced by these organisms can become deposited as opal, cherts (bedded and nodular), and siliceous mudstones. The spatiotemporal distribution and abundance of non-detrital and non-hydrothermal siliceous marine-deposited sediments throughout the SSR has been perturbed by the evolution of silica biomineralizers (Maliva et al. 1989, 2005; Siever 1992; Kidder and Erwin, 2001). Further Information: Cherts can be either abiogenic or biogenic, so are classed here as a biologically-influenced lithology. Prior to the evolution of the major Phanerozoic silica-secreting groups of organisms, the oceans are predicted to have exhibited much higher levels of dissolved silica, and consequently the Precambrian silica cycle was fundamentally different to that of today (Siever 1992). Pre-Phanerozoic silica-saturated ocean surface waters could become concentrated further in shallow, restricted environments, as is evident in the

21622163 885 SSR from the prevalence of diagenetic cherts in 'sabkha'-like supratidal, peritidal or shallow

water environments from this time (Kidder and Erwin 2001). Arguably the first bioticallydriven change in the spatiotemporal concentration of siliceous sediments that can be detected

2169 888 in the SSR is roughly coincident with the Ediacaran–Cambrian boundary: the early diagenetic

silica that was more abundant in late Proterozoic shallow marine facies largely migrates

890 towards deeper shelf environments during the earliest Palaeozoic. This retreat of shallow-

water siliceous deposition has been widely associated with the drawdown of marine silica
 water siliceous deposition has been widely associated with the drawdown of marine silica

892 concentrations following the evolution of siliceous demosponges (Siever 1992; Kidder and

Erwin 2001; Butterfield 2003), later followed by the Ordovician radiation of radiolarians.

During the Palaeozoic, radiolarians were the dominant silica-secreting plankton, and a substantial sediment-forming clade in their own right (i.e., radiolarite, a form of biogenic bedded chert composed of radiolarian tests). These were later joined by other silica-secreting phytoplankton forms (e.g., Dictyochales) before diatoms became the dominant siliceous plankton during the Cretaceous and Cenozoic. The major Oligocene-Miocene radiation of diatoms is itself closely tied to the expansion of grasslands and the resulting increased silicate weathering on the continents, triggered by the incorporation of opal phytoliths by grasses (Falkowski et al. 2004). The evolution of these major silica biomineralizing clades has left a statistically detectable signal in the SSR which can be split into four phases; 1) Precambrian dominantly abiogenic cherts, deposited primarily in silica-saturated peritidal shallow marine, or hydrothermal, environments; 2) a Cambrian to Ordovician transitional phase, with a mixed distribution (shallow and deep marine) of cherts; 3) Silurian to Cretaceous cherts, where bedded cherts are largely controlled by deposits of radiolarian skeletons and sponges, and abundant nodular cherts form in platform sediments and shallow-water carbonates; 4) a Cenozoic phase largely dominated by deep sea bedded cherts and controlled primarily by diatoms (Maliva et al. 1989). The progressive desaturation of seawater during the Phanerozoic with respect to silica could not have happened in the absence of the evolution of silica biomineralizers. The evolution of these clades not only provided the raw materials for the formation of biogenic siliceous sediments, but also altered the environment of deposition, diagenesis, and the distribution of non-detrital silica deposition. 4.7. **Examples of BIS: Materials** Examples of BIS materials are shown in Figure 13.

2235 916 4.7.1. Pedogenic clay minerals

Stratigraphic Range: Pedogenic clay minerals are present throughout the SSR, but diversify
918 in conjunction with biological evolution (Hazen et al., 2008, 2013).

Primary Organisms and Role: While the evolution of life in general, and photosynthesis, are
thought to have influenced clay mineral diversity (Hazen et al., 2013), there is limited fossil
evidence to demonstrate direct linkages. However, the role of plants and mycorrhizal fungi in
expanding the critical zone of chemical weathering (Knoll and James, 1987; Moulton et al.,
2000; Pate et al., 2001; Verboom et al., 2010) is thought to explain at least 60 clay minerals
that are known today, but which are absent in pre-Silurian strata.

Further Information: The diversity of phyllosilicate clay mineral species changes throughout
the SSR. Hazen et al. (2013) related stages of clay mineral evolution to ten different stages of
Earth evolution, some biological (e.g., the evolution of life), some tectonic (e.g., the initiation
of plate tectonics) and some atmospheric (e.g., the Great Oxidation Event). Clay minerals are
suspected to have existed on Earth even before the oldest preserved sedimentary rock in the
SSR (Hazen et al., 2013), and have thus been a component of pedogenic (soil) successions
since the Archean (Figure 13A).

4.7.2. Calcrete

Stratigraphic Range: The oldest purportedly pedogenic calcretes have been reported from 2.6
Ga palaeosols from South Africa (Watanabe et al., 2000; Brasier, 2011). They occur
throughout the global Precambrian and Phanerozoic SSR, with an increased abundance after
the Silurian (Davies and Gibling, 2010a).

Primary Organisms and Role: Vascular plants, from the Silurian onwards, and vascular
 938 plants with roots and associated mycorrhizal fungi, are thought to have released significant
 939 amounts of calcium ions from silicate rocks, promoting calcrete formation (Brasier, 2011).
 940 Brasier (2011) suggested that other organisms to play a role include arthropods (e.g., calcified

cocoons and fecal pellets), from the Silurian onwards (Esteban and Klappa, 1983), as well as bacteria, algae and fungi, which may have contributed to calcite precipitation in pre-Silurian strata. Further Information: Calcretes are mineral accumulations of calcium carbonate which form at the near-surface of sediment accumulations in non-marine settings (Wright and Tucker, 1991) and precipitate both in soils and from subterranean groundwaters (Brasier, 2011). Oversaturation of groundwater with calcium carbonate is not a wholly biologically-dependent scenario, but it is biologically-influenced. The occurrence of calcretes in the SSR increases dramatically in line with tracheophytic vegetation because of the enhanced chemical weathering of calcium silicates and increased atmosphere-substrate connectivity provided by plant roots (Davies and Gibling, 2010a; Brasier, 2011) (Figure 13B-C). Plant and microbial bioengineering is also strong contributive factor for other soil duricrusts (e.g., silcretes, ferricretes) in modern semi-arid environments (Verboom and Pate, 2006). Further investigation of such features in the SSR is needed to see if their stratigraphic distribution mirrors that of calcretes. *4.8*. **Examples of BIS: Structures** Examples of BIS structures are shown in Figure 14. 4.8.1. Sole marks

Stratigraphic Range: Sole marks occur in strata as old as the Archean (Figure 14A; e.g., the Witwatersrand Group, South Africa; Beukes, 1996) and are present throughout the rest of the geological time scale, but apparently diminish in abundance after the early Palaeozoic (Figure 14B; Tarhan, 2018).

Primary Organisms and Role: Bioturbating organisms reduce the cohesiveness and sediment stability of substrates (de Deckere et al., 2001) and force the amalgamation of surface contacts between sedimentary strata (Tarhan, 2018). Accordingly, the evolution of bioturbation is argued to have reduced the frequency of both the production of sole marks (which require a hydroplastic substrate) and the preservation of sole marks (due to mixing of heterolithic sediments and reduced preservation of bed-junctions) (Tarhan, 2018).

Further Information: Sole marks include a variety of tool and prod marks, as well as flute and groove casts created by fluids. Tarhan (2018) compiled a dataset of global reports of such features and showed that they diminished drastically after the Cambrian. This was attributed to the explosion of bioturbating behaviour in the shallow marine realm. However, sole marks continued to be created and preserved throughout the rest of the Phanerozoic, albeit appearing in the SSR with reduced frequency.

4.8.2. Flat-pebble conglomerates

Stratigraphic Range: Palaeoproterozoic flat-pebble conglomerates have been reported from the 1.8 Ga Changcheng System in China (Hofmann and Jinbiao, 1981). Wright and Cherns (2016a) reported that the youngest flat-pebble conglomerate in the SSR is found in the Early Jurassic (Toarcian) of Portugal: Kullberg et al. (2001) ascribed those particular flat-pebble conglomerates to have formed by syn-sedimentary seismic activity and the slumping of incipiently cemented thin carbonate layers.

Primary Organisms and Role: Wright and Cherns (2015a,b) attributed the Phanerozoic diminishment of flat-pebble conglomerate abundance to the increasing depth of penetration by evolving burrowing animals, which increased the depth of oxygenation and early carbonate diagenesis. Prior to this, when diagenetic cementation was concentrated into a thin upper layer in shallow marine carbonate sediment, any storm activity would have been likely

to exhume flat-pebble clasts from the thin cap of cemented carbonate sediment on the seafloor, providing the means to create flat-pebble conglomerates (Figure 14C). *Further Information:* Flat-pebble conglomerates are matrix or clast supported conglomerates within carbonate strata that contain tabular-shaped and thin (<20 mm) pebble to cobble sized clasts comprised of fine grainstone to calcimudstone (Myrow et al., 2004). They are most common in late Cambrian and Early Ordovician strata and rare in post-Middle Ordovician strata (Wright and Cherns, 2015a,b). The rare existence of younger flat-pebble conglomerates (i.e., isolated reports from Silurian, Devonian, Triassic and Jurassic rocks) attests that they reflect an instance where the evolution of a certain behavioural repertoire among living organisms made a signature in the SSR less likely. However, as flat-pebble conglomerates may have multiple origins (Myrow et al., 2004), biological evolution did not totally preclude later special scenarios that promoted their generation (e.g., seismic reworking of shallow-cemented carbonates: Kullberg et al., 2001). Other potential BIS related to carbonate weathering and erosion may also exist. For example, the dissolution of carbonate rocks in modern karst landscapes is strongly contributed to by organic acids and biogenic CO₂ (Phillips, 2016a). As such, there may be as yet unrecognised shifts in the frequency of palaeokarst surfaces within the SSR. However, the fact that dissolution can also occur abiotically, and that the stratigraphic range of palaeokarst extends 2460 1004 throughout the Precambrian and Phanerozoic (e.g., Cherns, 1982; Kerans and Donaldson, 2462 1005 2464 1006 1988; Vanstone, 1998; Smith et al., 1999), means that such a possibility requires further 2466 1007 investigation. 4.8.3. Drip impressions 2469 1008 Stratigraphic Range: The earliest reported occurrence of drip impressions is within late

24732474 1010 Carboniferous units including the Bashkirian Tynemouth Creek Formation, New Brunswick,

²⁴⁸¹ 2482
²⁴⁸² 1011 Canada (Figure 14D; Davies et al., 2016) and the Kasimovian Stranger Formation, Kansas,
²⁴⁸³ 2484
²⁴⁸³ 1012 USA (Lanier et al., 1993; Buatois et al., 1997).

Primary Organisms and Role: Trees are implicit in the earliest known examples (Davies et al., 2016), but earlier elevated drip-nucleating organisms (e.g., large tetrapods) may have left
impressions.

Further Information: Drip impressions are circular or ovate impact craters with a raised central mound (Twenhofel, 1921), distinguished from rain drop impressions by a lower population density, greater dimensions, and a greater variety of sizes within an individual population. They develop in subaerial settings when water droplets nucleate at an elevated static point source, pinch off due to gravity, and then fall onto an unconsolidated substrate 2502 1020 2504 1021 (Figure 14E). Ancient depositional sedimentary environments had markedly fewer elevated 2506 1022 objects for water to drip from. Modern observations attest that elevated sources of dripping may include features such as overhanging cliff ledges or rocky outcrops, but since such features are erosional aspects of the landscape these have negligible preservation potential in the SSR. It was not until the Devonian evolution of trees and larger animals that elevated objects with potential drip nucleation points appeared within depositional sedimentary environments. The SSR bears evidence for this since the oldest known drip marks, so far 2519 1028 reported, occur in Carboniferous strata, suggesting that they may be loosely considered to be a 'vegetation-induced sedimentary structure' (sensu Rygel et al., 2004) when witnessed in the 2521 1029 2523 1030 SSR. Examples such as this attest to the fact that signatures of life in the SSR are not always 2525 1031 directly analogous to life signatures in modern landscapes: at the present day, drip marks may be seen to develop from abiotic or biotic point sources, but when witnessed through the lens of the SSR they can very rarely have abiotic origins.

Related to drip marks, other rare sedimentary structures such as splash marks may also be BIS (Figure 14F). Splash marks record instances where wet sediment has been kicked up by moving animals: such features first require the Cambrian evolution of large tracemakers with the capacity to spend at least short intervals on damp subaerial substrates (MacNaughton et 2547 1037 al., 2002). 4.9. **Examples of BIS: Facies** 2552 1039 Examples of BIS facies are shown in Figure 15. 4.9.1. Alluvial mudrock Stratigraphic Range: Mudrock occurs as a negligible lithology within alluvial strata from the 2560 1042 2562 1043 Palaeoarchean to Cambrian (Figure 15A; McMahon and Davies, 2018b). The earliest alluvial 2564 1044 successions to contain greater than 50% mudrock relative to coarser lithologies are latest Silurian (Přídolí) in age (Figure 15B) and occur across Euramerica: the Bloomsburg Formation, New York, USA (Driese et al., 1992), the Clam Bank Formation, Newfoundland, Canada (Quinn et al., 1998), and the Moor Cliffs Formation, Wales (Marriott and Wright, 2004). Similarly muddy units are found worldwide by the earliest Devonian: for example, the Xujiachong Formation, China (Xue et al., 2016). Primary Organisms and Role: Land plants: (a) by promoting the retention of muds in the alluvial realm through above-ground baffling and below-ground stabilization, and (b) by promoting chemical weathering and mud production, in concert with mycorrhizal fungi 2582 1052 (Davies et al., 2017; McMahon and Davies, 2018b; Fischer, 2018). 2584 1053 *Further Information:* Mudrocks are siliciclastic sedimentary rocks comprised of grains smaller than 0.063 mm diameter (silt: Ilgen et al., 2017). Alluvial mudrocks are those which 2589 1055 achieved final resting, before their interment into the SSR, within continental waterlain 2591 1056 deposits, and are rare in pre-vegetation strata (e.g., Long, 2004). Using data from 704 2593 1057

reported Archean-Carboniferous alluvial sedimentary formations, McMahon and Davies (2018b) showed a strong stratigraphic positive correlation between the abundance of mudrock within alluvial facies and the rise and evolution of land plants. The initial onset of this trend appears to occur coevally with the very first record of land plants in the Ordovician, 2606 1061 and rises in conjunction with the increasing depth of rooting seen throughout the later 2608 1062 2610 1063 Palaeozoic. The existence of alluvial mudrock that pre-dates the oldest land plants demonstrates that land plants did not 'invent' alluvial mudrock, but nonetheless, the 1.4 order of magnitude rise in alluvial mudrock abundance in syn-vegetation strata (when compared with alluvium deposited during the preceding 90% of Earth history) attests that land plants played a major role in promoting this environment-specific lithology. 4.9.2. 'Sheet-braided' alluvium 2624 1069 Stratigraphic Range: Globally common in units older than and including the early Silurian Tuscarora Sandstone, Pennsylvania, USA (Cotter, 1978; Davies et al., 2011), but globally rare in younger strata. 2631 1072 Primary Organisms and Role: Land plants colonizing riparian corridors and subsequently inducing an increase in geomorphic complexity and decrease in channel dimensions, leading to a dramatic decrease in the frequency of deposition of sheet-braided alluvium (Davies et al., 2011). Further Information: 'Sheet-braided' alluvium is a facies style that refers to alluvial sedimentary successions that are almost uniformly composed of repeated sandstone bodies with an aspect ratio greater than 20:1 (Figure 15C-D; Cotter, 1978; Davies and Gibling, 2010a; Davies et al., 2011; McMahon and Davies, 2018c). The term refers only to rock outcrop architecture and not depositional geomorphology (see McMahon and Davies, 2018c). 2651 1081 Early Silurian and older alluvial units are almost always composed (dominantly or entirely)

2656		
2657		
2658 2659	1082	of sandstone beds of width: thickness ratio 20:1 or more (Long, 2004, 2006, 2011, 2018;
2660 2661	1083	Davies et al., 2011; McMahon and Davies, 2018c). In contrast, the 'sheet-braided' facies
2662 2663	1084	style is anomalous globally in late Silurian and younger alluvium (Davies and Gibling,
2664 2665 2666	1085	2010a; Gibling and Davies, 2012).
2667 2668 2669	1086	4.9.3. Fluvial IHS-LA sets
2670 2671	1087	Stratigraphic Range: The earliest reported occurrence of inclined heterolithic stratification –
2672 2673	1088	lateral accretion sets (IHS-LA; McMahon and Davies, 2018a) is within the Neoproterozoic
2674 2675	1089	Allt-Na-Béiste Member of the Diabaig Formation, Scotland (Figure 15E; Santos and Owen,
2676 2677 2678	1090	2016; McMahon and Davies, 2018a). Globally they are very rare in fluvial strata prior to the
2679 2680	1091	latest Silurian, but very common thereafter (Figure 15F).
2681 2682	1092	Primary Organisms and Role: Land plants, encouraging small- to medium-sized fluvial
2683 2684	1093	channels to adopt a meandering planform through bank stabilization (rooting plus cohesive-
2685 2686 2687	1094	sediment retention) (Davies and Gibling, 2010b; McMahon and Davies, 2018a).
2688 2689	1095	Further Information: Inclined heterolithic stratification, organised into lateral accretion sets,
	1096	is a diagnostic facies signature of meandering channels within fluvial facies (although,
2692 2693 2694	1097	conversely, not all meandering channels create IHS-LA: Long, 2011; McMahon and Davies,
	1098	2018a). In order to form self-sustaining meanders, small-moderate sized river channels
	1099	require bank stability (Lazarus and Constantine, 2013). While factors such as cohesive
2699 2700	1100	sediment or ice could provide such stability on pre-vegetation Earth (Davies and Gibling,
2701 2702	1101	2010a,b), the advent of land plants introduced a new form of biological stability, both directly
2703 2704	1102	(through rooting) and indirectly (through retaining/producing cohesive sediment). The SSR
2705 2706	1103	contains very few instances of fluvial IHS-LA sets from before the Siluro-Devonian
2707 2708 2709	1104	evolution of tracheophyte vegetation, but such facies signatures are extremely common in
2710 2711	1105	fluvial facies of the SSR in Devonian and younger strata (Davies and Gibling, 2010b).
2712 2713 2714		46

5. Implications of viewing the SSR as a part-biological construct

The recognition that incremental stages of biosphere evolution in Earth history have acted as
unidirectional allogenic sedimentary controls of a higher-order to, and independent of, abiotic
controls, should not be controversial, but it is presently under-acknowledged. A greater
understanding of the biosphere's role in constructing the SSR will inform predictions
regarding a number of topical concerns in Earth Sciences, as follows:

1112

5.1. The singularity of Earth amongst known rocky planets

Rover missions on Mars are increasingly returning information regarding the Martian SSR (e.g., Stein et al., 2018), enabling direct analogy with that of Earth. Under the present null hypothesis that the planet has always been abiotic, Martian sedimentary signatures are assumed to provide useful insights into the range of sedimentary attributes that may be attained in the absence of life (even having been deposited with other variable parameters to Earth; McLennan et al., 2019). Conversely, when considered a target of astrobiological 2745 1118 interest, the recognition that equifinality hampers the identification of genuine terrestrial 2747 1119 2749 1120 biological signatures indicates that it is extremely unlikely that diagnostic visual geological signals of life will be identified within isolated outcrops of the Martian SSR, such as those so far imaged by rovers (Davies et al., 2018; McMahon et al., 2018; Chan et al., 2019; Corenblit et al., 2019). In the longer term, an improved understanding of those sedimentary traits that can be BIS on Earth, combined with a more refined stratigraphy for Mars and the identification of any unidirectional secular trends in the Martian SSR, will open robust avenues of exploration for ancient life on the planet. 2762 1126

