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10 Abstract

11 The landscapes and seascapes of Earth’s surface provide the theatre for life, but to what 

12 extent did the actors build the stage?  The role of life in the long-term shaping of the 

13 planetary surface needs to be understood to ascertain whether Earth is singular among known 

14 rocky planets, and to frame predictions of future changes to the biosphere.  Modern 

15 geomorphic observations and modelling have made strides in this respect, but an under-

16 utilized lens through which to interrogate these questions resides in the most complete 

17 tangible record of our planetary history: the sedimentary-stratigraphic record (SSR).  The 

18 characteristics of the SSR have been frequently explained with reference to changes in 

19 boundary conditions such as relative sea level, climate, and tectonics. Yet despite the fact that 

20 the long-term accrual of the SSR was contemporaneous with the evolution of almost all 

21 domains of life on Earth, causal explanations related to biological activity have often been 

22 overlooked, particularly within siliciclastic strata. This paper explores evidence for the ways 

23 in which organisms have influenced the SSR throughout Earth history and emphasizes that 

24 further investigation can help lead us towards a mechanistic understanding of how the 
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25 planetary surface has co-evolved with life.  The practicality of discerning life signatures in 

26 the SSR is discussed by: 1) distinguishing biologically-dependent versus biologically-

27 influenced sedimentary signatures; 2) emphasizing the importance of determining relative 

28 time-length scales of processes and demonstrating how different focal lengths of observation 

29 (individual geological outcrops and the complete SSR) can reveal different insights; and 3) 

30 promoting an awareness of issues of equifinality and underdetermination that may hinder the 

31 recognition of life signatures.  Multiple instances of life signatures and their historic range 

32 within the SSR are reviewed, with examples covering siliciclastic, biogenic and chemogenic 

33 strata, and trigger organisms from across the spectrum of Earth’s extant and ancient life.  

34 With this novel perspective, the SSR is recognised as a dynamic archive that expands and 

35 complements the fossil and geochemical records that it hosts, rather than simply being a 

36 passive repository for them.  The SSR is shown to be both the record and the result of long-

37 term evolutionary synchrony between life and planetary surface processes.

38 1. Introduction

39 The sedimentary-stratigraphic record (SSR) is formed of sedimentary rock strata: geological 

40 materials generated at the interface of lithosphere and atmosphere at the planetary surface, 

41 through the physical dynamic interactions of mineral grains and fluids, or chemical 

42 precipitation from solution. Where it is tractable, in exposed outcrop, cores or seismic 

43 sections, the SSR has immense value as a record of ancient surface processes. It is the 

44 primary repository of deep time geochemical and fossil evidence, and the only tangible 

45 chronicle of 3.8x109 years of Earth history (Moorbath, 2009; Peters and Husson, 2017).  

46 The objective of this contribution is to illustrate that the long-term evolution of Earth’s SSR 

47 is causally-related to the evolution of life at the planetary surface, and how this is reflected in 

48 the distribution of material properties of sedimentary rocks by age. When considered at a 
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49 granular scale (a particular outcrop, basin, or time interval) it is most common to interrogate 

50 the depositional controls on the SSR with reference to autogenic sediment-transport dynamics 

51 (e.g., Hajek and Straub, 2017) or allogenic controls such as tectonics, climate or sea-level 

52 (e.g., Allen, 2017) – processes that have been continual, cyclic, or recurrently episodic 

53 throughout the historic accrual of the SSR (Bradley, 2011).  However, if we view the Earth 

54 surface as the factory in which the SSR was created, it must be acknowledged that the 

55 machinery functioning there has changed substantially through geological time as the 

56 biosphere has evolved. In other words, the characteristics of ancient strata need not 

57 exclusively be explained by tectonics, climate and sea-level. Biological and evolutionary 

58 controls may 1) have been overlooked, and 2) be equally or more likely to be culpable for 

59 many sedimentary motifs.  

60 Sediments, the raw material of the SSR, occur at the Earth surface: a space that they share 

61 with as much as 87% of the planet’s extant biomass (Bar-On et al., 2018), and where 

62 interactions of sediment with solid, liquid and gaseous fluids are augmented by biotic 

63 interactions. A multitude of observations demonstrate the ways in which different lifeforms 

64 provide biomaterials and modify Earth surface processes and landforms at the present day 

65 (Table 1).  By variously mediating fluid and sediment properties and rates and scales of 

66 erosion, weathering, deposition and transport, organisms can induce sedimentary or 

67 geomorphic signatures on scales that range from the shape of individual grains (e.g., Harvey 

68 et al., 2011) to the form of entire mountain belts (e.g., Istanbulluoglu and Bras, 2005; Fremier 

69 et al., 2017).  Entire scientific subdisciplines, such as biogeomorphology, ecogeomorphology 

70 and zoogeomorphology, set out to address the importance of life as a controlling element 

71 within recent landscapes (e.g., Naylor et al., 2002; Murray et al., 2008; Phillips, 2009; 

72 Corenblit et al., 2011; Butler and Sawyer, 2012; Viles, 2019).  
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73 The variety and number of such influences is unsurprising because the mass of mobilized 

74 sediment is dwarfed by the mass of life: for example, the annual global continent-ocean flux 

75 of terrigenous sediment is c. 28.1 GT (Syvitski et al., 2004), in contrast to the 