5.2. The historical context of the Anthropocene

The evolution of *Homo sapiens* and their subsequent technological advances has induced a
 multitude of physico-chemical changes to the Earth surface system, some of which will leave

signatures in the future SSR (Waters et al., 2016). Yet from a stratigraphic standpoint, the development of novel materials or an induced shift in the frequency distribution of signatures of the SSR (Waters et al 2016) does not intrinsically distinguish the Anthropocene from earlier intervals of biological innovation (such as those characterised by bioturbation or 2783 1133 vegetation; Table 3 [Davies and Gibling, 2010; Williams et al., 2014; Mángano and Buatois, 2785 1134 2787 1135 2017]). Comparable ancient biologically-induced revolutions revealed in the SSR can help to frame and inform Anthropocene debate because they are profoundly rare singularities (typical >10⁸ vear recurrence interval) that often act as irreversible tipping points for Earth surface processes. At the same time, the conflation of the concept of a 'pre-human' world with that of an 'abiotic' one (i.e., considering human activity to be the only biological component of Earth's internal dynamics that is a discrete factor alongside astronomical and geophysical forcings, e.g., Gaffney and Steffen, 2017), should be avoided, because multiple lifeforms 2800 1141 were affecting the operation of the Earth system long before human evolution. Further 2802 1142 investigation and evidence from the SSR will provide informed predictions for the 2806 1144 consequences of anthropogenic accentuation or reversal of previously-emplaced biologically-influenced processes (e.g., deforestation or livestock grazing; Goudie and Viles, 2016; Horton et al., 2017). A refined understanding of the rates and magnitudes of ancient biologically-induced changes will highlight the range and severity of changes to the Earth surface system that have the potential to be inflicted on timescales of critical societal relevance (Kemp et al., 2015). 5.3. The timescales of biological evolution The recognition of BDS and BIS shifts in the SSR can potentially calibrate evolutionary timescales where uncertainty about these has arisen from a suspected incomplete fossil record. The body fossil record is less complete than the SSR because it is a 'record within a record': its incompleteness arises from discovery biases and taphonomic issues of

preservation (Holland 2016), as well as requiring preserved SSR to host it. Conversely, one of the primary reasons that the SSR is time-incomplete at any given locality is that, during intervals of non-deposition or erosion, sediment was being deposited elsewhere on the Earth surface (Runkel et al., 2008; Gani, 2017; Paola et al., 2018; Davies and Shillito, 2018; Davies 2842 1158 et al., 2019). Accordingly, if SSR deposition were being affected by life at a given time 2846 1160 interval, it is likely that, somewhere, this will have been recorded as an intensive property of its constituent strata. This is especially pertinent for the Phanerozoic SSR because (1) this encompasses the transition from dominantly subsurface to surface biomass (McMahon and Parnell 2018), (2) its fossil record of life is less contentious than in the Precambrian (Brasier, 2009), so before-and-after SSR traits are readily identifiable. (3) at least 30% of ancient global surface area (continental crust) from any one geological period is preserved (Domeier and Torsvik, 2017), and (4) its global rock outcrop volume does not exponentially decrease 2859 1166 with increasing age (Ronov et al., 1980; Husson and Peters, 2018), meaning that its internal 2861 1167 synchronous increments are broadly comparable. 2866 1169 An example of how this understanding may assist in the calibration of evolutionary timescales is found in the case of total group land plants, which, on the basis of proxy 2868 1170 2870 1171 evidence, have been asserted to have originated at a variety of mutually-exclusive dates (see 2872 1172 discussion in Boyce and Lee, 2017). Early molecular timetree models suggested at least a Cryogenian origin for land plants (Clarke et al., 2011). More recent improved soft maxima suggest that they originated between the middle Cambrian to Early Ordovician (Morris et al., 2018), whereas chemical weathering proxies have been used to infer a Neoproterozoic origin **1176** (Kennedy et al., 2006). Evidence from the SSR suggests that many of these estimated ages are unlikely, because plants have left a variety of sedimentary signatures in the alluvium of 2883 1177 the fluvial environments that they inhabited. Abundant Cryogenian to Cambrian alluvial 2885 1178 successions exist worldwide yet none contain sedimentary signals associated with younger 2887 1179

syn-vegetation strata (Davies and Gibling, 2010a): if plants evolved during this interval they apparently did so impassively within their environment, leaving no record of physical interaction with ancient watercourses (or any palynomorphs). Conversely, evidence from the SSR confidently recognises major facies shifts beginning in the Ordovician (McMahon and 2901 1183 Davies, 2018b), which can be explained – through modern analogue (Gurnell, 2014; Mitchell 2905 1185 et al., 2016b) – by the evolution of land plants, and which are stratigraphically synchronous with the earliest palynological record (Wellman and Gray, 2000; Edwards et al., 2014). That the SSR provides a synchronous and tangible dual physical record of fossils and strata is its primary strength. In the example of the Ordovician origin of land plants, the SSR-supported null hypothesis is not easily dispelled by molecular timetrees or geochemical proxies, especially as such model-driven and indirect approaches can be compromised, respectively, by unforeseen survivorship biases (Budd and Mann, 2018) and non-unique explanations 2918 1191 (geochemical equifinality) (Tosca et al., 2010). 2920 1192 5.4. Other speculative implications Present day heterogeneity of abiotic surface processes and landforms is known to promote biodiversity (Ward et al., 2002; Antonelli et al., 2018). Selection pressures induced by the evolution of novel surface processes and physical environments could conceivably have 2932 1197 functioned as an evolutionary boost to biodiversity (Laland et al., 2017). In this way, BDS and BIS could implicate particular taxa as ecosystem engineers (Jones et al., 1994) over 2934 1198 2936 1199 geological timescales (Erwin, 2008). A robust measure of biodiversity through time, when measured against innovations in the SSR, may shed new light on the co-evolution of life and the planet, and potentially reveal instances of ancient sedimentary environments that could be viewed as 'extended phenotypes' (sensu lato, Phillips, 2016b) of the fossil organism that inhabited them. In order to assess this, further efforts are needed to unite observations from

modern ecological and biogeomorphological studies with long-term geological and palaeontological trends (e.g., Corenblit et al., 2015).

A further, highly speculative, implication may transcend palaeoecological considerations and concern the nature of the SSR itself. The volume of the SSR generally diminishes further back in time, due to accumulated effects of attrition and subduction. However, there is not (as was once modelled), an exponential decrease in sedimentary rock volume: rather, there is a major contrast in the diminished rock volume of the Precambrian relative to the Phanerozoic 2967 1210 (Husson and Peters, 2018). Explanations for this have been sought with respect to 2969 1211 2971 1212 Neoproterozoic glacial erosion (Keller et al., 2019), but this cannot explain why the volume of Ediacaran strata is comparable with diminished Cryogenian strata, but not more voluminous Cambrian strata. Intriguingly, the shift in rock volume itself seems to correspond with the rapid expansion of biomineralized life (Porter, 2007; Wood et al., 2017; Cai et al., 2019). Here there are open (and possibly intractable) questions: What if the Cambrian increase in the preserved volume of rock is a direct result of life evolution? There is certainly 2984 1218 a rapid increase in the proportion of carbonate rock strata at this time (e.g., Peters and Husson, 2018, their Fig. 2) and the sequestration of calcium carbonate onto continental crust, 2986 1219 2988 1220 by life, could have marked a shift in the locus of a mineral precipitate that was previously 2990 1221 distributed more evenly (i.e., shared with subductable oceanic crust). At the same time, the expansion of rock volume by life-induced interstitial cements or clay minerals, or even the additional volume provided by biogenic detritus itself, may have trapped more strata on continental crust. We strongly emphasise the speculative nature of this particular avenue of thought, but note that the role of life in creating the SSR has so many facets and emergent effects that such a potential explanation should not be considered irrational. 3001 1226

6. Conclusions

The SSR is a tangible planetary characteristic that exhibits sequential variability in its lithological character, reflecting its formation, over geological time, in a shared space with the evolving biosphere. It plays a dual role in our understanding of the Earth surface: its nature is both a direct result of, and an historic archive of, the co-evolution of the biosphere 3019 1231 and planet through geological time. As it is, at least in part, a residual product of life and life-3021 1232 3023 1233 induced processes, it should no longer be regarded as a passive repository of geochemical and fossil clues to ancient biospheres, but as an integral component of a dynamic archive. Life controls may sometimes be intractable, and their variety of manifestations are not always easily modelled or generalized, but their influence on the signatures of the SSR must be considered at least as consequential as traditionally-invoked controls such as tectonics, climate and sea-level; with all of which they are inseparably intertwined (Dietrich and Perron, 2006; Perron, 2017). 3036 1239 Individually (Table 1) or at outcrop the effects of life may seem esoteric, but cumulatively the geological record proves that they can be profound (Figure 1). As long as the we choose the 3043 1242 correct focal length to interrogate the SSR for life signals (Figure 2), there is promise for recognising further trends that will promote new hypotheses and help lead us towards a 3045 1243 3047 1244 mechanistic understanding of how Earth has co-evolved with life. Such trends must be ³⁰⁴⁹ 1245 expected because ancient alternative Earths, with different biospheres, would have operated under different physical conditions to the present day. Organisms did not change the laws of physics that underpin surface processes such as fluid flow, or fluid-grain interactions, but their successive evolution involved progressive, fundamental and irreversible alterations to the theatre in which these physical processes played out. Acknowledgements

3069		
3070		
3071 3072	1251	APS was supported by the Natural Environment Research Council [grant number
3073 3074	1252	NE/L002507/1]. We thank Alex Brasier and two anonymous referees for their constructive
3075 3076 3077	1253	reviews of this paper.
3078 3079 3080	1254	References
3081 3082	1255	Able, K.W., Grimes, C.B., Cooper, R.A. and Uzmann, J.R., 1982. Burrow construction and
3083 3084	1256	behavior of tilefish, Lopholatilus chamaeleonticeps, in Hudson Submarine
3085 3086 3087	1257	Canyon. Environmental Biology of Fishes, 7(3), pp.199-205.
3088 3089	1258	Aldridge, R.J., Gabbott, S.E., Siveter, L.J. and Theron, J.N., 2006, Bromalites from the
3090 3091	1259	Soom Shale Lagerstätte (Upper Ordovician) of South Africa: Palaeoecological and
3092 3093 3094	1260	palaeobiological implications: Palaeontology, 49, 857-871.
3096	1261	Algeo, T.J., Scheckler, S.E., 1998. Terrestrial-marine teleconnections in the Devonian: links
3097 3098	1262	between the evolution of land plants, weathering processes, and marine anoxic events.
3099 3100 3101	1263	Philosophical Transactions of the Royal Society of London B 353, 113–130.
3102 3103	1264	Ali, K.H.M. and Karim, O. 2002. Simulation of flow around piers. Journal of Hydraulic
3104 3105 3106	1265	Research 40, 161-174.
3107 3108	1266	Allen, M.B., Jones, S., Ismail-Zadeh, A., Simmons, M. and Anderson, L., 2002. Onset of
3109 3110	1267	subduction as the cause of rapid Pliocene-Quaternary subsidence in the South Caspian basin.
311131123113	1268	Geology, 30, 775-778.
3114 3115 3116	1269	Allen, P.A., 2008. From landscapes into geological history. Nature, 451(7176), p.274.
3117 3118	1270	Allen, P.A., 2017. Sediment routing systems: The fate of sediment from source to sink.
3119 3120	1271	Cambridge University Press.
312131223123	1272	Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., Burch, I.W., 2006, Stromatolite
3123 3124 3125	1273	reef from the Early Archaean era of Australia. Nature 441, 714–718.
3126 3127		53

3128 3129		
3129	4074	
3131	1274	Allwood, A.C., Rosing, M.T., Flannery, D.T., Hurowitz, J.A. and Heirwegh, C.M., 2018.
3132 3133	1275	Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature, p.1.
3134		
3135	1276	Antcliffe, J.B., Callow, R.H. and Brasier, M.D., 2014. Giving the early fossil record of
3136 3137		
3138	1277	sponges a squeeze. Biological Reviews, 89(4), pp.972-1004.
3139		
3140 3141	1278	Antonelli, A., Kissling, W.D., Flantua, S.G., Bermúdez, M.A., Mulch, A., Muellner-Riehl,
3142	1279	A.N., Kreft, H., Linder, H.P., Badgley, C., Fjeldså, J. and Fritz, S.A., 2018. Geological and
3143	1277	A.N., Kreit, II., Ender, II.I., Daugley, C., I Jeidsa, J. and I II.Z, S.M., 2010. Geological and
3144 3145	1280	climatic influences on mountain biodiversity. Nature Geoscience, 11(10), p.718.
3146		
3147	1281	Barnett, A.J. and Wright, V.P., 2008, A sedimentological and cyclostratigraphic evaluation of
3148 3149		
3150	1282	the completeness of the Mississippian–Pennsylvanian (Mid-Carboniferous) global stratotype
3151	1283	section and point, Arrow Canyon, Nevada, USA: Journal of the Geological Society, v. 165,
3152 3153		
3154	1284	p.859-873.
3155		
3156 3157	1285	Bar-On, Y.M., Phillips, R. and Milo, R., 2018. The biomass distribution on Earth.
3158	1286	Proceedings of the National Academy of Sciences, p.201711842.
3159	1200	Troceedings of the National Academy of Sciences, p.201711042.
3160 3161	1287	Beerling, D.J. and Butterfield, N.J., 2012. Plants and Animals as Geobiological Agents.
3162	1207	Deerning, D.J. and Dutternetd, N.J., 2012. I failts and Animals as Geoblological Agents.
3163	1288	Fundamentals of Geobiology, 188-204.
3164 3165		
	1289	Belyea, L.R. and Clymo, R.S. 2001. Feedback control of the rate of peat formation. Proc. R.
3167		
3168 3169	1290	Soc. Lond. B 268, 1315-1321
3170		
	1291	Bengtson, S., Rasmussen, B., Ivarsson, M., Muhling, J., Broman, C., Marone, F.,
3172 3173	1292	Stampanoni, M. and Bekker, A., 2017. Fungus-like mycelial fossils in 2.4-billion-year-old
3174	1272	Stamparoni, W. and Decker, M., 2017. Fungus ince mycenar lossits in 2.4 oniton year old
	1293	vesicular basalt. Nature ecology and evolution, 1(6), p.0141.
3176 3177		
	1294	Bennett, M.R., Doyle, P. and Mather, A.E., 1996. Dropstones: their origin and significance.
3179		
3180 3181	1295	Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 331-339.
3182		
3183		
3184 3185		54
3186		

3187	
3188	
3189 3190 1296	Benton, M.J., Newell, A.J., 2014, Impacts of global warming on Permo-Triassic terrestrial
3191 3192 1297 3193	ecosystems. Gondwana Research, 12, 1308-1337.
3194 3195 1298	Bernoulli, D., Jenkyns, H.C., 2009, Ancient oceans and continental margins of the Alpine-
3196 3197 1299	Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites.
3198 3199 1300 3200	Sedimentology, 56, 149-190.
3201 3202 1301	Berry, C.M. and Fairon-Demaret, M., 1997. A reinvestigation of the cladoxylopsid
3203 3204 1302	Pseudosporochnus nodosus Leclercq et Banks from the Middle Devonian of Goé, Belgium.
3205 3206 1303 3207	International Journal of Plant Sciences, 158(3), pp.350-372.
3208 3209 1304	Berry, C.M. and Fairon-Demaret, M., 2002. The architecture of Pseudosporochnus nodosus
3210 3211 1305	Leclercq et Banks: a Middle Devonian cladoxylopsid from Belgium. International Journal of
3212 3213 1306 3214	Plant Sciences, 163(5), pp.699-713.
³²¹⁵ 1307 3216	Beukes, N.J., 1996. Sole marks and combined-flow storm event beds in the Brixton
3217 3218 1308	Formation of the siliciclastic Archean Witwatersrand Supergroup, South Africa. Journal of
3219 3220 1309 3221	Sedimentary Research, 66(3), pp.567-576.
³²²² 1310 3223	Beven, K., 1996. Equifinality and Uncertainty in Geomorphological Modelling. In: The
3224 3225 3226	Scientific Nature of Geomorphology. John Wiley and Sons. p. 289-313.
3227 1312 3228	Beyer, L., Pingpank, K., Wriedt, G. and Bölter, M., 2000. Soil formation in coastal
3229 1313 3230 3231	continental Antarctica (Wilkes Land). Geoderma, 95(3-4), pp.283-304.
3232 1314 3233	Bischof, J., 1990. Dropstones in the Norwegian-Greenland Sea—Indications of Late
3234 1315 3235	Quaternary Circulation Patterns?. In Geological History of the Polar Oceans: Arctic versus
3236 3237 3238	Antarctic (pp. 499-518). Springer, Dordrecht.
3239 1317 3240	Black, K.S., Peppe, O.C. and Gust, G., 2003. Erodibility of pelagic carbonate ooze in the
3241 1318 3242 3243	northeast Atlantic. Journal of Experimental Marine Biology and Ecology, 285, pp.143-163.
3244 3245	55

3246	
3247	
3248 3249 1319	Blatt, H. and Jones, R.L., 1975. Proportions of exposed igneous, metamorphic, and
3249	
3251 1320	sedimentary rocks. Geological Society of America Bulletin, 86, 1085-1088.
3252	
2052	Dehrmann C. Abalmann A. Caraanda P. Hybbartan H. Kybr C 1004 Pyre eiliaaaya
3253 1321 3254	Bohrmann, G., Abelmann, A., Gersonde, R., Hubberten, H., Kuhn, G. 1994. Pure siliceous
3255 1322	ooze, a diagenetic environment for early chert formation. Geology 22, 207-210.
3256	obze, a diagenetic environment for early enert formation. Geology 22, 207 210.
3257	
3258 1323	Bolotov, I.N., Aksenova, O.V., Bakken, T., Glasby, C.J., Gofarov, M.Y., Kondakov, A.V.,
3259	
³²⁶⁰ 1324 3261	Konopleva, E.S., Lopes-Lima, M., Lyubas, A.A., Wang, Y. and Bychkov, A.Y., 2018.
3262	
3263 1325	Discovery of a silicate rock-boring organism and macrobioerosion in fresh water. Nature
3264	
3265 1326	communications, 9(1), p.2882.
3266	
³²⁶⁷ 1327	Boudreau, B.P. 1998. Mean mixed depth of sediments: The wherefore and the why. Limnol.
3268	boudreau, D.I. 1996. Wean mixed deput of seaments. The wherefore and the wify. Emilion.
3269	Oceanogr. 43, 524-526.
3270	0000010gr. 15, 52 1 520.
3271	
3272 1329	Boyce, C.K. and Lee, J.E., 2017. Plant Evolution and Climate Over Geological Timescales.
3273 3274 1330	
³²⁷⁴ 1330 3275	Annual Review of Earth and Planetary Sciences, 45, 61-87.
3276	
3277 1331	Boyle, R.A., Dahl, T.W., Dale, A.W., Shields-Zhou, G.A., Zhu, M.Y., Brasier, M.D.,
3278	_ ; j = ; , =, =, =, =, =, ; =, =, =, =, =, =, =, =, ; =
³²⁷⁹ 1332	Canfield, D.E. and Lenton, T.M., 2014. Stabilization of the coupled oxygen and phosphorus
3280	
³²⁸¹ 1333	cycles by the evolution of bioturbation. Nature Geoscience, 7(9), p.671.
3282	
3283	
3284 1334 3285	Boyle, R.A., Dahl, T.W., Bjerrum, C.J. and Canfield, D.E., 2018. Bioturbation and
3286 <u>1</u> 335	directionality in Farthla carbon isotone record correct the Neorratorezoia. Combring
3287	directionality in Earth's carbon isotope record across the Neoproterozoic-Cambrian
³²⁸⁸ 1336	transition. Geobiology, 16(3), pp.252-278.
3289	ualisition. Geoblology, 10(3), pp.232-278.
3290	
3291 1337	Bradley, D.C., 2011. Secular trends in the geologic record and the supercontinent cycle.
3292	
3293 1338	Earth-Science Reviews, 108(1-2), pp.16-33.
3294	
3295 3296 1339	Brady, B.H.G. and Brown, E.T. 2013. Rock mechanics for underground mining. Springer
3296 1337	Blady, B.H.O. and Blown, E.I. 2015. Rock incentaines for underground mining. Springer
3298 1340	Science and Business Media.
3299	Science and Dusiness Wedia.
3300	
3301 1341	Brasier, M., 2009. Darwin's lost world: the hidden history of animal life. OUP Oxford.
3302	
3303	56
3304	

3305	
3306	
3307 3308 1342	Brasier, A.T., 2011. Searching for travertines, calcretes and speleothems in deep time:
3309 3310 1343	Processes, appearances, predictions and the impact of plants. Earth-Science Reviews, 104,
3311 3312 1344 3313	213-239.
3314 3315 1345	Brasier, A.T., Dennis, P.F., Still, J., Parnell, J., Culwick, T., Brasier, M.D., Wacey, D.,
3316 3317 1346 3318	Bowden, S.A., Crook, S., Boyce, A.J. and Muirhead, D.K., 2019. Detecting ancient life:
3319 1347 3320	Investigating the nature and origin of possible stromatolites and associated calcite from a one
3321 1348 3322	billion year old lake. Precambrian Research, 328, pp.309-320.
3323 3324 3325	Bromley, R.G., Milàn, J., Uchman, A. and Hansen, K.S., 2009. Rheotactic Macaronichnus,
3326 1350 3327	and human and cattle trackways in Holocene beachrock, Greece: reconstruction of
3328 1351 3329	paleoshoreline orientation. Ichnos, 16(1-2), pp.103-117.
3330 3331 1352	Bruggemann, J.H., Van Kessel, A.M., Van Rooij, J.M. and Breeman, A.M., 1996. Bioerosion
3332 3333 1353 3334	and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride:
3335 1354 3336	implications of fish size, feeding mode and habitat use. Marine Ecology Progress Series, 134,
3337 1355 3338	pp.59-71.
3339 3340 1356 3341	Brundrett, M.C. and Tedersoo, L., 2018. Evolutionary history of mycorrhizal symbioses and
3342 1357 3343	global host plant diversity. New Phytologist. doi.org/10.1111/nph.14976.
3344 3345 1358	Buatois, L.A. and Mángano, M.G., 2016. Ediacaran ecosystems and the dawn of animals. In
3346 3347 1359 3348	The Trace-Fossil Record of Major Evolutionary Events. Springer Netherlands. p. 27-72.
3349 3350 1360	Buatois, L.A. and Mángano, M.G., 2018. The other biodiversity record: Innovations in
3351 3352 3353	animal-substrate interactions through geologic time. GSA Today, 28(10).
³³⁵⁴ 1362 3355	Buatois, L.A., Mangano, M.G. and Maples, C.G., 1997. The paradox of nonmarine
3356 3357 1363	ichnofaunas in tidal rhythmites; integrating sedimentologic and ichnologic data from the Late
3358 3359 3360	Carboniferous of eastern Kansas, USA. Palaios, 12(5), pp.467-481.
3361 3362 3363	57

3364		
3365		
3366	2/5	Dustais I. A. Wisshelt M. Wilson M.A. and Ménsona M.C. 2017 Catagories of
3367	365	Buatois, L.A., Wisshak, M., Wilson, M.A. and Mángano, M.G., 2017. Categories of
3368		
3369 13	366	architectural designs in trace fossils: A measure of ichnodisparity. Earth-Science Reviews,
3370		
3371 13	367	164, 102-181.
3372		
3373		
3374 13	368	Budd, G. E. and Jensen, S. (2000). A critical reappraisal of the fossil record of the bilaterian
3375		
3376 13	369	phyla. Biological Reviews of the Cambridge Philosophical Society 75, 253–295.
3377		
3378 13	370	Budd, G.E. and Jensen, S., 2017. The origin of the animals and a 'Savannah' hypothesis for
3379		
3380	371	early bilaterian evolution. Biological Reviews, 92(1), pp.446-473.
3381		
3382		
	372	Budd, G.E. and Telford, M.J., 2009. The origin and evolution of arthropods. Nature,
3384		
3385 1	373	457(7231), p.812.
3386		
3387		
3388 1	374	Budd, G.E. and Mann, R.P., 2018. History is written by the victors: the effect of the push of
3389		
3390 1	375	the past on the fossil record. Evolution, doi:10.1111/evo.13593.
3391	0,0	
3392		
3393 13	376	Burckle, L.H. and Cirilli, J., 1987. Origin of diatom ooze belt in the Southern Ocean;
3394		
3395 13	377	implications for late Quaterary paleoceanography. Micropaleontology, 33(1), pp.82-86.
3396		
3397		
3398 13	378	Butterfield, N.J., 1997. Plankton ecology and the Proterozoic-Phanerozoic transition.
3399		
3400 13	379	Paleobiology, 23(2), 247-262.
3401		
3402		
3403 13	380	Butterfield, N.J., 2003. Exceptional fossil preservation and the Cambrian explosion.
3404		
	381	Integrative and comparative biology, 43(1), 166-177.
3405 -	001	
3407	382	Butterfield, N.J., 2005. Probable Proterozoic fungi. Paleobiology, 31(1), pp.165-182.
3408		
3409		
	383	Butterfield, N. J., 2008. An early Cambrian radula: Journal of Paleontology, 83. 543–554.
3411		
3412	~~ (
3413 13	384	Butterfield, N.J., 2015. Early evolution of the Eukaryota. Palaeontology, 58(1), pp.5-17.
3414		
3415	20E	Putterfield N. I. 2018 Owners animals and equatic histurbation: An undeted ecount
0110	385	Butterfield, N.J., 2018. Oxygen, animals and aquatic bioturbation: An updated account.
3417	~~ <i>(</i>	
3418 13	386	Geobiology, 16, 3-16.
3419		
3420		
3421		58
3422		

3423		
3424		
3425 3426	1387	Cadée, G.C., 1976. Sediment reworking by Arenicola marina on tidal flats in the Dutch
3427 3428 3429	1388	Wadden Sea. Netherlands Journal of Sea Research, (4).
3430 3431	1389	Cai, Y., Xiao, S., Li, G. and Hua, H., 2019. Diverse biomineralizing animals in the terminal
3432 3433 3434	1390	Ediacaran Period herald the Cambrian explosion. Geology, 47(4), pp.380-384.
3435 3436	1391	Candy, I., Black, S. and Sellwood, B.W., 2004. Quantifying time scales of pedogenic calcrete
3437 3438 3439	1392	formation using U-series disequilibria. Sedimentary Geology, 170(3-4), pp.177-187.
3440 3441	1393	Canfield, D.E. and Farquhar, J., 2009. Animal evolution, bioturbation, and the sulfate
3442 3443	1394	concentration of the oceans. Proceedings of the National Academy of Sciences, 106(20),
3444 3445 3446	1395	pp.8123-8127.
3447 3448		Canfield, D.E., Zhang, S., Wang, H., Wang, X., Zhao, W., Su, J., Bjerrum, C.J., Haxen, E.R.
3449 3450	1397	and Hammarlund, E.U., 2018. A Mesoproterozoic iron formation. Proceedings of the
3451 3452 3453	1398	National Academy of Sciences, p.201720529.
3454 3455		Carey, D.A., 1983. Particle resuspension in the benthic boundary layer induced by flow
3456 3457		around polychaete tubes. Canadian Journal of Fisheries and Aquatic Sciences, 40(S1),
3458 3459 3460	1401	pp.s301-s308.
3461 3462 3463	1402	Carpenter, C.C., 1982. The bullsnake as an excavator. Journal of Herpetology, pp.394-401.
3464 3465	1403	Casas-Crivillé, A. and Valera, F., 2005. The European bee-eater (Merops apiaster) as an
3466 3467 3468	1404	ecosystem engineer in arid environments. Journal of Arid Environments, 60(2), pp.227-238.
3469 3470	1405	Chan, M.A., Hinman, N.W., Potter-McIntyre, S.L., Schubert, K.E., Gillams, R.J., Awramik,
3471 3472	1406	S.M., Boston, P.J., Bower, D.M., Des Marais, D.J., Farmer, J.D. and Jia, T.Z., 2019.
3473 3474	1407	Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19, DOI:
3475 3476 3477 3478	1408	10.1089/ast.2018.1903.
3479 3480 3481		59

3482	
3483	
³⁴⁸⁴ 3485 1409	Channing A, Edwards D (2009) Yellowstone hot spring environments and the paleo-
3486 3487 1410	ecophysiology of Rhynie chert plants: towards a synthesis. Plant Ecology and Diversity 2,
3488 3489 1411 3490	111–143.
3491 3492 1412	Cheeseman, J.M., 2015. The evolution of halophytes, glycophytes and crops, and its
3493 3494 1413 3495	implications for food security under saline conditions. New Phytologist, 206, 557-570.
3496 3497 1414	Chen, Z.Q., Zhou, C. and Stanley, G.J., 2017. Biosedimentary records of China from the
3498 3499 3500	Precambrian to present. Palaeogeography Palaeoclimatology Palaeoecology, 474, pp.1-6.
3501 1416 3502	Chen, Z.Q., Tu, C., Pei, Y., Ogg, J., Fang, Y., Wu, S., Feng, X., Huang, Y., Guo, Z. and
3503 3504 3505	Yang, H., 2019. Biosedimentological features of major microbe-metazoan transitions
3506 1418 3507	(MMTs) from Precambrian to Cenozoic. Earth-Science Reviews.
3508 1419 3509	Cherns, L., 1982. Palaeokarst, tidal erosion surfaces and stromatolites in the Silurian Eke
3510 1420 3511 3512	Formation of Gotland, Sweden. Sedimentology, 29(6), pp.819-833.
3513 1421 3514	Chin, K. and Gill, B.D., 1996. Dinosaurs, dung beetles, and conifers: participants in a
3515 1422 3516 3517	Cretaceous food web. Palaios, pp.280-285.
3518 1423 3519	Clack, J.A., 2012. Gaining ground: the origin and evolution of tetrapods. Indiana University
3520 1424 3521 3522	Press.
3523 1425 3524	Clarke, J.T., Warnock, R. and Donoghue, P.C., 2011. Establishing a time-scale for plant
3525 1426 3526 3527	evolution. New Phytologist, 192, 266-301.
3528 1427 3529	Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Economic
3530 1428 3531	Geology, 68(7), pp.1135-1143.
3532 3533 1429 3534	Cockell, C.S. and Herrera, A., 2008. Why are some microorganisms boring?. Trends in
3535 3535 3536 3537 3538	microbiology, 16(3), pp.101-106.
3539 3540	60

3541		
3542		
3543	1431	Collins, A.G., Lipps, J.H., Valentine, J.W. 2000. Modern mucociliary creeping trails and the
3544	1401	comits, A.G., Elpps, 5.11., Valentine, 5. W. 2000. Modern independing electring dans and the
3545	1432	bodyplans of Neoproterozoic trace-makers. Paleobiology 26, 47-55.
0040	1102	bodyplans of recoproterozole trace makers. Faleoorology 20, 17 55.
3547		
3548 3549	1433	Collinson, M.E. and Scott, A.C., 1987. Implications of vegetational change through the
3550		
3551	1434	geological record on models for coal-forming environments. Geological Society, London,
3552		
3553	1435	Special Publications, 32(1), pp.67-85.
3554		
3555	1436	Corcoran, P.L., Moore, C.J., Jazvac, K., 2014, An anthropogenic marker horizon in the future
3556	1430	Corcoran, T.L., Moore, C.J., Jazvae, K., 2014, An anthropogenie marker nonzon in the future
3557	1437	rock record. GSA Today, 24, 4-8.
3000	1437	Tock record. Obr Today, 24, 4-0.
3559		
	1438	Corenblit, D., Tabacchi, E., Steiger, J. and Gurnell, A.M., 2007. Reciprocal interactions and
3561		
3562 3563	1439	adjustments between fluvial landforms and vegetation dynamics in river corridors: a review
3564		
3565	1440	of complementary approaches. Earth-Science Reviews, 84(1-2), pp.56-86.
3566		
3567	1//1	Corenblit, D., Steiger, J., Gurnell, A.M., Tabacchi, E. and Roques, L., 2009. Control of
3568	1441	Corenoni, D., Sterger, J., Sumen, M.W., Tubuceni, E. and Roques, E., 2009. Control of
3569	1442	sediment dynamics by vegetation as a key function driving biogeomorphic succession within
3570	1112	soument aynames by vegetation as a key function arrying biogeomorphic succession within
3571	1443	fluvial corridors. Earth Surface Processes and Landforms, 34, 1790-1810.
3572	1110	in contacto. Each Sarrace i rocesses and Eanarchins, 51, 1756 1010.
3573		
3574 3575	1444	Corenblit, D., Baas, A.C., Bornette, G., Darrozes, J., Delmotte, S., Francis, R.A., Gurnell,
3576 3577	1445	A.M., Julien, F., Naiman, R.J. and Steiger, J., 2011. Feedbacks between geomorphology and
2579		
3579	1446	biota controlling Earth surface processes and landforms: a review of foundation concepts and
3580		
3581	1447	current understandings. Earth-Science Reviews, 106(3-4), pp.307-331.
3582		
3583	1448	Corenblit, D., Davies, N.S., Steiger, J., Gibling, M.R. and Bornette, G., 2015. Considering
3584		
3585	1449	river structure and stability in the light of evolution: feedbacks between riparian vegetation
3586		
3587 3588	1450	and hydrogeomorphology. Earth Surface Processes and Landforms, 40(2), pp.189-207.
3589		
0500		
3591	1451	Corenblit, D., 2018. Species signatures in landscapes. Nature Geoscience, 11, pp.621-622.
3592		
3593	1452	Corenblit, D.J.F., Darrozes, J., Julien, F., Otto, T., Roussel, E., Steiger, J. and Viles, H., 2019.
3594		
3595	1453	The search for a signature of life on Mars: a biogeomorphological approach. Astrobiology.
3596		
3597		
3598		61
3599		

3600		
3601		
3602 3603	1454	Cotter, E., 1978. The evolution of fluvial style, with special reference to the central
0000	1455	Appalachian Paleozoic. In: Miall, A.D. (Ed.), Fluvial Sedimentology: Canadian Society of
3606 3607 3608	1456	Petroleum Geologists Memoir, vol. 5, pp. 361–383.
3609 3610	1457	Da Lio, C., D'Alpaos, A. and Marani, M., 2013. The secret gardener: vegetation and the
3611 3612	1458	emergence of biogeomorphic patterns in tidal environments. Phil. Trans. R. Soc. A,
3613 3614 3615	1459	371(2004), p.20120367.
3616 3617	1460	Davies, N.S., Gibling, M.R., 2010a, Cambrian to Devonian evolution of alluvial systems: the
3618 3619 3620	1461	sedimentological impact of the earliest land plants. Earth-Science Reviews, v. 98, p. 171-
3621 3622	1462	200.
3623 3624	1463	Davies, N.S. and Gibling, M.R., 2010b, Paleozoic vegetation and the Siluro-Devonian rise of
3625 3626 3627	1464	fluvial lateral accretion sets. Geology, 38, 51-54.
3628 3629	1465	Davies, N.S. and Gibling, M.R., 2011. Evolution of fixed-channel alluvial plains in response
3630 3631 3632	1466	to Carboniferous vegetation. Nature Geoscience, 4(9), p.629.
3633 3634	1467	Davies, N.S. and Gibling, M.R., 2013. The sedimentary record of Carboniferous rivers:
3635 3636	1468	continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems.
3637 3638 3639	1469	Earth-Science Reviews, 120, pp.40-79.
3640 3641	1470	Davies, N.S. and Shillito, A.P., 2018. Incomplete but intricately detailed: The inevitable
3642 3643 3644	1471	preservation of true substrates in a time-deficient stratigraphic record. Geology, 46, 679-682.
3645 3646	1472	Davies, N.S., Gibling, M.R., Rygel, M.C., 2011, Alluvial facies during the Palaeozoic
3647 3648	1473	greening of the land: case studies, conceptual models and modern analogues. Sedimentology,
3650 3651 3652 3653 3654 3655	1474	58, 220-258.
3656 3657 3658		62

3659		
3660		
3661 3662	1475	Davies, N.S., Gosse, J.C. and Rybczynski, N., 2014. Cross-bedded woody debris from a
3663 3664	1476	Pliocene forested river system in the High Arctic: Beaufort Formation, Meighen Island,
3665 3666 3667	1477	Canada. Journal of Sedimentary Research, 84(1), pp.19-25.
3668 3669	1478	Davies, N.S., Liu, A.G., Gibling, M.R., Miller, R.F., 2016, Resolving MISS conceptions and
3670 3671	1479	misconceptions: a geological approach to sedimentary surface textures generated by
3672 3673 3674	1480	microbial and abiotic processes. Earth-Science Reviews, v. 154, p. 210-246
3675 3676	1481	Davies, N.S., Liu, A.G., Gibling, M.R. and Miller, R.F., 2018. Reply to comment on the
3677 3678	1482	paper by Davies et al. "Resolving MISS conceptions and misconceptions: A geological
3679 3680 3681	1483	approach to sedimentary surface textures generated by microbial and abiotic processes"
3682 3683	1484	(Earth Science Reviews, 154 (2016), 210–246). Earth-Science Reviews, 176, 384-386.
3684 3685	1485	Davies, N.S., Gibling, M.R., McMahon, W.J., Slater, B.J., Long, D.G.F., Bashforth, A.R.,
3686 3687 3688	1486	Berry, C.M., Falcon-Lang, H.J., Gupta, S., Rygel, M.C., Wellman, C.H., 2017, Discussion on
3689 3690	1487	'Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the
3691 3692	1488	impacts of early land plants on sedimentation'. Journal of the Geological Society.
	1489	Davies, N.S., Shillito, A.P. and McMahon, W.J., 2019. Where does the time go? Assessing
3695 3696 3697	1490	the chronostratigraphic fidelity of sedimentary rock outcrops in the Pliocene-Pleistocene Red
3698 3699	1491	Crag Formation, eastern England. Journal of the Geological Society, pp.jgs2019-056.
3700 3701 3702	1492	De Deckere, E.M.G.T., Tolhurst, T.J. and De Brouwer, J.F.C., 2001. Destabilization of
	1493	cohesive intertidal sediments by infauna. Estuarine, Coastal and Shelf Science, 53(5), pp.665-
3705 3706	1494	669.
3707 3708 3709	1495	De Vargas, C., Aubry, MP., Probert, I., Young, J., 2007, Origin and Evolution of
3709 3710 3711	1496	Coccolithophores: From Coastal Hunters to Oceanic Farmers. In: Falkowski, P.G., Knoll,
3712 3713 3714	1497	A.H. (eds.), Evolution of Primary Producers in the Sea. Elsevier, Amsterdam, p. 251-285.
3715 3716 3717		63

3718		
3719 3720		
3721 3722	1498	Diessel, C.F., 2010. The stratigraphic distribution of inertinite. International Journal of Coal
3723 3724	1499	Geology, 81, 251-268.
3725 3726	1500	Dietrich, W.E. and Perron, J.T., 2006. The search for a topographic signature of life. Nature,
3727 3728 3729	1501	439(7075), p.411.
3730 3731	1502	DiMichele, W.A., 2013, Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice
3732 3733 3734	1503	Age Tropics. International Journal of Plant Sciences, 175, 123-164.
3735 3736	1504	Domeier, M. and Torsvik, T.H., 2017. Full-plate modelling in pre-Jurassic time. Geological
3737 3738 3739	1505	Magazine, pp.1-20.
3740 3741		Dorgan, K.M., 2015. The biomechanics of burrowing and boring. Journal of Experimental
3742 3743 3744	1507	Biology, 218(2), pp.176-183.
3745 3746	1508	Dorgan, K.M., Jumars, P.A., Johnson, B., Boudreau, B.P., 2006. Macrofaunal burrowing: the
3747 3748	1509	medium is the message. Oceanography and Marine Biology: An Annual Review, 44, 85-121.
3749 3750 3751	1510	Drehmer, C.J. and Oliveira, L.R., 2003. Occurrence of gastroliths in South American sea
3752 3753	1511	lions (Otaria byronia) from Southern Brazil. Latin American Journal of Aquatic
3754 3755	1512	Mammals, 2(2), pp.123-126.
3756 3757 3758	1513	Driese, S.G., Mora, C.I., Cotter, E., Foreman, J.L., 1992. Paleopedology and stable isotope
	1514	chemistry of Late Silurian vertic paleosols, Bloomsburg Formation, central Pennsylvania.
3761 3762 3763	1515	Journal of Sedimentary Petrology, 62: 825-841.
3764 3765	1516	Droppo, I.G., Ross, N., Skafel, M. and Liss, S.N., 2007. Biostabilization of cohesive
	1517	sediment beds in a freshwater wave-dominated environment. Limnology and
3768 3769 3770	1518	Oceanography, 52(2), pp.577-589.
3771 3772	1519	Duda, J.P., Van Kranendonk, M.J., Thiel, V., Ionescu, D., Strauss, H., Schäfer, N. and
3773 3774	1520	Reitner, J., 2016. A rare glimpse of Paleoarchean life: Geobiology of an exceptionally
3775 3776		64

3777	
3778	
3779 3780 152	1 preserved microbial mat facies from the 3.4 Ga Strelley Pool Formation, Western Australia.
3781 3782 152 3783	2 PloS one, 11(1), p.e0147629.
3784 3785 152	Dugan, J.E., Emery, K.A., Alber, M., Alexander, C.R., Byers, J.E., Gehman, A.M.,
3786 3787 152	4 McLenaghan, N. and Sojka, S.E., 2017. Generalizing ecological effects of shoreline armoring
3788 3789 152 3790	5 across soft sediment environments. Estuaries and Coasts, pp.1-17.
3791 3792 152	6 Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S. and Visscher, P.T., 2009.
3793 3794 152	7 Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews,
3795 3796 152 3797	8 96(3), pp.141-162.
3798 3799 152	Edwards, D., Selden, P.A., Richardson, J.B. and Axe, L., 1995. Coprolites as evidence for
3800 3801 153	0 plant–animal interaction in Siluro–Devonian terrestrial ecosystems. Nature, 377(6547),
3802 3803 153 3804	1 pp.329-331.
3805 3806	2 Edwards, D., Morris, J.L., Richardson, J.B., Kenrick, P., 2014. Cryptospores and cryptophytes
3807 3808 3809	3 reveal hidden diversity in early land floras. New Phytologist 202, 50–78.
3810 153 3811	Edwards, D., Cherns, L. and Raven, J.A., 2015. Could land-based early photosynthesizing
3812 3813	5 ecosystems have bioengineered the planet in mid-Palaeozoic times?. Palaeontology, 58(5),
3814 3815 3816	6 pp.803-837.
3817 153 3818	7 Edwards, M. and Davies, M.S., 2002. Functional and ecological aspects of the mucus trails of
3819 3820	8 the intertidal prosobranch gastropod <i>Littorina littorea</i> . Marine Ecology Progress Series, 239,
3821 3822 3823	9 pp.129-137.
³⁸²⁴ 154 3825	Eldridge, D.J., Delgado-Baquerizo, M., Travers, S.K., Val, J. and Oliver, I., 2017. Do grazing
3826 3827 154	1 intensity and herbivore type affect soil health? Insights from a semi-arid productivity
3828 3829 3830 3831	2 gradient. Journal of applied ecology, 54(3), pp.976-985.
3832	
3833	
3834 3835	65

3836		
3837		
3838 3839	1543	Ellis, C., Barrett, N.S., Schmieman, S. 2005. Impact of cruise ship turbulence on benthic
3840 3841	1544	communities: case study in Tasmania's south-west. In: Technical Report Series. Sustainable
3842 3843 3844	1545	Tourism CRC, Gold Coast.
3845 3846	1546	Ellison, A.M., Farnsworth, E.J. and Merkt, R.E., 1999. Origins of mangrove ecosystems and
3847 3848 3849	1547	the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8(2), pp.95-115.
3850 3851	1548	Emery, K.O., 1941. Transportation of rock particles by sea mammals. J. Sediment. Petrol.,
3852 3853 3854	1549	11:92 93
3855 3856	1550	Emery, K.O., 1955. Transportation of rocks by driftwood. J. Sediment. Petrol., 25: 51-
3857 3858	1551	57Eriksson, P.G., Banerjee, S., Catuneanu, O., Corcoran, P.L., Eriksson, K.A., Hiatt, E.E.,
3859 3860 3861	1552	Laflamme, M., Lenhardt, N., Long, D.G., Miall, A.D. and Mints, M.V., 2013. Secular
3862 3863	1553	changes in sedimentation systems and sequence stratigraphy. Gondwana Research, 24(2),
3864 3865	1554	pp.468-489.
3866 3867	1555	Erwin, D.H., 2008. Macroevolution of ecosystem engineering, niche construction and
3868 3869 3870	1556	diversity. Trends in ecology and evolution, 23(6), pp.304-310.
3871 3872	1557	Esteban M., Klappa C.F., 1983, Subaerial exposure environment. In: Scholle P.A., Bebout
3873 3874 3875	1558	D.G., Moore C.H. (Eds.), Carbonate Depositional Environments, American Association of
3876 3877	1559	Petroleum Geologists, Tulsa, Oklahoma, p. 1-54
3878 3879 3880	1560	Fagherazzi, S., 2013. The ephemeral life of a salt marsh. Geology, 41(8), pp.943-944.
3881 3882		Fairchild, J.M. and Hasiotis, S.T. 2011. Terrestrial and aquatic neoichnological laboratory
3883 3884		experiments with the freshwater crayfish Orconectes: trackways on media of varying grain
3885 3886 3887 3888 3889 3890	1563	size, moisture, and inclination. Palaios 26, 790-804.
3891		
3892 3893		66
3894		

3895		
3896		
3897 3898	1564	Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O. and Taylor,
3899 3900	1565	F.J.R., 2004. The evolution of modern eukaryotic phytoplankton. Science, 305(5682), 354-
3901 3902 3903	1566	360.
3904 3905 3906	1567	Fischer, W.W., 2018, Early plants and the rise of mud. Science, 359, 994-995.
3907 3908	1568	Fitch-Snyder, H. and Lance, V.A., 1993. Behavioral observations of lithophagy in captive
3909 3910 3911	1569	juvenile alligators. Journal of herpetology, 27(3), pp.335-337.
3912 3913	1570	Fleming, C.A. 1951. Sea lions as geological agents. Journal of Sedimentary Petrology 21, 22-
3914 3915 3916	1571	25.
3917 3918	1572	Florsch, N., Llubes, M., Tereygeol, F., Ghorbani, A., Roblet, P. 2011. Quantification of slag
3919 3920	1573	heap volumes and masses through the use of induced polarization: application to the Castel-
3921 3922 3923	1574	Minier site. Journal of Archaeological Science 38, 438-451.
3924 3925	1575	Flowers, T.J., Galal, H.K. and Bromham, L., 2010, Evolution of halophytes: multiple origins
3926 3927 3928	1576	of salt tolerance in land plants. Functional Plant Biology, 37, 604-612.
3929 3930	1577	Foreman, B.Z. and Straub, K.M., 2017. Autogenic geomorphic processes determine the
3931 3932	1578	resolution and fidelity of terrestrial paleoclimate records. Science advances, 3(9),
3933 3934 3935	1579	p.e1700683.
3936 3937	1580	Fremier, A.K., Yanites, B.J. and Yager, E.M., 2017. Sex that moves mountains: The
3938 3939 3940	1581	influence of spawning fish on river profiles over geologic timescales. Geomorphology.
3941 3942	1582	Frey, S.E. and Dashtgard, S.E. 2012. Seaweed-assisted, benthic gravel transport by tidal
3943 3944 3945	1583	currents. Sedimentary Geology 265-266, 121-125.
3945 3946 3947	1584	Friedman, M. and Daeschler, E.B., 2006. Late Devonian (Famennian) lungfishes from the
3947 3948 3949 3950 3951	1585	Catskill Formation of Pennsylvania, USA. Palaeontology, 49(6), pp.1167-1183.
3951 3952 3953		67

3954		
3955 3956		
3957 3958	1586	Friis, E.M., Pedersen, K.R. and Crane, P.R., 2004. Araceae from the Early Cretaceous of
3959 3960	1587	Portugal: evidence on the emergence of monocotyledons. Proceedings of the National
3961 3962	1588	Academy of Sciences, 101(47), pp.16565-16570.
3963 3964 3965	1589	Friis, E.M., Pedersen, K.R. and Crane, P.R., 2006. Cretaceous angiosperm flowers:
3966 3967	1590	innovation and evolution in plant reproduction. Palaeogeography, palaeoclimatology,
3968 3969	1591	palaeoecology, 232(2-4), pp.251-293.
3970 3971 3972	1592	Fröls, S., 2013. Archaeal biofilms: widespread and complex. Biochemical Society
3973 3974	1593	Transactions, 41(1), pp. 393-398.
3975 3976 3977	1594	Fuller, M. and Jenkins, R., 2007. Reef corals from the lower Cambrian of the Flinders
3978 3979	1595	Ranges, South Australia. Palaeontology, 50(4), pp.961-980.
3980 3981	1370	Gadd, G.M., 2017. Geomicrobiology of the built environment. Nature microbiology, 2(4),
3982 3983 3984	1597	p.16275.
3986	1598	Gaffney, O. and Steffen, W., 2017. The Anthropocene equation. The Anthropocene Review,
3987 3988 3989	1599	4(1), pp.53-61.
3991	1600	Gani, M.R., 2017, Mismatch between time surface and stratal surface in stratigraphy: Journal
3992 3993 3994	1601	of Sedimentary Research, v. 87, p. 1226-1234.
3995 3996	1602	Gerdes, G., Claes, M., Dunajtschik-Piewak, K., Riege, H., Krumbein, W.E., Reineck, H-E.
3997 3998 3999	1603	1993. Contribution of Microbial Mats to Sedimentary Surface Structures. Facies 29, 61-74.
4000 4001	1604	Gibling, M.R., 2018. River Systems and the Anthropocene: A Late Pleistocene and Holocene
4002 4003 4004	1605	Timeline for Human Influence. Quaternary, 1, 21.
4004 4005 4006	1606	Gibling, M.R. and Davies, N.S., 2012. Palaeozoic landscapes shaped by plant evolution.
4007 4008 4009	1607	Nature Geoscience, 5, 99-105.
4010 4011 4012		68

4013		
4014		
4015 4016	1608	Gionfriddo, J.P. and Best, L.B., 1999. Grit use by birds. In Current ornithology (pp. 89-148).
4017 4018	1609	Springer, Boston, MA.
4019		
4020 4021	1610	Glasspool, I.J., Edwards, D. and Axe, L., 2004. Charcoal in the Silurian as evidence for the
4022	1611	artiast wildfire Geology 22(5) pp 291 292
4023 4024		earliest wildfire. Geology, 32(5), pp.381-383.
4025 4026	1612	Goudie, A.S. and Viles, H.A., 2016. Geomorphology in the Anthropocene. Cambridge
4027 4028 4029	1613	University Press.
4030 4031	1614	Gougeon, R.C., Mángano, M.G., Buatois, L.A., Narbonne, G.M. and Laing, B.A., 2018.
4032 4033		Early Cambrian origin of the shelf sediment mixed layer. Nature communications, 9(1),
4034 4035 4036	1616	p.1909.
4037 4038		Gradstein, F.M., Ogg, J.G., Hilgen, F.J., 2012, On The Geological Time Scale. Newsletters
4039 4040 4041	1618	on Stratigraphy 45/2, 171-188.
4042 4043	1619	Grant, S.W., 1990. Shell structure and distribution of <i>Cloudina</i> , a potential index fossil for
4044 4045 4046	1620	the terminal Proterozoic. American Journal of Science, 290, pp.261-294.
4047 4048	1621	Griffith, S.J., Thompson, C.E.L., Thompson, T.J.U. and Gowland, R.L., 2016. Experimental
4049 4050	1622	abrasion of water submerged bone: the influence of bombardment by different sediment
4051 4052 4053	1623	classes on microabrasion rate. Journal of archaeological science: reports, 10, pp.15-29.
4054 4055	1624	Guido, A., Mastandrea, A., Rosso, A., Sanfilippo, R., Tosti, F., Riding, R. and Russo, F.,
4056 4057		2014. Commensal symbiosis between agglutinated polychaetes and sulfate-reducing
4058 4059 4060	1626	bacteria. Geobiology, 12(3), pp.265-275
4061 4062	1627	Gurnell, A., 2014. Plants as river system engineers. Earth Surface Processes and Landforms,
4063 4064 4065	1628	39(1), pp.4-25.
4065 4066 4067	1629	Gurnell, A., Tockner, K., Edwards, P., Pett, G. 2005. Effects of deposited wood on
4068 4069	1630	biocomplexity of river corridors. Front. Ecol. Environ. 3, 377-382.
4070 4071		69

4072		
4073		
4074 4075	1631	Hajek, E.A. and Straub, K.M., 2017. Autogenic sedimentation in clastic stratigraphy. Annual
4076 4077 4078	1632	Review of Earth and Planetary Sciences, 45, pp.681-709.
4079 4080	1633	Hamner, W.M., 1995. Sensory ecology of scyphomedusae. Marine and Freshwater Behaviour
4081 4082 4083	1634	and Phy, 26(2-4), pp.101-118.
4084 4085	1635	Harvey, G.L., Moorhouse, T.P., Clifford, N.J., Henshaw, A.J., Johnson, M.F., Macdonald,
4086 4087	1636	D.W., Reid, I. and Rice, S.P., 2011. Evaluating the role of invasive aquatic species as drivers
4088 4089	1637	of fine sediment-related river management problems: the case of the signal crayfish
4090 4091 4092	1638	(Pacifastacus leniusculus). Progress in Physical Geography, 35, 517-533.
4094	1639	Hasiotis, S.T. and Martin, A., 1999. Probable reptile nests from the Upper Triassic Chinle
4095 4096	1640	Formation, Petrified Forest National Park, Arizona. National Park Service, Paleontological
4097 4098 4099	1641	Research, 4, pp.85-90.
4100 4101	1642	Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky,
4102 4103	1643	D.A. and Yang, H., 2008. Mineral evolution. American Mineralogist, 93(11-12), pp.1693-
4105	1644	1720.
4108	1645	Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S.C., Hinnov, L. and
4109 4110	1646	Milliken, R.E., 2013. Clay mineral evolution. American Mineralogist, 98(11-12), pp.2007-
4111 4112 4113	1647	2029.
4114 4115	1648	Herringshaw, L.G., Callow, R.H. and McIlroy, D., 2017. Engineering the Cambrian
4116 4117	1649	explosion: the earliest bioturbators as ecosystem engineers. Geological Society, London,
4118 4119 4120	1650	Special Publications, 448, 369-382.
4121 4122	1651	Hetherington, A.J., Dolan, L., 2018, Stepwise and independent origins of roots among land
4123 4124 4125 4126 4127	1652	plants. Nature, 561, p. 235-238.
4127 4128 4129 4130		70

4131		
4132		
4133	1653	Hillier, R.D., Edwards, D., Morrissey, L.B., 2008. Sedimentological evidence for rooting
4134	1055	Timer, R.D., Edwards, D., Morrissey, E.D., 2000. Sedimentological evidence for rooting
4135	1654	structures in the Early Devonian Anglo-Welsh Basin (UK), with speculation on their
4150	1054	structures in the Earry Devolution Anglo Weish Bushi (OK), with speculation on their
4137	1655	producers. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 366–388.
1100	1055	producers. I diacogeography, I diacoeninatorogy, I diacoecorogy 270, 500-500.
4139 4140		
4140	1656	Hilton, J., Cleal, C.J., 2007, The relationship between Euramerican and Cathaysian tropical
4142		
4143	1657	floras in the Late Palaeozoic: palaeobiogeographical and palaeogeographical implications.
4144		
	1658	Earth-Science Reviews, 85, 85-116.
4146		
4147	1/50	Unfranze II I and Linking C 1021 Carbonagous magafassile from the Presembrian (1800
4148	1659	Hofmann, H.J. and Jinbiao, C., 1981. Carbonaceous megafossils from the Precambrian (1800
4149	1440	Ma) near Jivian northarn China Canadian Journal of Earth Sciences 19(2) nn 112 117
4150	1660	Ma) near Jixian, northern China. Canadian Journal of Earth Sciences, 18(3), pp.443-447.
4151		
4152	1661	Holland, H.D., 2005. Sedimentary mineral deposits and the evolution of Earth's near-surface
4153		
4154 4155	1662	environments. Economic Geology, 100, 1489-1509.
4155		
	4//0	
4158	1663	Holland, H.D., 2006. The oxygenation of the atmosphere and oceans. Philosophical
4450	1664	Transactions of the Devial Society D: Dialogical Sciences 2(1(1470), nr 002,015
4160	1004	Transactions of the Royal Society B: Biological Sciences, 361(1470), pp.903-915.
4161		
4162	1665	Holland, S.M., 2016. The non-uniformity of fossil preservation. Phil. Trans. R. Soc. B, 371,
4163		
4164	1666	20150130.
4165		
4166	4//7	Uniter A.I. Constanting I.A. Holes T.C. Constant D. Durford MW and Lorenze E.D.
4167	1667	Horton, A.J., Constantine, J.A., Hales, T.C., Goossens, B., Bruford, M.W. and Lazarus, E.D.,
4168	4//0	2017 Madification of river mean daring by transcal defensation. Coolery 45, 511, 514
4169 4170	1000	2017. Modification of river meandering by tropical deforestation. Geology, 45, 511-514.
4171		
4172	1669	Hoskin, C.M., Guthrie, R.D. and Hoffman, B.L., 1970. Pleistocene, Holocene and recent bird
4173		
4174	1670	gastroliths from interior Alaska. Arctic, pp.14-23.
4175		
4176	4/74	Until LI Der Neer A. Deiter C.F. Freidling C.F. Neetheren C. Chinger M.M.
4177	1671	Hublin, J.J., Ben-Ncer, A., Bailey, S.E., Freidline, S.E., Neubauer, S., Skinner, M.M.,
4178	4/70	Denemente L. L. Coltan, A. Donnori, C. Harrott, K. and Comp. D. 2017. New formula formu
	1672	Bergmann, I., Le Cabec, A., Benazzi, S., Harvati, K. and Gunz, P., 2017, New fossils from
4180	4/70	Johal Irhaud Maragag and the new African arigin of Hama ganiang Nature 546 200
4181	10/3	Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature, 546, 289.
4182 4183		
4184	1674	Huntley, M.E. and Zhou, M., 2004. Influence of animals on turbulence in the sea. Marine
4185		
	1675	Ecology Progress Series, 273, pp.65-79.
4187		
4188		71
4189		

4190	
4191	
4192 4193 1676	Husson, J.M. and Peters, S.E., 2018. Nature of the sedimentary rock record and its
4194	
4195 1677	implications for Earth system evolution. Emerging Topics in Life Sciences, 2, 125-136.
4196	
4197 4198 1678	Ilgen, A.G., Heath, J.E., Akkutlu, I.Y., Bryndzia, L.T., Cole, D.R., Kharaka, Y.K., Kneafsey,
4199 4200 1679	T.J., Milliken, K.L., Pyrak-Nolte, L.J. and Suarez-Rivera, R., 2017. Shales at all scales:
4201	
4202 1680	Exploring coupled processes in mudrocks. Earth-Science Reviews, 166, pp.132-152.
4203	
4004	
4204 4205 1681	Ingham, E.R., 1999, The soil food web. USDA-NRCS Soil Quality Institute PA 1637, A1-
4206	
4207 1682	A8.
4208	
1000	Isterbully a shuff and Drag D.L. 2005 Vacatation modulated landscene evolution. Effects
⁴²⁰⁹ 1683 4210	Istanbulluoglu, E. and Bras, R.L., 2005. Vegetation-modulated landscape evolution: Effects
1011	
4211 1684	of vegetation on landscape processes, drainage density, and topography. Journal of
4213	
4214 1685	Geophysical Research: Earth Surface, 110, F02012.
4215	
4216 1686	James N. D. James D. 2016 Origin of Carbonata Sodimontany Doolse, Wiley, Chickogton
4217	James, N.P., Jones, B., 2016, Origin of Carbonate Sedimentary Rocks. Wiley, Chichester.
4218	
4219 1687	James, N.P., Wood, R., 2010, Reefs. In: James, N.P., and Dalrymple, R.W., (eds.) Facies
4220	
4221 1688	Models 4. Geological Association of Canada, GEOtext, v. 6, p. 421-477.
4222	Wodels 4. Ocological Association of Canada, OLOtext, V. 0, p. 421-477.
4223	
4224 1689	Jensen, S., Droser, M.L. and Gehling, J.G., 2006. A critical look at the Ediacaran trace fossil
4225	
4226 1690	record. In Neoproterozoic geobiology and paleobiology (pp. 115-157). Springer, Dordrecht.
4227	
4228	
₄₂₂₉ 1691	Jerolmack, D.J. and Paola, C., 2010. Shredding of environmental signals by sediment
4230	
4231 1692	transport. Geophysical Research Letters, 37(19).
4232	
4233	
4234 1693	Jolliffe, I.P., 1989. The rafting of shingle under the agency of seaweeds. Prog. Underwater
4235	
4236 169 4	Sci., 13:65 78.
4237	
4238 1695	Jones, C.G., 2012. Ecosystem engineers and geomorphological signatures in landscapes.
4239	jones, C.O., 2012. Ecosystem engineers and geomorphological signatures in landscapes.
4240	C_{approx} hology 157 75 97
4241 1696	Geomorphology, 157, 75-87.
4242	
4243	
4244	
4245	
4246	
4247	72
4248	

4249	
4250	
4251	Jones, C.G., Lawton, J.H. and Shachak, M., 1994. Organisms as ecosystem engineers. In
4252	solies, e.e., Euwion, s.m. and Shuehak, Wi., 1994. Organishis as eeosystem engineers. In
4253 4254 1698	Ecosystem management (pp. 130-147). Springer, New York, NY.
4204	Leosystem management (pp. 150-177). Springer, rew Tork, rer.
4255	
4256 1699	Jones, L.S. and Gustason, E.R. 2006. Dinosaurs as possible avulsion enablers in the Upper
4257 4258 4700	
4259 1700	Jurassic Morrison Formation, east-central Utah. Ichnos, 13, 31-41.
4260	
⁴²⁶¹ 1701	Laugust D. Dauhan I. Lagarläf I. Laugilla D. and Langage M. 2006 Soil inventebrates of
4262	Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. and Lepage, M., 2006. Soil invertebrates as
⁴²⁶³ 1702	according to a second and accidental affects on soil and feedback loops. Applied
4264	ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied
4265	S_{2} : 1 F_{2} = 1 F_{2} = 22(2) $= 152$ 1(4)
4266 1703	Soil Ecology, 32(2), pp.153-164.
4267	
⁴²⁶⁸ 1704	Kane, I.A. and Clare, M.A., 2019. Dispersion, accumulation, and the ultimate fate of
4269	
⁴²⁷⁰ 1705	microplastics in deep-marine environments: a review and future directions. Frontiers in Earth
4271	
4272 1706	Science, 7.
4273	
4274	
4275 1707	Kawase, H., Okata, Y. and Ito, K., 2013. Role of huge geometric circular structures in the
4276 4277 1708	
⁴²⁷⁷ 1708 4278	reproduction of a marine pufferfish. Scientific reports, 3, p.2106.
4279	
4280 1709	Kavanagh, L. and Goldblatt, C., 2015. Using raindrops to constrain past atmospheric density.
4281	Ravanagn, D. and Goldolati, C., 2015. Osing fundrops to constrain past autospherie density.
4282 1710	Earth and Planetary Science Letters, 413, pp.51-58.
4283	Latar and Flandary Solorio Dettols, 115, pp.51 50.
4284	
4285 1711	Keller, C.B., Husson, J.M., Mitchell, R.N., Bottke, W.F., Gernon, T.M., Boehnke, P., Bell,
4286	
4287 1712	E.A., Swanson-Hysell, N.L. and Peters, S.E., 2019. Neoproterozoic glacial origin of the Great
4288	
4289 1713	Unconformity. Proceedings of the National Academy of Sciences, 116(4), pp.1136-1145.
4290	
4291 4292 1714	Kemp, T.S., 2005. The origin and evolution of mammals. Oxford University Press
4292 1714	Kemp, 1.5., 2005. The origin and evolution of manimals. Oxford Oniversity (1655
4293	
4295 1715	Kemp, D.B., Eichenseer, K. and Kiessling, W., 2015. Maximum rates of climate change are
4296	
4297 1716	systematically underestimated in the geological record. Nature communications, 6, p.8890
4298	
4299	
4300 1717	Kennedy, M., Droser, M., Mayer, L.M., Pevear, D. and Mrofka, D., 2006. Late Precambrian
4301	and a section in a state a law win and fractions. Science 211, 1446, 1440
4302 1718	oxygenation; inception of the clay mineral factory. Science, 311, 1446-1449.
4303	
4304	
4305	70
4306	73
4307	

4308	
4309	
4310 4311 1719	Kennedy, K.L., Gibling, M.R., Eble, C.F., Gastaldo, R.A., Gensel, P.G, Werner-Zwanziger,
4312 4313 1720	U., Wilson, R.A., 2013, Lower Devonian coaly shales of northern New Brunswick, Canada:
4314 4315 1721	plant accumulations in the early stages of Terrestrial colonization. Journal of Sedimentary
4316 4317 1722	Research, 83, 1202-1215.
4318 4319	
4319 4320 4321	Kerans, C. and Donaldson, J.A., 1988. Proterozoic paleokarst profile, Dismal Lakes Group,
4322 1724 4323	NWT, Canada. In Paleokarst (pp. 167-182). Springer, New York, NY.
4324 4325 1725	Kidder, D.L. and Erwin, D.H., 2001. Secular distribution of biogenic silica through the
4326 4327 1726	Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. The
4328 4329 1727 4330	Journal of Geology, 109(4), pp.509-522.
4331 4700	
4332 ¹⁷²⁸ 4333	Kiessling, W., 2002. Secular variations in the Phanerozoic reef ecosystem. SEPM Special
4334 1729 4335	Publication, 72, 625-690.
4336 4337 1730	Kinlaw, A., Grasmueck, M. 2012. Evidence for and geomorphic consequences of a reptilian
4338 4339 1731	ecosystem engineer: The burrowing cascade initiated by the Gopher Tortoise.
4340 4341 1732	Geomorphology 157-158, 108-121.
4342 4343 4344 1733	Kleinhans, M.G., Buskes, C.J. and de Regt, H.W., 2005. Terra Incognita: explanation and
$4345 \\ 4346 $ 1734	reduction in earth science. International Studies in the Philosophy of Science, 19(3), pp.289-
4347 4348 1735	317.
4349 4350 4351 1736	Kleinhans, M.G., Buskes, C.J.J., de Regt, H.W., 2009. Philosophy of Earth science. In:
4352 4353 1737	Allhoff, F. (Ed.), Philosophies of the Sciences. Wiley-Blackwell, N.Y, 213-235.
4354 4355 1738 4356	Kleinhans, M.G., de Vries, B., Braat, L. and van Oorschot, M., 2018. Living landscapes:
4357 1739 4358	Muddy and vegetated floodplain effects on fluvial pattern in an incised river. Earth surface
4359 4360 4361	processes and landforms, 43(14), pp.2948-2963.
4361 4362 4363	
4364	
4365	74
4366	

4367	
4368	
4369	Knoll, A.H. and Nowak, M.A., 2017. The timetable of evolution. Science Advances, 3(5),
4370	$\mathbf{X}_{1}(1,1,1,1,1,1,1,1,$
4371 ₄₃₇₂ 1742	p.e1603076.
4072	p.01005070.
4373	
4374 4375 1743	Knoll, M.A. and James, W.C., 1987. Effect of the advent and diversification of vascular land
4375	
4377 1744	plants on mineral weathering through geologic time. Geology, 15(12), pp.1099-1102.
4378	
⁴³⁷⁹ 1745	Keeh E.W. Askermen I.D. Verduin Landven Keulen M. 2007 Eluid dynamies in
4380	Koch, E.W., Ackerman, J.D., Verduin, J. and van Keulen, M., 2007. Fluid dynamics in
1201	an and a solary from malacular to approximations. In SEACDASSES: DIOLOCY
4301 1746 4382	seagrass ecology—from molecules to ecosystems. In SEAGRASSES: BIOLOGY,
4383	ECOLOCYAND CONSERVATION (nr. 102 225) Statistican Developett
4384 1747	ECOLOGYAND CONSERVATION (pp. 193-225). Springer, Dordrecht.
4385	
⁴³⁸⁶ 1748	Konaté, S., Le Roux, X., Tessier, D. and Lepage, M., 1999. Influence of large termitaria on
4387	
⁴³⁸⁸ 1749	soil characteristics, soil water regime, and tree leaf shedding pattern in a West African
4389	
4390	savanna. Plant and Soil, 206(1), pp.47-60.
4391	
4392	
4393 1751 4394	Kramer, P.J. and Boyer, J.S. 1995. Water relations of plants and soils. Academic press.
4394	
4396 1752	Kullberg, J.C., Olóriz, F., Marques, B., Caetano, P.S. and Rocha, R.B., 2001. Flat-pebble
4397	Kunoerg, J.C., Otoriz, T., Murques, D., Cuetano, T.S. and Roena, R.D., 2001. That people
4398 1753	conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the
4399	congromerates, a rocar marker for Darry surassic seismenty related to sym the tectomes in the
⁴⁴⁰⁰ 1754	Sesimbra area (Lusitanian Basin, Portugal). Sedimentary Geology, 139(1), pp.49-70.
4401	Sestiliona area (Eustainian Bushi, Fortagar). Seannentary Georogy, 155(1), pp. 1570.
4402	
4403 1755	Laland, K., Odling-Smee, J. and Endler, J., 2017. Niche construction, sources of selection
4404	
4405 1756	and trait coevolution. Interface focus, 7(5), p.20160147
4406	
4407 4408 1757	Lanier, W.P., Feldman, H.R., Archer, A.W., 1993. Tidal sedimentation from a fluvial to
4400 1,37	
4410 1758	estuarine transition, Douglas Group, Missourian–Virgilian, Kansas. Journal of Sedimentary
4411	estuarme transition, Douglus Group, Missourian Virginan, Ransus. Journal of Seamentary
4412 1759	Petrology 63, 860–873.
4413	1 chology 05, 000 075.
4414	
4415 1760	Lazarus, E.D. and Constantine, J.A. 2013. Generic theory for channel sinuosity. Proceedings
4416	
4417 1761	of the National Academy of Sciences, 110, 8447-8452.
4418	
4419	
4420	
4421	
4422 4423	
4423	75
4425	

4426	
4427	
4428	Lenton, T.M. and Daines, S.J., 2018. The effects of marine eukaryote evolution on
4429	
4430 4431 1763	phosphorus, carbon and oxygen cycling across the Proterozoic–Phanerozoic transition.
4401	
4432 4433 1764	Emerging Topics in Life Sciences, 2(2), pp.267-278.
4434	2g. 10p.00 2 2
4435	
4436 1765	Leonard, L.A., Dixon, K.L., Pilkey, O.H. 1990. A comparison of beach replenishment on the
4437	
₄₄₃₈ 1766	U.S. Atlantic, Pacific, and Gulf coasts. Journal of Coastal Research 6, 127-140.
4439	
4440 1767	Lepland, A., Melezhik, V.A., Papineau, D., Romashkin, A.E. and Joosu, L., 2013. 7.7 The
4441	Deptund, M., Morezink, M.M., Lupineud, D., Romasikin, M.D. and Soosa, D., 2015. 7.7 The
4442 1768	Earliest Phosphorites: Radical Change in the Phosphorus Cycle During the
4443	
4444 4445 1769	Palaeoproterozoic. In Reading the Archive of Earth's Oxygenation (pp. 1275-1296).
4445 4446	
4440 4447 1770	Springer, Berlin, Heidelberg.
4448	
1119	
4450 1771	Li, Z.Q., Zhang, L.C., Xue, C.J., Zheng, M.T., Zhu, M.T., Robbins, L.J., Slack, J.F.,
4451	Dispersive N. L. and Kanhawaan K.O. 2018. Forth's your cast handed incer formation implies
4452 1772	Planavsky, N.J. and Konhauser, K.O., 2018. Earth's youngest banded iron formation implies
4453	ferruginous conditions in the Early Cambrian ocean. Scientific reports, 8(1), p.9970.
4454 1773	refruginous conditions in the Early Camorian ocean. Scientific reports, 8(1), p.9970.
4455	
4456 4457 1774	Lipps, J.H. and Stanley, G.D., 2016. Reefs through time: an evolutionary view. In Coral
4458	
4459 1775	Reefs at the Crossroads (pp. 175-196). Springer, Dordrecht.
4460	
⁴⁴⁶¹ 1776	Lisle, J.T. and Robbins, L.L., 2016. Viral lysis of photosynthesizing microbes as a
4462	Liste, 5.1. and Robolits, E.E., 2010. That fysis of photosynatosizing interobes as a
4463 1777	mechanism for calcium carbonate nucleation in seawater. Frontiers in microbiology, 7,
4464	
4465	p.1958.
4466 ¹⁷⁷⁸ 4467	L
4400	
⁴⁴⁶⁸ 1779 4469	Liu, A.G., Mcllroy, D. and Brasier, M.D., 2010. First evidence for locomotion in the Ediacara
1170	
4470 4471 1780	biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38, 123-126.
4472	
4473 1781	Liu, A.G., Matthews, J.J., Menon, L.R., McIlroy, D. and Brasier, M.D., 2014. Haootia
4474	
4475 1782	quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late
4476	
4477 4478 1783	Ediacaran period (approx. 560 Ma). Proc. R. Soc. B, 281(1793), p.20141202.
4470	
4480	
4481	
4482	
4483	76
4484	

4485		
4486		
4488	1784	Liu, Z., Dugan, B., Masiello, C.A. and Gonnermann, H.M., 2017. Biochar particle size,
4430	1785	shape, and porosity act together to influence soil water properties. Plos one, 12(6),
4491 4492 4493	1786	p.e0179079.
4494 4495 4496	1787	Lockley, M.G., Huh, M., Gwak, S.G., Hwang, K.G., Paik, I.S., 2012. Multiple tracksites
4497 4498 4499	1788	with parallel trackways from the Cretaceous of the Yeosu City area Korea: implications
4500 1 4501 4502	1789	for gregarious behavior in ornithopod and sauropod dinosaurs. Ichnos 19,
4503 4504	1790	105–114.
4506	1791	Logan, G.A., Hayes, J.M., Hieshima, G.B. and Summons, R.E., 1995. Terminal Proterozoic
4508	1792	reorganization of biogeochemical cycles. Nature, 376(6535), p.53.
4511	1793	Long, D.G.F. 2004. Precambrian rivers. In: Eriksson, P.G., Altermann, W., Nelson, D.R.,
4513	1794	Mueller, W.U., Catuneaunu, O. (eds), The Precambrian Earth: Tempos and Events.
4514 4515 4516	1795	Developments in Precambrian Geology, 12, Elsevier, 660–663.
4518	1796	Long, D.G. 2006. Architecture of pre-vegetation sandy-braided perennial and ephemeral river
4520	1797	deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as
4522 4523	1798	indicators of Precambrian fluvial style. Sedimentary Geology, 190, 71-95.
4524 4525	1799	Long, D.G.F. 2011. Architecture and depositional style of fluvial systems before land plants:
4527	1800	a comparison of Precambrian, early Paleozoic and modern river deposits. In: Davidson, S.,
4528 4529 4530	1801	Leleu, S. & North, C.P. (eds), From River to Rock Record: The Preservation of Fluvial
4531 4532	1802	Sediments and their subsequent Interpretation. SEPM, 37-61.
4533 4534 4535	1803	Long, D.G., 2018. Archean fluvial deposits: A review. Earth-Science Reviews.
4536 4537	1804	Loron, C.C., François, C., Rainbird, R.H., Turner, E.C., Borensztajn, S. and Javaux, E.J.,
4539 4540	1805	2019. Early fungi from the Proterozoic era in Arctic Canada. Nature, 570, p. 232-235.
4541 4542 4543		77

4544		
4545		
4546	1806	Lucas, S.G. and Luo, Z., 1993. Adelobasileus from the Upper Triassic of West Texas: the
4547	1000	Lucas, 5.6. and Luo, Z., 1995. Addiobasticus from the Opper Thassie of West Texas. the
4548	1007	oldest mammal. Journal of Vertebrate Paleontology, 13(3), pp.309-334.
4040	1807	ordest mainmai. Journal of Vertebrate Paleoniology, 15(5), pp.509-554.
4550		
4551	1808	Lyons, J., Weigel, B.M., Paine, L.K. and Undersander, D.J., 2000. Influence of intensive
4552		,, _,
4553	1809	rotational grazing on bank erosion, fish habitat quality, and fish communities in southwestern
4554	1007	Towaronar Bruzing on baint erosion, non native quanty, and non communities in southwestern
4555	1810	Wisconsin trout streams. Journal of Soil and Water Conservation, 55(3), pp.271-276.
4550	1010	wisconsin trout streams. Journal of Son and Water Conservation, 35(3), pp.271-270.
4557		
4558	1811	Malarkey, J., Baas, J.H., Hope, J.A., Aspden, R.J., Parsons, D.R., Peakall, J., Paterson, D.M.,
4559		
4560	1812	Schindler, R.J., Ye, L., Lichtman, I.D., Bass, S.J., Davies, A.G., Manning, A.J., Thorne, P.D.
4561		
4562 4563	1813	2015. The pervasive role of biological cohesion in bedform development. Nature
4563 4564		
	1814	Communications 6.
4566		
4567		
4568	1815	Maliva, R.G., Knoll, A.H. and Siever, R., 1989. Secular change in chert distribution: a
4569		
4570	1816	reflection of evolving biological participation in the silica cycle. Palaios, pp.519-532.
4571		
4570	1817	Maliya P.C. Diakson I.A.D. Sabiayan N and Falliak A.E. 1000 Salf arganization origin
4573	1017	Maliva, R.G., Dickson, J.A.D., Schiavon, N. and Fallick, A.E., 1999. Self-organization origin
4574	1818	of wood grained abort Dortland Limestone Formation (Unner Jurassie), southern England
4575	1010	of wood-grained chert, Portland Limestone Formation (Upper Jurassic), southern England.
4576	1010	Geological magazine, 136(4), pp.413-421.
4577	1819	Geological magazine, 150(4), pp.415-421.
4578		
4579	1820	Maliva, R.G., Knoll, A.H. and Simonson, B.M., 2005. Secular change in the Precambrian
4580		
4581	1821	silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117(7-8),
4582		
4583	1822	835-845.
4004		
4585		
4586 4587	1823	Mángano, M.G. and Buatois, L.A., 2017. The Cambrian revolutions: Trace-fossil record,
1500		
4589	1824	timing, links and geobiological impact. Earth-Science Reviews, 173, 96-108.
4590		
	1825	Marenco, K.N. and Hagadorn, J.W., 2019. Big bedding planes: Outcrop size and spatial
4592	1023	Matcheo, K.N. and Hagadoni, J.W., 2019. Dig bedding planes. Outcrop size and spatial
4500	1826	hataraganaity influence trace faggil analyzage Dalagagagerenty. Dalagaglimatelagy
4594	1020	heterogeneity influence trace fossil analyses. Palaeogeography, Palaeoclimatology,
4505	1827	Palaoogoology 512 pp 14.24
4596	1021	Palaeoecology, 513, pp.14-24.
4597		
4598		
4599		
4600		
4601		78
4602		

4603		
4604		
4605 4606	1828	Marriott, S.B., Wright, V.P., 2004. Mudrock deposition in an ancient dryland system: Moor
4607 4608	1829	Cliffs Formation, Lower Old Red Sandstone, southwest Wales, UK. Geological Journal, 39:
4609 4610 4611	1830	277-298.
4612 4613 4614	1831	Martínez-Casasnovas, J.A. and Concepcion Ramos, M., 2009. Soil alteration due to erosion,
4615 4616	1832	ploughing and levelling of vineyards in north east Spain. Soil Use and Management, 25(2),
4617 4618	1833	pp.183-192.
4619 4620 4621	1834	Martinius, A.W. and Van den Berg, J.H., 2011. Atlas of sedimentary structures in estuarine
4622 4623	1835	and tidally-influenced river deposits of the Rhine-Meuse-Scheldt system: their application to
4624 4625	1836	the interpretation of analogous outcrop and subsurface depositional systems. EAGE
	1837	Publications, Houten. 298 pp.
4629 4630	1838	Matsubara, Y., Howard, A.D., Burr, D.M., Williams, R.M., Dietrich, W.E. and Moore, J.M.,
4631 4632	1839	2015. River meandering on Earth and Mars: A comparative study of Aeolis Dorsa meanders,
4633 4634	1840	Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV.
4635 4636	1841	Geomorphology, 240, pp.102-120.
4637 4638 4639	1842	Matsunaga, K.K. and Tomescu, A.M., 2016. Root evolution at the base of the lycophyte
4640 4641	1843	clade: insights from an Early Devonian lycophyte. Annals of botany, 117(4), pp.585-598.
4642 4643 4644	1844	Matz, M.V., Frank, T.M., Marshall, N.J., Widder, E.A. and Johnsen, S., 2008. Giant deep-sea
4645 4646	1845	protist produces bilaterian-like traces. Current Biology, 18(23), pp.1849-1854.
4647 4648	1846	McCarthy, T.S., Ellery, W.N. and Stanistreet, I.G. 1992. Avulsion mechanisms on the
4649 4650	1847	Okavango fan, Botswana: the control of a fluvial system by vegetation. Sedimentology, 39,
4651 4652 4653 4654 4655 4656 4657 4658	1848	779-795.
4659 4660 4661		79

4663		
4664 4665	1849	McFarlane, I.D., 1980. Trail-following and trail-searching behaviour in homing of the
4666 4667	1850	intertidal gastropod molluse, Onchidium verruculatum. Marine and Freshwater Behaviour
4670	1851	and Phy, 7(1), pp.95-108.
4671 4672	1852	McGowan, P.C., Reinstma, K.M., Sullivan, J.D., Devoss, K.P., Wall, J.L., Zimnik, M.,
4673 4674	1853	Callahan, C.R., Schultz, B. and Prosser, D.J., 2018, Use of Bank Swallow (Riparia riparia)
4677	1854	Burrows as Shelter by Common Tern (Sterna hirundo) Chicks. Waterbirds, 42(2), p.245.
4678 4679	1855	McIlroy, D., and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and
4680 4681 4682	1856	evolution during the Proterozoic-Cambrian transition. Palaios, 14(1), 58-72.
4683 4684	1857	McLennan, S.M., Grotzinger, J.P., Hurowitz, J.A. and Tosca, N.J., 2019. The sedimentary
4685 4686 4687	1858	cycle on Early Mars. Annual Review of Earth and Planetary Sciences.
4688 4689	1859	McLoughlin, N., Wilson, L.A. and Brasier, M.D., 2008. Growth of synthetic stromatolites
4690 4691	1860	and wrinkle structures in the absence of microbes-implications for the early fossil record.
4692 4693 4694	1861	Geobiology, 6(2), pp.95-105.
4695 4696	1862	McMahon, S. and Parnell, J., 2018. The Deep History of Earth's Biomass. Journal of the
4697 4698 4699	1863	Geological Society, 175, 716-720.
4700 4701	1864	McMahon, S., Bosak, T., Grotzinger, J.P., Milliken, R.E., Summons, R.E., Daye, M.,
4702 4703	1865	Newman, S.A., Fraeman, A., Williford, K.H. and Briggs, D.E.G., 2018. A Field Guide to
4704 4705 4706	1866	Finding Fossils on Mars. Journal of Geophysical Research: Planets.
4707 4708	1867	McMahon, W.J., Davies, N.S. and Went, D.J., 2017. Negligible microbial matground
4709 4710	1868	influence on pre-vegetation river functioning: Evidence from the Ediacaran-Lower Cambrian
4711 4712 4713	1869	Series Rouge, France. Precambrian Research, 292, 13-34.
4714 4715	1870	McMahon, W.J., Davies, N.S., 2018a, The shortage of geological evidence for pre-vegetation
4716 4717	1871	meandering rivers. In: Ghinassi, M. et al. (Eds.), Fluvial Meanders and Their Sedimentary
4718 4719 4720		80
$\rightarrow 1/1$		

4721 4722		
4723 4724 1	1872	Products in the Rock Record, International Association of Sedimentologists, Special
4725 4726 1 4727	1873	Publications, Vol. 48, Wiley, p. 119-148.
4700	L874	McMahon, W.J., Davies, N.S., 2018b, Evolution of alluvial mudrock forced by early land
4730 4731 4732	1875	plants. Science, 359, 1022-1024.
1700	1876	McMahon, W.J., Davies, N.S., 2018c, High-energy flood events recorded in the
4735 4736 1	1877	Mesoproterozoic Meall Dearg Formation, NW Scotland; their recognition and implications
4737 4738 4739	1878	for the study of pre-vegetation alluvium. Journal of the Geological Society, 175, 13-32.
	1879	McNeil, P., Hills, L.V., Tollman, M.S., Kooyman, A., 2007, Significance of latest
4743	1880	Pleistocene tracks, trackways, and trample grounds from southern Alberta, Canada. New
4744 4745 4746	1881	Mexico Museum of Natural History Bulletin, 42, 209-223
4 - 4 -	1882	Melvin, J., 1993, Evolving fluvial style in the Kekiktuk Formation (Mississippian), Endicott
4750	1883	Field Area, Alaska: Base level response to contemporaneous tectonism. AAPG Bulletin 77,
4751 4752 4753	1884	1723-1744.
4754 1 4755	1885	Merzouk, A., Levasseur, M., Scarratt, M., Michaud, S. and Gosselin, M., 2004. Influence of
4756 4757 1	1886	dinoflagellate diurnal vertical migrations on dimethylsulfoniopropionate and dimethylsulfide
4758 4759 4760	1887	distribution and dynamics (St. Lawrence Estuary, Canada). Canadian Journal of
	1888	Meyer, T.E. and Anderson, J.S., 2013. Tarsal fusion and the formation of the astragalus in
4764	1889	Hylonomus lyelli, the earliest amniote, and other early tetrapods. Journal of Vertebrate
4765 4766 4767	1890	Paleontology, 33(2), pp.488-492.
4768 1 4769	L891	Miall, A.D., 2015, Updating uniformitarianism: stratigraphy as just a set of 'frozen
4771	1892	accidents'. Geological Society, London, Special Publications, 404, 11-36.
4772 4773 4774		
4774 4775 4776		
4777		81
4778 4779		10

4781	
4782 4783 1893	Milàn, J., 2011. New theropod, thyreophoran, and small sauropod tracks from the Middle
4784 4785 1894	Jurassic Bagå Formation, Bornholm, Denmark. Bulletin of the Geological Society of
4786 4787 189 4788	5 Denmark, 59(5).
4789 4790 1890	Milàn, J., Clemmensen, L. and Bonde, N., 2004. Vertical sections through dinosaur tracks
4791 4792 189	7 (Late Triassic lake deposits, East Greenland)–undertracks and other subsurface deformation
4793 4794 189 4795	3 structures revealed. Lethaia, 37(3), pp.285-296.
4796 4797 189	Minter, N.J., Buatois, L.A., Mángano, M.G., Davies, N.S., Gibling, M.R., and Labandeira,
4798 4799 190	C., 2016, The establishment of continental ecosystems, in Buatois, L.A., and Mángano, M.G.,
4800 4801 190 4802	eds., The Trace-Fossil Record of Major Evolutionary Events: Dordrecht, Netherlands,
4803 190 4804	2 Springer, p. 205–324.
4805 4806 1903	Minter, N.J., Buatois, L.A., Mángano, M.G., Davies, N.S., Gibling, M.R., MacNaughton,
4807 4808 1904	R.B. and Labandeira, C.C., 2017. Early bursts of diversification defined the faunal
4809 4810 190 4811	colonization of land. Nature Ecology and Evolution, 1, s41559-017.
4812 4813 190	Mitchell, W.T., Rybczynski, N., Schröder-Adams, C., Hamilton, P.B., Smith, R. and
4814 4815 190 4816	7 Douglas, M., 2016a. Stratigraphic and Paleoenvironmental Reconstruction of a Mid-Pliocene
4817 190 4818	Fossil Site in the High Arctic (Ellesmere Island, Nunavut): Evidence of an Ancient Peatland
4819 190 4820 4821	9 with Beaver Activity. Arctic, 69, 185-204.
4822 1910 4823	Mitchell, R.L., Cuadros, J., Duckett, J.G., Pressel, S., Mavris, C., Sykes, D., Najorka, J.,
4824 191 4825	Edgecombe, G.D. and Kenrick, P., 2016b. Mineral weathering and soil development in the
4826 191 4827 4828	earliest land plant ecosystems. Geology, 44, 1007-1010.
4829 191 4830	Mitchell, R., Strullu-Derrien, C. and Kenrick, P., 2019. Biologically-mediated weathering in
4831 191 4832	4 modern cryptogamic ground covers and the lower Palaeozoic fossil record. Journal of the
4833 191 4834 4835 4836	5 Geological Society, pp.jgs2018-191.
4837	82

4839		
4840		
4841	1916	Moberg, F, and Folke, C. 1999. Ecological goods and services of coral reef ecosystems.
4842	1/10	
4843	1917	Ecological Economics 29, 215-233.
4044	_,_,	
4845 4846		
4847	1918	Monismith, S.G., 2007. Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech., 39, pp.37-
1818		
4849	1919	55.
4850		
4851	1920	Moor, H., Rydin, H., Hylander, K., Nilsson, M.B., Lindborg, R. and Norberg, J., 2017.
4852		
4853	1921	Towards a trait-based ecology of wetland vegetation. Journal of Ecology, 105(6), pp.1623-
4854		
4855 4856	1922	1635.
4857		
4050		
4859	1923	Moorbath, S., 2009. The discovery of the Earth's oldest rocks. Notes and Records of the
4000	1924	Devial Secretary (2, 201, 202
4861	1924	Royal Society, 63, 381-392.
4862		
4863 1	1925	Moore, P.D., 1987. Ecological and hydrological aspects of peat formation. Geological
4864		
4865	1926	Society, London, Special Publications, 32(1), pp.7-15.
4866		
4867 4868 1	1027	Morris, J.L., Puttick, M.N., Clark, J.W., Edwards, D., Kenrick, P., Pressel, S., Wellman,
4869	1727	Wonns, J.L., I utick, Winv., Clark, J. W., Edwards, D., Kennek, I., Hesser, S., Wennian,
4870 1	1928	C.H., Yang, Z., Schneider, H., Donoghue, P.C., 2018, The timescale of early land plant
4871	1720	e.ii., Tung, 2., Semieraei, ii., Bonoghae, T.e., 2010, The unresoure of early rand plant
4872	1929	evolution. Proceedings of the National Academy of Sciences, 115, E2274-E2283
4873		
4874		
4875 1	1930	Moulton, K.L., West, J. and Berner, R.A., 2000. Solute flux and mineral mass balance
4876	1004	anne alter to the mouth firstion of altert offerte an eiliete mouth sine. A monitory located a
4877 <u>1</u> 4878	1931	approaches to the quantification of plant effects on silicate weathering. American Journal of
4879	1022	Science, 300(7), pp.539-570.
4880	1732	Science, 500(7), pp.559-570.
4881		
4882 1	1933	Mudd, S.M., D'Alpaos, A. and Morris, J.T., 2010. How does vegetation affect sedimentation
4883		
4884	1934	on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically
4885		
4886 4887	1935	mediated sedimentation. Journal of Geophysical Research: Earth Surface, 115(F3).
4888		
4889 1	1936	Myrow, P., Tice, L., Archuleta, B., Clark, B., Taylor, J.F., Ripperdan, R.L., 2004, Flat-pebble
4890		11, 100, 1., 1100, 2., 1101, 100, 2., 01, 11, 2., 14, 101, 01, 1, 14, 102, 200, 11, 14, 100, 200, 11, 14, 100,
4891 1	1937	conglomerate: Its multiple origins and relationship to metre-scale depositional cycles.
4892		
4893	1938	Sedimentology, 51, 973-996.
4894		
4895		
4896		83
4897		

4898		
4899		
4900 4901	1939	Nanson, G.C. and Knighton, A.D., 1996. Anabranching rivers: their cause, character and
4902 4903 4904	1940	classification. Earth surface processes and landforms, 21(3), pp.217-239.
4905 4906	1941	Naylor, L.A., Coombes, M.A. and Viles, H.A., 2012. Reconceptualising the role of organisms
4907 4908 4909	1942	in the erosion of rock coasts: a new model. Geomorphology, 157, pp.17-30.
4910 4911	1943	Nelsen, M.P., DiMichele, W.A., Peters, S.E. and Boyce, C.K., 2016. Delayed fungal
4912 4913	1944	evolution did not cause the Paleozoic peak in coal production. Proceedings of the National
4914 4915 4916	1945	Academy of Sciences, 113(9), pp.2442-2447.
4917 4918	1740	Ohmoto, H., Runnegar, B., Kump, L.R., Fogel, M.L., Kamber, B., Anbar, A.D., Knauth, P.L.,
4919 4920	1947	Lowe, D.R., Sumner, D.Y. and Watanabe, Y., 2008. Biosignatures in ancient rocks: a
4921 4922	1948	summary of discussions at a field workshop on biosignatures in ancient rocks. Astrobiology,
4923 4924 4925	1949	8, 883-907.
4926 4927	1950	Paola, C., Ganti, V., Mohrig, D., Runkel, A.C., and Straub, K.M., 2018, Time not our time:
4928 4929	1951	Physical controls on the preservation and measurement of geologic time: Annual Review of
4930 4931 4932	1952	Earth and Planetary Sciences, v. 46, p. 409-438.
4934	1953	Parry, L.A., Boggiani, P.C., Condon, D.J., Garwood, R.J., Leme, J.D.M., McIlroy, D.,
4935 4936	1954	Brasier, M.D., Trindade, R., Campanha, G.A., Pacheco, M.L. and Diniz, C.Q., 2017.
4937 4938 4939	1955	Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest
4940 4941	1956	Cambrian of Brazil. Nature ecology and evolution, 1(10), p.1455.
4942 4943	1957	Parsons, D.R., Schindler, R.J., Hope, J.A., Malarkey, J., Baas, J.H., Peakall, J., Manning,
4944 4945 4046	1958	A.J., Ye, L., Simmons, S., Paterson, D.M. and Aspden, R.J., 2016. The role of biophysical
4946 4947 4948 4949 4950 4951 4952 4953	1959	cohesion on subaqueous bed form size. Geophysical research letters, 43, 1566-1573.
4954 4955 4956		84

4957		
4958		
4959	1960	Pate, J.S., Verboom, W.H. and Galloway, P.D., 2001. Co-occurrence of Proteaceae, laterite
4960	1900	rate, J.S., Verboolli, W.H. and Galloway, P.D., 2001. Co-occurrence of Proteaceae, laterite
4961	1041	and related alightraphia soils: an insidental approximations or approximative inter relationships?
4962	1961	and related oligotrophic soils: coincidental associations or causative inter-relationships?.
4963		
4964	1962	Australian Journal of Botany, 49(5), pp.529-560.
4965		
4966	1963	Peckmann, J., Bach, W., Behrens, K. and Reitner, J. Putative cryptoendolithic life in
4967	1705	r cekinanii, 5., Baen, w., Beniens, K. and Kenner, 5. r diative eryptoendontine me m
4968	10/4	Devenier rillow hagelt Dheinigeheg Schieferschirge Cormony, Cashielegy 6, 125, 125
4909	1964	Devonian pillow basalt, Rheinisches Schiefergebirge, Germany. Geobiology 6, 125–135
4970	40/5	
4971	1965	(2008).
4972		
4973	1966	Perri, E., Tucker, M.E., Słowakiewicz, M., Whitaker, F., Bowen, L. and Perrotta, I.D., 2018.
4974	1700	1 oni, E., 1 ucker, m.E., 510 wakie mez, m., 10 marker, 1., 50 wen, E. and 1 onota, 1.5., 2010.
4975	1967	Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha,
4976	1707	Carbonate and sineate bioinmeralization in a hypersume interobial mat (wesaleed subkita;
4977	1968	Qatar): Roles of bacteria, extracellular polymeric substances and viruses. Sedimentology,
4978	1700	Qatar). Roles of bacteria, extracentular polymeric substances and viruses. Sedimentology,
4979	1040	65(4) np 1212 1245
4980	1909	65(4), pp.1213-1245.
4981		
4982	1970	Perron, J.T., 2017. Climate and the pace of erosional landscape evolution. Annual Review of
4983		
4984 4985	1971	Earth and Planetary Sciences, 45, pp.561-591.
4985		Luidi una Fanoary Solonood, 10, pp.001 091.
4980		
4987	1972	Perry, C.T., Salter, M.A., Harborne, A.R., Crowley, S.F., Jelks, H.L. and Wilson, R.W.,
4989		
4990	1973	2011. Fish as major carbonate mud producers and missing components of the tropical
4991		
4992	1974	carbonate factory. Proceedings of the National Academy of Sciences, 108(10), pp.3865-3869.
4993		
4994		
4995	1975	Persico, L. and Meyer, G. 2009. Holocene beaver damming, fluvial geomorphology, and
4996		
4997	1976	climate in Yellowstone National Park, Wyoming. Quaternary Research 71, 340-353.
4998		
4000	1977	Peters, S.E. and Husson, J.M., 2017. Sediment cycling on continental and oceanic crust.
5000	1977	reters, S.E. and Husson, J.M., 2017. Sediment cycling on continental and oceanic clust.
5001	4070	Coolerry $45(4)$ mm 2
5002	1978	Geology, 45(4), pp.3
5003		
5004	1979	Peters, S.E. and Husson, J.M., 2018. We need a global comprehensive stratigraphic database:
5005		
5006	1980	here's a start. The Sedimentary Record, 16, pp.4-9.
5007	_,	
5008		
5009	1981	Phillips, J.D., 2009. Biological energy in landscape evolution. American Journal of Science,
5010		
5011	1982	309(4), pp.271-289.
5012		
5013		05
5014		85
5015		

5016 5017	
5018 5019 1983	Phillips, J.D., 2016a. Biogeomorphology and contingent ecosystem engineering in karst
5020 5021 1984 5022	landscapes. Progress in Physical Geography, 40(4), pp.503-526.
5023 5024 198 5	Phillips JD. 2016b, Landforms as extended composite phenotypes. Earth Surface Processes
5025 5026 5027	and Landforms. ;41(1):16-26.
5028 1987 5029	Pledger, A.G., Rice, S.P., Millett, J. 2014. Reduced bed material stability and increased
5030 5031 1988	bedload transport caused by foraging fish: a flume study with juvenile Barbel (Barbus
5032 5033 5034	barbus). Earth Surf. Process. Landforms 39, 1500-1513.
5035 1990 5036	Poinar, G., Kerp, H. and Hass, H., 2008. Palaeonema phyticum gen. n., sp. n. (Nematoda:
5037 5038 1991	Palaeonematidae fam. n.), a Devonian nematode associated with early land plants.
5039 5040 5041	Nematology, 10(1), pp. 9-14.
5042 1993 5043	Porter, S.M., 2007. Seawater chemistry and early carbonate biomineralization. Science,
5044 5045 5046	316(5829), pp.1302-1302.
5047 1995 5048	Powers, M.C. and Kinsman, B. 1953. Shell accumulations in underwater sediments and their
5049 1996 5050 5051	relation to the thickness of the traction zone. Journal of Sedimentary Petrology 23, 229-234.
5052 1997 5053	Prasad, B., Uniyal, S.N. and Asher, R., 2005. Organic-walled microfossils from the
5054 1998 5055	Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist,
5056 1999 5057	54,13–60.
5058 5059 2000 5060	Prasad, V., Strömberg, C.A., Alimohammadian, H. and Sahni, A., 2005. Dinosaur coprolites
5061 2001 5062 5063	and the early evolution of grasses and grazers. Science, 310(5751), pp.1177-1180.
5064 2002 5065	Quinn, L., Williams, S.H., Harper, D.A.T., Clarkson, E.N.K., 1999. Late Ordovician foreland
5066 2003 5067	basin fill; Long Point Group of onshore western Newfoundland. Bulletin of Canadian
5068 2004 5069 5070	Petroleum Geology, 47: 63-80.
5071 5072	24
5073 5074	86

5075		
5076		
5077 5078	2005	Ramos-Scharrón, C.E. and MacDonald, L.H., 2005. Measurement and prediction of sediment
5000	2006	production from unpaved roads, St John, US Virgin Islands. Earth Surface Processes and
5081 5082 5083	2007	Landforms: The Journal of the British Geomorphological Research Group, 30(10),
5065	2008	Reichman, O.J. and Seabloom, E.W., 2002. The role of pocket gophers as subterranean
5086 5087 5088	2009	ecosystem engineers. Trends in Ecology and Evolution, 17(1), pp.44-49.
5089 5090	2010	Retallack, G.J., Veevers, J.J. and Morante, R., 1996. Global coal gap between Permian-
5091 5092 5093	2011	Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society
5094 5095	2012	of America Bulletin, 108(2), pp.195-207.
5097	2013	Rice, S.P., Johnson, M.F., Mathers, K., Reeds, J. and Extence, C., 2016. The importance of
5098 5099 5100	2014	biotic entrainment for base flow fluvial sediment transport. Journal of Geophysical Research:
5101 5102	2015	Earth Surface, 121, 890-906.
5104	2016	Rice, A.L. and Johnstone, A.D.F., 1972. The burrowing behaviour of the gobiid fish
5105 5106 5107	2017	Lesueurigobius friesii (Collett). Zeitschrift für Tierpsychologie, 30(4), pp.431-438.
5108 5109		Richards, P.J. 2009. Aphaenogaster ants as bioturbators: Impacts on soil and slope processes.
5110 5111 5112	2019	Earth-Science Reviews 96, 92-106.
5113 5114	2020	Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal
5115 5116 5117	2021	mats and biofilms. Sedimentology, 47, pp.179-214.
5117 5118 5119	2022	Riding, R., 2006. Microbial carbonate abundance compared with fluctuations in metazoan
5120 5121 5122	2023	diversity over geological time. Sedimentary Geology, 185, 229-238.
5123 5124	2024	Riding, R., 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: components
5125 5126 5127	2025	of Precambrian stromatolites. Geologia Croatica, 61, 73-103.
	2026	Riding, R., 2011. Microbialites, stromatolites, and thrombolites. In Encyclopedia of
5129 5130 5131	2027	Geobiology (pp. 635-654). Springer, Dordrecht.
5132 5133		87

5134		
5135		
5136 5137	2028	Riemann, F. and Helmke, E., 2002. Symbiotic relations of sediment-agglutinating nematodes
5138 5139	2029	and bacteria in detrital habitats: the enzyme-sharing concept. Marine Ecology, 23(2), pp.93-
5140 5141 5142		113.
5143 5144	2031	Robertson, J.R. and William, P.J., 1981. Deposit-feeding by the ghost crab Ocypode quadrata
5145 5146 5147	2032	(Fabricius). Journal of Experimental Marine Biology and Ecology, 56(2-3), pp.165-177.
5148 5149	2033	Roman, J., Estes, J.A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J.B., Nicol,
5150 5151 5152	2034	S., Pershing, A., Smetacek, V. 2014. Whales as marine ecosystem engineers. Front. Ecol.
5153 5154		Environ. 12, 377-385.
5155 5156	2036	Ronov, A.B., Khain, V.E., Balukhovsky, A.N. and Seslavinsky, K.B., 1980. Quantitative
5157 5158 5159	2037	analysis of Phanerozoic sedimentation. Sedimentary Geology, 25, 311-325.
5160 5161	2000	Rozanov, A.Y., Khomentovsky, V.V., Shabanov, Y.Y., Karlova, G.A., Varlamov, A.I.,
5162 5163	2037	Luchinina, V.A., Demidenko, Y.E., Parkhaev, P.Y., Korovnikov, I.V. and Skorlotova, N.A.,
5164 5165 5166	2040	2008. To the problem of stage subdivision of the Lower Cambrian. Stratigraphy and
5167 5168	2041	geological correlation, 16(1), pp.1-19.
5169 5170	2042	Rubinstein, C.V., Gerrienne, P., de la Puente, G., Astini, R.A. and Steemans, P., 2010. Early
5171 5172 5173	2043	Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New
5174 5175	2044	Phytologist, 188(2), pp.365-369.
5176 5177 5178	2045	Runkel, A.C., Miller, J.F., McKay, R.M., Palmer, A.R. and Taylor, J.F., 2008, The record of
5179 5180	2046	time in cratonic interior strata: does exceptionally slow subsidence necessarily result in
5181 5182	2047	exceptionally poor stratigraphic completeness?: Geological Association of Canada Special
5183 5184		Paper, v. 48, p. 341-362.23-326.
5185 5186 5187	2049	Rybczynski, N., 2008. Woodcutting behavior in beavers (Castoridae, Rodentia): estimating
5187 5188 5189 5190	2050	ecological performance in a modern and a fossil taxon. Paleobiology, 34(3), pp.389-402.
5190 5191 5192		88

5193 5194	
5195 5196 2051	Rygel, M.C., Gibling, M.R. and Calder, J.H., 2004. Vegetation-induced sedimentary
5197 5198 2052	structures from fossil forests in the Pennsylvanian Joggins Formation, Nova Scotia.
5199 5200 2053 5201	Sedimentology, 51, 531-552.
5202 5203 2054	Sallan, L., Friedman, M., Sansom, R.S., Bird, C.M. and Sansom, I.J., 2018. The nearshore
5204 5205 2055 5206	cradle of early vertebrate diversification. Science, 362(6413), pp.460-464.
5207 5208 2056	Salter, M.A., Perry, C.T. and Wilson, R.W., 2012. Production of mud-grade carbonates by
5209 5210 2057 5211	marine fish: Crystalline products and their sedimentary significance. Sedimentology, 59(7),
5212 2058 5213	pp.2172-2198.
5214 5215 2059	Santos, M.G. and Owen, G., 2016. Heterolithic meandering-channel deposits from the
5216 5217 2060 5218	Neoproterozoic of NW Scotland: Implications for palaeogeographic reconstructions of
5219 2061 5220	Precambrian sedimentary environments. Precambrian Research, 272, 226-243.
5221 5222 5222	Schaetzl, R.J., Thompson, M.L., 2015. Soils: genesis and geomorphology 2nd edition.
5223 5224 5225	Cambridge University Press.
5226 5227	Schopf, J.M., 1966, Definitions of peat and coal and of graphite that terminates the coal series
5228 5229 5230	(graphocite). The Journal of Geology, 74, 584-592.
5231 2066 5232	Schwarz, C., Gourgue, O., Van Belzen, J., Zhu, Z., Bouma, T.J., Van De Koppel, J.,
5233 2067 5234	Ruessink, G., Claude, N. and Temmerman, S., 2018. Self-organization of a biogeomorphic
5235 5236 5237	landscape controlled by plant life-history traits. Nature Geoscience, 11(9), p.672.
5238 2069 5239	Scott, J.J., Renaut, R.W. and Owen, R.B., 2012. Impacts of flamingos on saline lake margin
5240 2070 5241	and shallow lacustrine sediments in the Kenya Rift Valley. Sedimentary Geology, 277, pp.32-
5242 5243 5244	51.
5245 2072 5246	Seki, K., Miyazaki, T. and Nakano, M., 1998. Effects of microorganisms on hydraulic
5247 2073 5248	conductivity decrease in infiltration. European Journal of Soil Science, 49(2), pp.231-236.
5249 5250 5251	89

5252	
5253	
5254 5255 2074	Seppälä, M., 1972. Some remarks on the formation of scratch circles on wind-blown
5256	and Dellatin of the Contacted Contacte of Finland 44 nr 121 122
5257 2075	sand. Bulletin of the Geological Society of Finland, 44, pp.131-132.
5258	
⁵²⁵⁹ 2076 5260	Shahack-Gross, R., Berna, F., Karkanas, P. and Weiner, S., 2004. Bat guano and preservation
5261 2077	of archaeological remains in cave sites. Journal of Archaeological Science, 31(9), pp.1259-
5262	of archaeological femanis in cuve sites. Journal of Archaeological Science, 51(7), pp.1259
5263 5264 2078	1272.
5265	
5266 2079	Shillito, A.P., Davies, N.S., 2017, Archetypally Siluro-Devonian ichnofauna in the Cowie
5267	
5268 5269 2080	Formation, Scotland: implications for the myriapod fossil record and Highland Boundary
5270 5271 2081	Fault Movement. Proceedings of the Geologists' Association, 128, 815-828.
5271	
5070	
5273 2082 5274	Shillito, A.P. and Davies, N.S., 2019a, Death near the shoreline, not life on land: Ordovician
5275	
5276 2083	arthropod trackways in the Borrowdale Volcanic Group, UK: Reply. Geology, 47, p. E464,
5277	
5278 2084	https://doi.org/10.1130/G46216Y.1
5279	
⁵²⁸⁰ 2085	Shillito, A.P. and Davies, N.S., 2019b. Dinosaur-landscape interactions at a diverse Early
5281	
5282 2086	Cretaceous tracksite (Lee Ness Sandstone, Ashdown Formation, southern England).
5283 2000 5284	
5285 2087	Palaeogeography, Palaeoclimatology, Palaeoecology, 514, pp.593-612.
5286	
⁵²⁸⁷ 2088	Sigurar D. 1002 The silies avale in the Dresembries Casehimias at Cosmochimias Asta
5288	Siever, R., 1992. The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta,
⁵²⁸⁹ 2089	56(9) 2265 2272 Slater D. L. Harvey, T.H. and Putterfield, N.L. 2019, Small carbonaceus
5290 2089	56(8), 3265-3272.Slater, B.J., Harvey, T.H. and Butterfield, N.J., 2018. Small carbonaceous
5291 5202 2090	fossils (SCFs) from the Terreneuvian (lower Cambrian) of Baltica. Palaeontology, 61(3),
5292	iossis (Set s) from the Terreneuvian (lower Camorian) of Dancea. Taracontology, 01(5),
5293 5294 2091	pp.417-439.
	pp. 117 159.
5295 5296	
5290 5297 2092	Slater, B.J. and Willman, S., 2019. Early Cambrian small carbonaceous fossils (SCFs) from
5298	
5299 2093	an impact crater in western Finland. Lethaia.
5300	
⁵³⁰¹ 2094	Smayda, T.J., 1971. Normal and accelerated sinking of phytoplankton in the sea. Marine
5302	Sindyad, 1.5., 1971. Rothial and accelerated sinking of phytoplankton in the sea. Marine
⁵³⁰³ 2095	Geology, 11(2), 105-122.
5304	
5305	
5306	
5307 5308	
5308	90
5310	

5311	
5312	
5313 5314 2096	Smith, M.P., Soper, N.J., Higgins, A.K., Rasmussen, J.A. and Craig, L.E., 1999. Palaeokarst
5315 5316 2097	systems in the Neoproterozoic of eastern North Greenland in relation to extensional tectonics
5317 5318 2098 5319	on the Laurentian margin. Journal of the Geological Society, 156, 113-124.
5320 5321 2099 5322	Smith, M.R., 2016. Cord-forming Palaeozoic fungi in terrestrial assemblages. Botanical
5322 5323 5324	journal of the Linnean Society, 180(4), pp.452-460.
5325 5326 2101	Sousa, R., Gutiérrez, J.L. and Aldridge, D.C., 2009. Non-indigenous invasive bivalves as
5327 5328 5329	ecosystem engineers. Biological Invasions, 11(10), pp.2367-2385.
5330 2103 5331	Stanley, S.M. and Hardie, L.A., 1998. Secular oscillations in the carbonate mineralogy of
5332 5333 5334 2405	reef-building and sediment-producing organisms driven by tectonically forced shifts in
5335 2105 5336	seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1-2), pp.3-19.
5337 2106 5338	Statzner, B. 2012. Geomorphological implications of engineering bed sediments by lotic
5339 5340 5341	animals. Geomorphology 157-158, 49-65.
5342 2108 5343	Steiger, J. and Corenblit, D., 2012. The emergence of an 'evolutionary geomorphology'?.
5344 2109 5345 5346	Open Geosciences, 4(3), pp.376-382.
5347 2110 5348	Stein, N., Grotzinger, J.P., Schieber, J., Mangold, J, Hallet, B., Newsom, H., Stack, K.M.,
5349 2111 5350	Berger, J.A., Thompson, L., Siebach, K.L., Cousin, A., Le Mouélic, S., Minitti, M., Sumner,
5351 2112 5352 5353 2113	D.Y., Fedo, C., House, C.H., Gupta, S., Vasavada, A.R., Gellert, R., Wiens, R.C.,
5354	Frydenvang, J., Forni, O., Meslin, P.Y., Payré, V., Dehouck, E., 2018, Desiccation cracks
5356 5357	provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale
5358 2115 5359	Crater, Geology, https://doi.org/10.1130/G40005.1
5360 2116 5361 5362 2117	Stein, W.E., Berry, C.M., Hernick, L.V. and Mannolini, F., 2012. Surprisingly complex
5362 2117 5363 5364	community discovered in the mid-Devonian fossil forest at Gilboa. Nature, 483(7387), p.78.
5365 5366 5367	
5367 5368 5369	91

5370	
5371	
5372 5373 2118	Strauss, H., Melezhik, V.A., Reuschel, M., Fallick, A.E., Lepland, A. and Rychanchik, D.V.,
5374 5375 2119	2013. 7.5 Abundant Marine Calcium Sulphates: Radical Change of Seawater Sulphate
5376 5377 2120 5378	Reservoir and Sulphur Cycle. In Reading the Archive of Earth's Oxygenation (pp. 1169-
5379 2121 5380	1194). Springer, Berlin, Heidelberg.
5381 5382 2122	Strömberg, C.A.E., 2011, Evolution of Grasses and Grassland Ecosystems. Annual Review
5383 5384 2123 5385	of Earth and Planetary Sciences, 37, 517-544.
5386 5387 2124	Suh, K., and Dalrymple, R.A. 1987. Offshore breakwaters in laboratory and field. J.
5388 5389 2125 5390	Waterway, Port, Coastal, Ocean Eng. 113, 105-121.
5391 5392 2126	Syvitski, J.P., Peckham, S.D., Hilberman, R. and Mulder, T., 2003. Predicting the terrestrial
5393 5394 2127	flux of sediment to the global ocean: a planetary perspective. Sedimentary Geology, 162(1-
5395 5396 2128 5397	2), pp.5-24.
⁵³⁹⁸ 2129 5399	Tal, M. and Paola, C., 2007. Dynamic single-thread channels maintained by the interaction of
5400 5401 5402	flow and vegetation. Geology, 35(4), pp.347-350.
5403 2131 5404	Tarhan, L.G., 2018. Phanerozoic shallow marine sole marks and substrate evolution.
5405 2132 5406	Geology, 46(9), pp.755-758.
5407 5408 2133 5409	Tarhan, L.M., Croser, M.L., Planavsky, N.J., Johnston, D.T., 2015, Protracted development
5410 2134 5411	of bioturbation through the early Palaeozoic Era. Nature Geoscience, 8, 865-869.
5412 5413 2135 5414	Taylor, J.D., Glover, E.A. and Braithwaite, C.J.R., 1999. Bivalves with 'concrete overcoats':
5415 2136 5416	Granicorium and Samarangia. Acta Zoologica, 80(4), pp.285-300.
5417 5418 2137 5419	Temmerman, S., Bouma, T.J., Van de Koppel, J., Van der Wal, D., De Vries, M.B. and
5420 2138 5421	Herman, P.M.J., 2007. Vegetation causes channel erosion in a tidal landscape. Geology,
5422 2139 5423 5424 5425	35(7), pp.631-634.
5426 5427 5428	92

5429	
5430	
5431 5432 2140	Tolhurst, T.J., Jesus, B., Brotas, V. and Paterson, D.M., 2003. Diatom migration and
5433 5434 2141	sediment armouring-an example from the Tagus Estuary, Portugal. In Migrations and
5435 5436 2142 5437	Dispersal of Marine Organisms (pp. 183-193). Springer, Dordrecht.
5438 5439 5440	Torsvik, T.H. and Cocks, L.R.M., 2016. Earth history and palaeogeography. Cambridge
5440 5441 5442	University Press.
5443 5444 5445	Tosca, N.J., Johnston, D.T., Mushegian, A., Rothman, D.H., Summons, R.E. and Knoll,
5445 5446 5447	A.H., 2010. Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic
5448 2147 5449	oceans. Geochimica et Cosmochimica Acta, 74(5), pp.1579-1592.
5450 5451 5452	Trimble, S.W. and Mendel, A.C., 1995. The cow as a geomorphic agent—a critical review.
5453 5454	Geomorphology, 13, 233-253.
5455 2150 5456	Troy, S. and Elgar, M.A., 1991. Brush-turkey incubation mounds: Mate attraction in a
5457 5458 5459	promiscuous mating system. Trends in ecology and evolution, 6(7), pp.202-203.
5460 2152 5461	Turchyn, A.V. and DePaolo, D.J., 2019. Seawater Chemistry Through Phanerozoic Time.
5462 2153 5463 5464	Annual Review of Earth and Planetary Sciences, 47, pp.197-224.
5465 2154 5466	Turner, J.T., 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton
5467 2155 5468 5469	blooms. Aquatic microbial ecology, 27(1), 57-102.
5470 2156 5471	Twenhofel, W.H., 1921. Impressions made by bubbles, rain-drops, and other agencies.
5472 2157 5473 5474	Geological Society of America Bulletin, 32, 359-372.
5475 2158 5476	Uličny, D. and Špičáková, L., 1997, Response to high frequency sea-level change in a fluvial
5477 2159 5478	to estuarine succession: Cenomanian palaeovalley fill, Bohemian Cretaceous Basin. In:
5479 2160 5480 5481 2161	Howell, J.A. and Aitken, J.F. (eds.) High Resolution Sequence Stratigraphy: Innovations and
5481 2161 5482 5483 5484 5485	Applications. Geological Society of London Special Publication no. 104, p. 247-268.
5486 5487	93

5488		
5489		
5491	2162	Unno, J. and Semeniuk, V., 2008. Ichnological studies of the Western Australian soldier crab
0400	2163	Mictyris occidentalis Unno 2008: correlations of field and aquarium observations. Journal of
5494 5495 5496	2164	the Royal Society of Western Australia, 91, p.175.
5498	2165	Van Allen, H.E., Calder, J.H. and Hunt, A.P., 2005. The trackway record of a tetrapod
5499 5500 5501	2166	community in a walchian conifer forest from the Permo-Carboniferous of Nova Scotia. New
5502 ² 5503	2167	Mexico Museum of Natural History and Science Bulletin, 30, pp.322-332.
5505	2168	Vanstone, S.D., 1998. Late Dinantian palaeokarst of England and Wales: implications for
5506 5507 5508	2169	exposure surface development. Sedimentology, 45(1), pp.19-37.
5509 5510	2170	Varricchio, D.J., Martin, A.J. and Katsura, Y., 2007. First trace and body fossil evidence of a
5512	2171	burrowing, denning dinosaur. Proceedings of the Royal Society B: biological sciences,
5513 5514 5515	2172	274(1616), pp.1361-1368.
5517	2173	Veizer, J., and F. T. Mackenzie (2014), Evolution of sedimentary rocks, in Treatise on
5519 5520	2174	Geochemistry, vol. 9, 2nd ed., chap. 15, pp. 399–435, Elsevier, Oxford, UK.
5521 5522		Verboom, W.H., Pate, J.S. and Aspandiar, M., 2009. Neoformation of clay in lateral root
5523 5524 5525	2176	catchments of mallee eucalypts: a chemical perspective. Annals of Botany, 105(1), pp.23-36.
5526 5527	2177	Verboom, W.H. and Pate, J.S., 2006. Bioengineering of soil profiles in semiarid ecosystems:
5528 5529	2178	the 'phytotarium' concept. A review. Plant and Soil, 289(1-2), pp.71-102.
5530 5531 5532	2179	Verboom, W.H. and Pate, J.S., 2013. Exploring the biological dimension to pedogenesis with
5533 5534	2180	emphasis on the ecosystems, soils and landscapes of southwestern Australia. Geoderma, 211,
5535 5536	2181	pp.154-183.
5537 5538 5539	2182	Viles, H., 2019. Biogeomorphology: Past, present and future. Geomorphology.
5540 5541 5542 5543	2183	https://doi.org/10.1016/j.geomorph.2019.06.022
5544 5545 5546		94

5547 5548	
5549 5550 2184	Virgili, C., 2008, The Permian–Triassic transition: historical review of the most important
5551 5552 2185	ecological crises with special emphasis on the Iberian Peninsula and Western-Central Europe.
5553 5554 2186 5555	Journal of Iberian Geology, 34,123-158.
5556 5557 5558	Waltham, T., 2002. Sinking cities. Geology Today, 18(3), pp.95-100.
⁵⁵⁵⁹ 2188 5560	Wang, M., Zheng, X., O'Connor, J.K., Lloyd, G.T., Wang, X., Wang, Y., Zhang, X. and
5561 5562 2189	Zhou, Z., 2015. The oldest record of Ornithuromorpha from the Early Cretaceous of China.
5563 5564 5565	Nature Communications, 6, p.6987.
5566 2191 5567	Ward, J.V., Tockner, K., Arscott, D.B. and Claret, C., 2002. Riverine landscape diversity.
5568 5569 5570	Freshwater Biology, 47(4), pp.517-539.
5571 2193 5572	Warren, L.V., Simões, M.G., Fairchild, T.R., Riccomini, C., Gaucher, C., Anelli, L.E.,
5573 2194 5574	Freitas, B.T., Boggiani, P.C. and Quaglio, F., 2013. Origin and impact of the oldest metazoan
5575 5576 5577	bioclastic sediments. Geology, 41(4), pp.507-510.
5578 2196 5579	Watanabe, Y., Martini, J.E. and Ohmoto, H., 2000. Geochemical evidence for terrestrial
5580 2197 5581 5582	ecosystems 2.6 billion years ago. Nature, 408(6812), p.574.
5583 2198 5584	Waters, C.N. and Zalasiewicz, J., 2013. Concrete: the most abundant novel rock type of the
5585 2199 5586 5587	Anthropocene. Enclopedia of the Anthropocene.
5588 2200	Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gałuszka, A.,
5590 2201 5591	Cearreta, A., Edgeworth, M., Ellis, E.C., Ellis, M. and Jeandel, C., 2016. The Anthropocene
5592 2202 5593 5594	is functionally and stratigraphically distinct from the Holocene. Science, 351, aad2622.
5595 2203 5596	Weller, O.M. and St-Onge, M.R., 2017. Record of modern-style plate tectonics in the
5597 2204 5598	Palaeoproterozoic Trans-Hudson orogen. Nature Geoscience, 10(4), p.305.
5599 5600 2205	Wellman, C.H., Gray, J., 2000. The microfossil record of early land plants. Philosophical
5601 5602 2206 5603	Transactions of the Royal Society B: Biological Sciences 355, 717-732.
5604 5605	95

5606		
5607		
5609	207	Wellman, C.H. and Strother, P.K., 2015. The terrestrial biota prior to the origin of land plants
5610 5611 22 5612	208	(embryophytes): a review of the evidence. Palaeontology, 58(4), pp.601-627.
5613 5614 22	209	Wildish, D. and Kristmanson, D., 2005. Benthic suspension feeders and flow. Cambridge
5615 5616 22 5617	210	University Press.
5618 22 5619	211	Wilkinson, B.H., 1979, Biomineralization, paleoceanography, and the evolution of calcareous
5620 5621 5622	212	marine organisms. Geology, 7, 524-527.
5623 22 5624	213	Wilkinson, M.T., Richards, P.J. and Humphreys, G.S., 2009. Breaking ground: pedological,
5625 22 5626		geological, and ecological implications of soil bioturbation. Earth-Science Reviews, 97(1-4),
5627 5628 5629	215	pp.257-272.
5630 22 5631		William, T., Kano, A., Ferdelman, T., Henriet, J.P., Abe, K., Andres, M.S., Bjerager, M.,
5632 22 5633	217	Browning, E.L., Cragg, B.A., De Mol, B. and Dorschel, B., 2006. Cold-water coral mounds
5634 5635 5636	218	revealed. Eos, Transactions American Geophysical Union, 87(47), pp.525-526.
5637 22 5638		Williams, M., Zalasiewicz, J., Davies, N., Mazzini, I., Goiran, J.P. and Kane, S., 2014.
5639 22 5640	220	Humans as the third evolutionary stage of biosphere engineering of rivers. Anthropocene, 7,
5642	221	pp.57-63.
5643 5644 22 5645 5646	222	Wohl, E., 2013. Floodplains and wood. Earth-Science Reviews, 123, 94-212.
5647 22 5648	223	Wood, R., 1995. The changing biology of reef-building. Palaios, 10, 517-529.
5050	224	Wood, R., 2017. Palaeoecology of Ediacaran metazoan reefs. Geological Society, London,
5653	225	Special Publications, 448, 195-210.
5655	226	Wood, R., Ivantsov, A.Y. and Zhuravlev, A.Y., 2017. First macrobiota biomineralization was
5656 5657 22 5658	227	environmentally triggered. Proceedings of the Royal Society B: Biological Sciences,
5659 22 5660 5661	228	284(1851), p.20170059.
5662 5663 5664		96

5665	
5666 5667	
5667 5668 2229	Woodborne, M.W., Rogers, J. and Jarman, N., 1989. The geological significance of kelp-
5669 5670 2230 5671	rafted rock along the West Coast of South Africa. Geo-Mar. Lett., 9: 109-118.
5672 5673 2231	Wright, V.P. and Cherns, L., 2016a. Leaving no stone unturned: the feedback between
5674 5675 2232	increased biotic diversity and early diagenesis during the Ordovician. Journal of the
5676 5677 2233 5678	Geological Society, 173, 241-244.
5679 5680	Wright, V.P. and Cherns, L., 2016b. How far did feedback between biodiversity and early
5681 5682 2235	diagenesis affect the nature of Early Palaeozoic sea floors?. Palaeontology, 59(6), pp.753-
5683 5684 2236 5685	765.
5686 5687 2237	Wright, V.P., Tucker, M.E., (eds.), 1991, Calcretes. Blackwell Scientific Publications,
5688 5689 5690	Oxford, UK.
5691 2239 5692	Xu, L.Q., Liu, X.D., Sun, L.G. and Liu, W.Q., 2012. Rapid identification of source material
5693 5694	levels in coral sand ornithogenic sediments by reflectance spectroscopy. Ecological
5695 5696 2241 5697	indicators, 23, pp.517-523.
5698 2242 5699	Xue, J., Deng, Z., Huang, P., Huang, K., Benton, M.J., Cui, Y., Wang, D., Liu, J., Shen, B.,
5700 2243 5701	Basinger, J.F. and Hao, S., 2016. Belowground rhizomes in paleosols: The hidden half of an
5702 5703 5704	Early Devonian vascular plant. Proceedings of the National Academy of Sciences,
5705 2245 5706	p.201605051.
5707 2246 5708 5709 2247	Young, G.C., 1997. Ordovician microvertebrate remains from the Amadeus Basin, central
5710 5711	Australia. Journal of Vertebrate Paleontology, 17(1), pp.1-25.
5712 2248 5713	Zalasiewicz, J., Waters, C.N. and Williams, M., 2014. Human bioturbation, and the
5714 2249 5715 5716	subterranean landscape of the Anthropocene. Anthropocene, 6, pp.3-9.
5717 2250 5718	Zalasiewicz, J., Waters, C.N., do Sul, J.A.I., Corcoran, P.L., Barnosky, A.D., Cearreta, A.,
5719 2251 5720	Edgeworth, M., Gałuszka, A., Jeandel, C., Leinfelder, R. and McNeill, J.R., 2016. The
5721 5722 5723	97

5724		
5725		
5/2/	252	geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene.
5728 5729 22 5730	253	Anthropocene, 13, 4-17.
E704	254	Zeder, M.A., 2008. Domestication and early agriculture in the Mediterranean Basin: Origins,
5734	255	diffusion, and impact. Proceedings of the national Academy of Sciences, 105(33), pp.11597-
5735 5736 22 5737	256	11604.
5739	257	Zhang, LJ., Fan, RY., Gong, YM., 2015, Zoophycos macroevolution since 541 Ma.
5740 5741 22 5742	258	Nature Scientific Reports, 5, 14954.
5743 22 5744		Zhuravlev, A.Y., 2001. Paleoecology of Cambrian reef ecosystems. In The history and
5745 5746 5747	260	sedimentology of ancient reef systems, pp. 121-157, Springer, Boston, MA.
5748 22 5749	261	Figure and Table Captions
5750 5751 22 5752	262	Figure 1. Stratigraphic range and shifts in abundance and diversity of selected sedimentary
5753 22 5754	263	signatures within the SSR, showing correlation with trigger organisms and the earliest
5755 22 5756		unequivocal body fossil remains of total group representatives of such organisms. See main
5757 22 5758 5759	265	text for details.
5760 22 5761	266	Figure 2. Illustrative plots showing the importance of time-length scales in searching for
5762 22 5763		biosphere signatures. A) The different time-length scales at which the SSR can be
5764 22 5765 5766 24		approached using individual specimens, outcrops, groups of outcrops, or compendia of
5767		information from the whole SSR. B) Approximate most common ranges of time-length
5769 ²		scales of different Earth surface processes and phenomena in which life plays a role,
5771 ²² 5772		superimposed on plot from (A), showing how different approaches to the SSR may be more or less suitable for recognising ancient biosphere signatures (modified after Kleinhans et al.,
5773 ²² 5774 5775 ²²		2006). It should be noted that, with the exception of atmospheric evolution, all the illustrated
5776 5777 22		phenomena operate at time-length scales far smaller than that recorded by the whole SSR. As
5778 5779 22		such the whole SSR may additionally be utilized to identify secular trends in holistic
5780 5781		98
5782		

5784		
5785 5786	2276	populations of these phenomena (e.g., long term changes in animal bioturbation).
5787 5788	2277	Additionally, the crossing of threshold values in some of these process may result in more
5789 5790	2278	rapid effects, which could potentially be recognised at a smaller scale (e.g., the catastrophic
5791 5792 5793	2279	failure of a reef system, or the tipping point reached after cumulative atmospheric evolution).
5794 5795	2280	Figure 3. Examples of vegetation-induced sedimentary structures resulting from sediment and
0101	2281	water diversion around standing sessile plants. A) Recent scour crescent in front of fallen
5798 5799 5800	2282	tree, Murchison River, Western Australia. B) Undulose sediment surface armoured by dense
5800 5801 5802	2283	stand of Protolepidodendron, Middle Devonian (c. 385 Ma) Planteryggen Formation,
5803 5804	2284	Munindalen, Svalbard. C) Mudrock-filled hollow (arrowed) overlain by downturned strata,
5805 5806	2285	formed by infilling and decay of standing vegetation and subsequent subsidence of
5807 5808	2286	overburden sediment, Pennsylvanian (c. 320 Ma) Tynemouth Creek Formation, Gardner
5809 5810	2287	Creek, New Brunswick. D) Scour-and-mound bedding (white arrows) surrounding standing
5811 5812	2288	Lepidodendron, revealed by stigmarian roots (black arrow), Pennsylvanian (c. 320 Ma)
5813 5814	2289	Tynemouth Creek Formation, Gardner Creek, New Brunswick. E) Undulose bedding surface
5815 5816	2290	with multiple stigmaria and rootlets, showing irregular surface of sediment laid down
5817 5818 5819	2291	between stand of trees, Mississippian (c. 330 Ma) Alston Formation, Lindisfarne,
5820 5821	2292	Northumberland, England. F) Downturning of beds of Siberian Traps volcanic ash,
	2293	surrounding charcoalified remains of standing tree (arrowed), Early Triassic (c. 252 Ma)
5004	2294	Abinskaya Series, River Tom, Kuznetsk Basin, Russia. Scale bar is 1 metre in A, D, E, F.
5826 5827	2295	Scale bar is 10 centimetres in B, C.
5828 5829 5830	2296	Figure 4. Examples showing problem of equifinality in the SSR (see text for full details). 1.
5831 5832	2297	Dinosaur footprints (A) in the Early Cretaceous Wealden Group (c. 130 Ma) of southern
5833 5834	2298	England are associated with two mud-filled abandoned channels (bases arrowed) indicative
5835 5836	2299	of channel avulsion (B). The former could be a trigger for the latter, but no causality can be
5837 5838	2300	recognised at outcrop. 2. Beaver-cut wood accumulations are associated with peat
5839 5840 5841		99

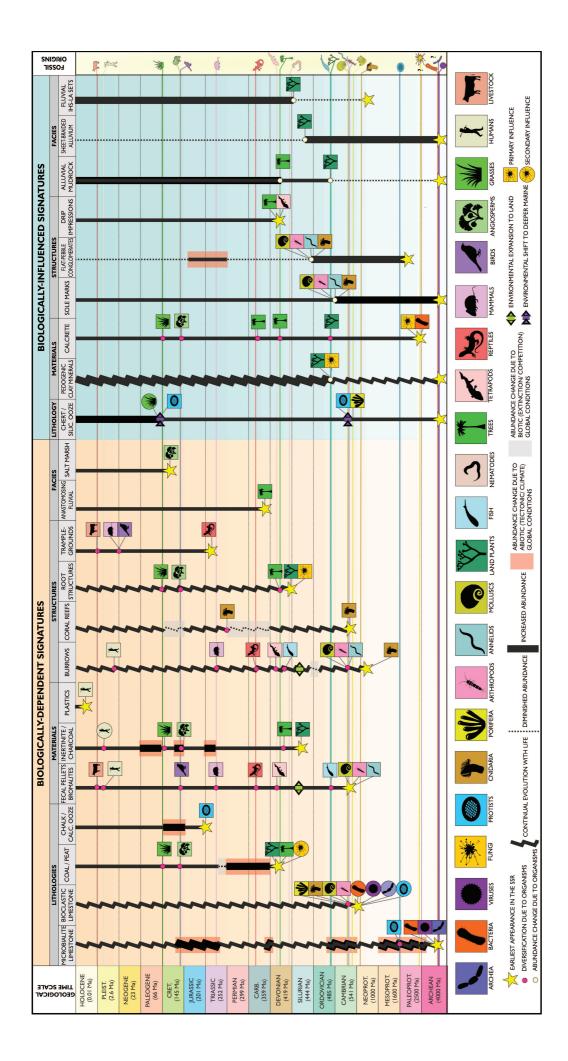
5842		
5843		
5844 5845	2301	accumulations in the Pliocene (c. 5 Ma) Beaufort Formation of Arctic Canada, but
5846 5847 5848	2302	ascertaining causality between beaver damming and wetland flooding is hindered by
5849 5850	2303	underdetermination: (C) beaver-cut woody debris showing chewing mark (arrow), Ellesmere
	2304	Island; (D) peat accumulation with woody debris, Meighen Island (Davies et al., 2014). 3.
5853 5854	2305	Dropstones in the late Permian (c. 255 Ma) Broughton Formation, Wollongong Lighthouse,
5855 5856	2306	New South Wales, Australia (E), are associated with glendonites, attesting to their likely
5857 5858	2307	glacial origin. However, other means of transmitting cobbles to the marine realm are present
5859 5860	2308	- for example, seaweed buoyancy (F, Caol Ila, Islay, Scotland). Scale bar is 1 cm in C. Scale
5861 5862 5863	2309	bar is 10 centimetres in A, D, E, F. Scale bar is 1 metre in B.
5864 5865	2310	Figure 5. Conceptual plots showing the shift in frequency distribution of facies signatures in
5866 5867	2311	alluvium between pre-vegetation strata (red; Archean to Ordovician) versus syn-vegetation
5868 5869 5870	2312	strata (green; Silurian to recent). Horizontal axis shows a quantitative measure of rock
5870 5871 5872	2313	formation properties: the measured proportion of any individual alluvial succession that
5873 5874	2314	contains the named phenomena (comparable to the 'quantitative measure of topographic
5875 5876	2315	features' in Dietrich and Perron (2006), their Fig. 5). Vertical axis shows the frequency of
5877 5878	2316	occurrence of rock formations worldwide that exhibit the measured traits in the horizontal
5879 5880 5881	2317	axis.
5882 5883	2318	Figure 6. Cartoon diagram illustrating the heightened potential for recognising unidirectional
5885	2319	shifts, such as signatures pertaining to life evolution, from the SSR. Three rock successions
5887	2320	are shown, which accumulated over the same time interval, against a backdrop of two
5889	2321	different allogenic influences; one unidirectional (red), one cyclic (blue). Both allogenic
5890 5891 5892	2322	influences are assumed to have the potential to leave an indirect but readable signature in the
5892 5893 5894	2323	accumulated sediment pile. None of the three successions are time-complete, but are
5895 5896	2324	comprised of preserved sediment (dark yellow) at stochastic intervals. In this instance,
5897 5898	2325	because the period of cyclic oscillation is at a greater frequency than the
5899 5900		100

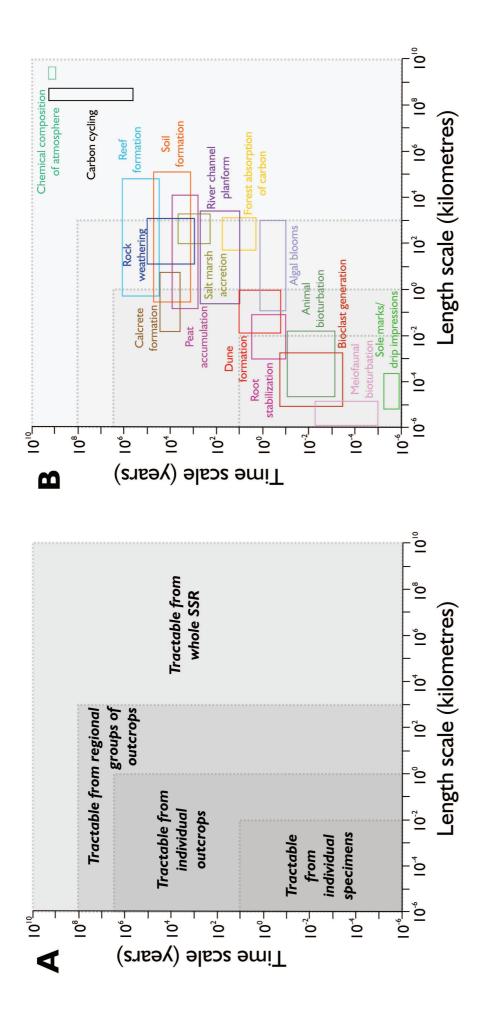
sampling/preservation of sediment, the preserved signals of the cyclic influence will be readable only as a distortion of the true cycle and not easily comparable between the different sections. By contrast, all three successions show a defined off/on shift from the unidirectional influence, despite the fact that none of the successions preserve strata that are 5910 2329 precisely contemporaneous with its onset. 5912 2330 Figure 7. Histograms comparing mudrock percentage in worldwide alluvial formations **2331** deposited during intervals of orogenic events. A) Formations whose deposition was affected 5917 2332 (deposited neighbouring orogeny) and not affected (deposited away from orogeny) by the 5919 2333 5921 2334 Grenvillian Orogeny (1100-900 Ma); B) Formations whose deposition was affected and not affected by the Caledonian/Acadian Orogeny (440-390 Ma). Data compiled from a compendium of whole SSR data (available in McMahon and Davies 2018b). While in both instances a tectonic influence can be recognised (because formations deposited adjacent to orogenic uplift contain more mudrock), the heightened abundance of mudrock in all formations deposited after the evolution of land plants (B) implies that the age of deposition relative to the evolution of vegetation is a more significant predictor of alluvial mudrock 5934 2340 abundance than proximity to orogenies. 5936 2341 Figure 8. Examples of BDS lithologies. 1. Microbial carbonates: A) Side view of Archean stromatolitic microbial carbonate, Neoarchean (c. 2.6 Ga) Yellowknife Supergroup, Walsh 5941 2343 Lake, Northwest Teritories, Canada; B) Plan view of Palaeoproterozoic (c. 1.9 Ga) 5943 2344 5945 2345 stromatolitic carbonate, Gunflint Chert, Flint Island, Ontario, Canada; C) Large thrombolite domes in microbial carbonate, late Cambrian (c. 0.5 Ga) Petit Jardin Formation, Flowers Cove, Newfoundland, Canada. 2. Bioclastic carbonates: D) Cloudina limestone, late Ediacaran (c. 550 Ma) Nama Group, Namibia; E) Bioclastic limestone containing shelly debris of crinoids, spiriferid and rhynconellid brachiopods, Mississippian (c. 346 Ma) Ballyshannon Limestone Formation, Bundoran, County Donegal, Ireland; F) Bioclastic

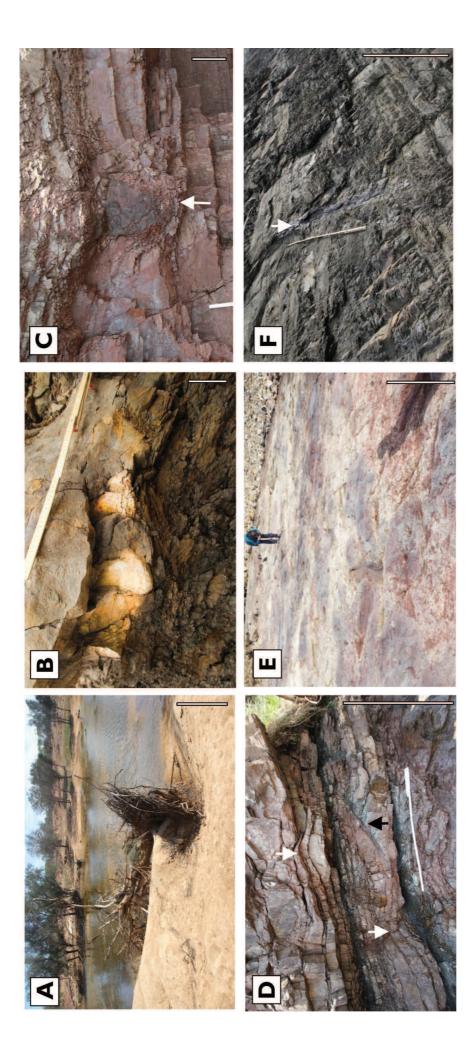
limestone of scleractinian corals and bivalves, Pleistocene (c. 0.125 Ma) Wallabi Limestone, East Wallabi Island, Houtman-Albrohos Islands, Western Australia. 3. Coals: G) Vertically-bedded coal seams deposited as overbank facies between fluvial sandstone bodies, late Permian (c. 254 Ma) Kol'chuginskaya Series, Bachat, Kuznetsk Basin, Siberia, Russia; H) 5969 2354 Uppermost coal seam preceding the Permian-Triassic extinction and subsequent 'coal gap', 5973 2356 late Permian (c. 252 Ma) Bulli Coal, overlain by fluvial sandstones of the latest Permian Eckersley Formation, Clifton, New South Wales, Australia. 4. Chalk: I) Two chalk units, the lower one red in colour, in mid-Cretaceous (Albian-Cenomanian, c. 100 Ma) strata, Hunstanton Red Chalk Formation and Ferriby Chalk Formation, overlying ferruginous oolitic sandstone of the Carstone Formation, Hunstanton, Norfolk, England. Scale bar is 1 centimetre in A, D, E, F. Scale bar is 1 metre in B, C. Scale bar is 10 metres in G, H, I. Figure 9. Examples of BDS materials. 1. Coprolites. A) Example of suspected earliest known occurrence of micro-coprolites, lower Cambrian (Terreneuvian, c. 529 Ma) Lontova and Voosi Formations, Estonia. B) Flattened mammal fecal pellets, Pliocene (c. 3.5 Ma) Beaufort 5993 2365 Formation, Ellesmere Island, Nunavut, Canada. 2. Charcoal. C) Some of the earliest charcoal in the SSR: charcoalified remains of Pachytheca, late Silurian (Ludlow, c. 423 Ma) Lower 5995 2366 Leintwardine Formation, Stoke Edith, Herefordshire, England. D) Cross-section view of fallen and partly compressed trunk of the giant fungi Prototaxites. Charcoalified trunk is entrained with coarse basal lag sediments in the bottom of a fluvial channel body, Early Devonian (Emsian, c. 400 Ma) Battery Point Formation, Petit Gaspé, Québec, Canada. 3. Plastics. E-F) Examples of different sizes of plastics exhibiting sorting on beaches. These plastics (and human-cut wood) have been transported substantial distances from human settlement into unpopulated areas of the High Arctic by ocean currents. Wijdefjorden, 6010 2373 Svalbard. Scale bar is 0.1 millimetres in A. Scale bar is 1 millimetre in C. Scale bar is 1 6012 2374 6014 2375 centimetre in B. Scale bar is 10 centimetres in D, E. Scale bar is 1 metre in F.

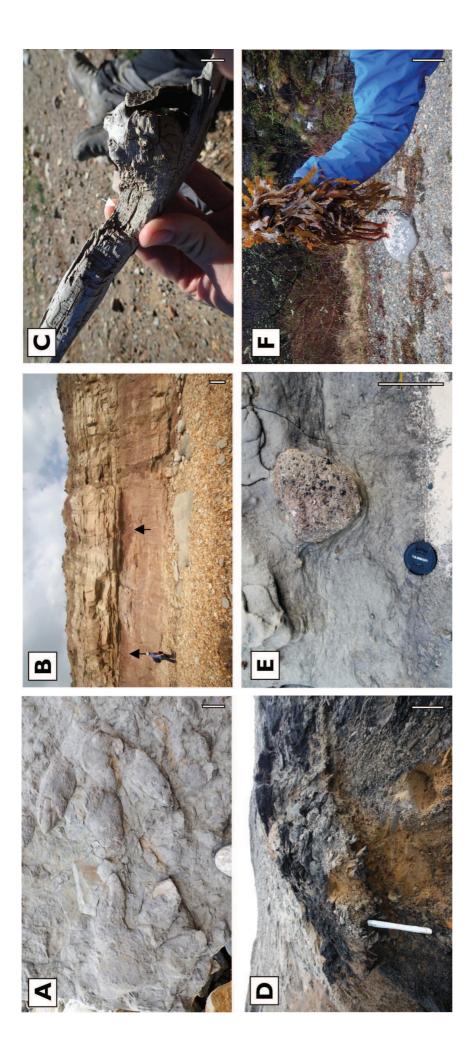
Figure 10. Examples of BDS structures. 1. Burrows. A) Earliest evidence for metazoan locomotion: suspected cnidarian surface trail, Ediacaran (c. 565 Ma) Mistaken Point Formation, Mistaken Point, Newfoundland, Canada. B) Vertical invertebrate burrows (Skolithos and Daedalus) penetrating multiple beds of shallow marine dune cross-bedded 6028 2379 sandstones, Silurian (c. 430 Ma) Tumblagooda Sandstone, Red Bluff, Kalbarri National Park, 6030 2380 6032 2381 Western Australia. C) Horizontal network of suspected crustacean burrows (Thalassinoides) in marine limestone, Early Jurassic (c. 180 Ma) Beacon Limestone Formation, Eype, Dorset, England. D) Cross-sectional view of vertebrate burrow consisting of tunnel (black arrow) leading to terminal chamber (white arrow), probably made by a rhyncosaur, Middle Triassic (c. 240 Ma) Otter Sandstone Formation, Sidmouth, Devon, England. 2. Coral reefs. E) Cross-section view of coral and algal bioherms within coral reef, late Silurian (c. 420 Ma) Barlow Inlet Formation, Cornwallis Island, Nunavut, Canada; F) Reef knoll limestone with bedding 6045 2387 of coral reef apron illustrated, Mississippian (c. 330 Ma) Low Limestones Formation, 6047 2388 Chrome Hill, Derbyshire, England. 3. Roots. G) Putative root like structures, exhibiting downwards branching and penetrating for up to 3 cm within palaeosol, latest Silurian (c. 420 Ma) Silverband Formation, Lake Bellfield, Victoria, Australia. H) Stigmarian lycopsid rhizome showing rootlets, Mississippian (c. 330 Ma) Alston Formation, Lindisfarne, Northumberland, England. 4. Trample-grounds. I) Brittle and ductile soft-sediment deformation penetrating through heterolithic strata (yellow box) as a result of focussed trampling, most likely by a large sauropod dinosaur, Early Cretaceous (c. 120 Ma) Vectis Formation, Cowleaze Chine, Isle of Wight, England. Scale bar is 1 centimetre in A, G. Scale 6064 2396 bar is 10 centimetres in C, E, H. Scale bar is 1 metre in B, D, F, I. 6066 2397 Figure 11. Example of fixed-channel alluvial style associated with anastomosing river facies, 6069 2398 showing diagnostic criteria and contrast with braided river facies (after Davies and Gibling, 6071 2399

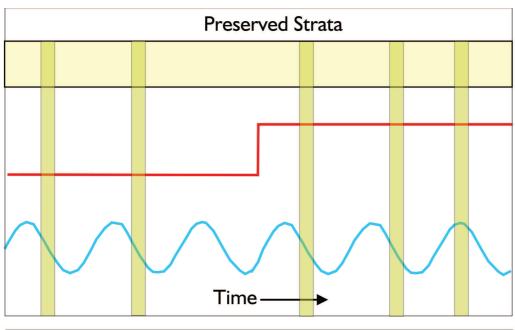
6080
608124002011). Pennsylvanian-Permian (c. 298 Ma) Cutler Group, Mesa Montosa, New Mexico,6082
60832401United States.


Figure 12. Examples of abiogenic and biogenic cherts. A) Abiogenic cherty grainstones interbedded within a banded iron formation: chert precipitated due to silica-saturated waters. Palaeoproterozoic (c. 1.88 Ga) Ironwood Iron Formation, Mount Whittlesey, Wisconsin, United States. B-C) Cycles of biogenic chert, probably representing precipitation during local hiatuses in sedimentation, within chalk (rich in siliceous demosponge spicules, most 6094 2406 notably Rhaxella). The "wood-grain" texture shown probably relates to fluctuating 6096 2407 6098 2408 concentrations of silica-rich pore fluids and changing rates of precipitation (Maliva et al., 1999). Late Jurassic (c. 150 Ma) Portland Chert Member, Portland Bill, Dorset, England. Scale bar is 10 centimetres in A, C. Scale bar is 1 metre in B.


6105 2411 Figure 13. Examples of BIS materials. Pedogenic clay minerals and calcrete. A) Nodular calcrete forming vertic features within pedogenic clay-rich palaeosol, formed coevally with the early evolution of tracheophytes, late Silurian (Přídolí, c. 420 Ma) Moor Cliffs Formation, Rook's Cave, Pembrokeshire, Wales. B) Calcretized rhizoliths along layer that also yields recognisable stigmarian root structures, late Pennsylvanian (c. 300 Ma) Fountain Formation, Manitou Springs, Colorado, United States. C) Micritic calcrete forming pinnacles due to the 6118 2417 exposure of large rhizoliths, Pleistocene (c. 0.5 Ma) Tamala Limestone, Nambung National Park, Western Australia. Scale bar is 1 metre in all images. 6120 2418


Figure 14. Examples of BIS structures. 1. Sole marks. A) Sole marks on base of turbidite sandstone deposited before evolution of bioturbation, Neoarchean (c. 2.6 Ga) Burwash 6125 2420 Formation, Yellowknife, Northwest Territories, Canada. B) Sole marks on base of lacustrine 6127 2421 6129 2422 turbidite sandstone, deposited contemporaneously with the evolution of deep lake burrowing, 6131 2423 Pennsylvanian (c. 315 Ma) Bude Formation, Maer Cliff, Cornwall, England. 2. Flat pebble


6137		
6138 6139		
6140 24	424 (conglomerate. C) Flat pebble conglomerate within dolomite, Cryogenian (c. 720 Ma) Lossit
0142	425 l	Limestone Formation, Beannan Buidhe, Islay, Scotland. D) Flat pebble conglomerate within
6143 6144 2 4 6145	426 l	limestone, Middle Cambrian (c. 500 Ma) Cow Head Group, Beachy Cove, Newfoundland,
6146 24 6147	427 (Canada. 3. Drip impressions and splash marks. E) Casts of drip impressions in abandoned
6148 24 6149	428 f	fluvial channel facies, seen in association with cordaitalean frond debris, Pennsylvanian (c.
6150 24 6151	429	320 Ma) Tynemouth Creek Formation, New Brunswick, Canada. F) Elongate splash marks
6152 24 6153	430 ((black arrows) resulting from the displacement of damp sand as an arthropod tracemaker
0454	431 t	traversed a wet subaerial substrate (seen in conjunction with other arthropod trackways; white
6156 6157 24	432 a	arrows), Silurian (c. 430 Ma) Tumblagooda Sandstone, Z-Bend, Kalbarri National Park,
0100	433	Western Australia. Scale bar is 1 metre in A, B. Scale bar is 10 centimetres in D, F. Scale bar
6160 6161 2 4 6162	434 i	is 5 centimetres inC. Scale bar is 1 cm in E.
6163 6164 24	435 l	Figure 15. Examples of BIS facies. 1. Alluvial mudrock. A) Single thin mudrock layer
0100	436 ((arrowed; c. 15 cm) within 200 metre succession of alluvial sandstones, early Cambrian (c.
0100	437 5	540 Ma) Fréhel Formation, Cap du Chevre, Brittany, France. B) Dominance of alluvial
6169 6170 24	438 1	mudrock relative to crevasse splay sandstones in syn-vegetation alluvium, Pennsylvanian (c.
6171 6172 24 6173	439	300 Ma) Sangre de Cristo Formation, Durango, Colorado, United States. 2. 'Sheet-braided'
6174 24 6175	440 8	alluvium. C) Archetypal 'sheet braided' alluvium, Neoproterozoic (c. 1 Ga) Applecross
	441 l	Formation, Cape Wrath, Scotland. D) Detail of 'sheet-braided' alluvium, Ediacaran-
0470	442 (Cambrian (c. 541 Ma) Series Rouge, Pleherel, Brittany, France. 3. IHS-LA sets. E) Oldest
6180	443 l	known example of IHS-LA sets (yellow box), recording 41 cm deep sinuous creek draining
6182 6183 24	444 i	into lake, Neoproterozoic (c. 1 Ga) Diabaig Formation, Diabaig, Scotland. F) Large scale
0100	445 l	LA-IHS with internal erosion surface (yellow box), recording deposition within
6186 6187 24	446 t	tidally-influenced meandering point bar. Late Cretaceous (c. 80 Ma) Horseshoe Canyon
6188 6189 24 6190	447 l	Formation, Willow Creek, Alberta, Canada. Scale bar is 1 metre in A, B, D, E. Scale bar is
6190 6191 24 6192	448	10 metres in C, F.
6193		
6194		105


6196 6197	
6108	
6199 2449	Table 1 – Table showing examples of influences of modern organisms to sediments,
6200 6201 2450 6202	geomorphology and Earth surface processes.
6203 6204 6205 2451	Table 2 – Examples of the earliest fossil evidence for the life triggers shown in Figure 1.
6206 2452 6207	Table 3 – Comparison of the potential effects, recordable as sedimentary signatures, of three
6208 2453 6209	of the most significant life influences on the properties of the SSR; bioturbation, vegetation
6210 6211 2454	and humans.
6212	
6213 2455	
6214	
6215	
6216 6217	
6218	
6219	
6220	
6221	
6222	
6223	
6224	
6225	
6226	
6227	
6228 6229	
6230	
6231	
6232	
6233	
6234	
6235	
6236	
6237	
6238	
6239 6240	
6240	
6242	
6243	
6244	
6245	
6246	
6247	
6248	
6249	
6250	
6251	
6252 6253	106
6253 6254	100

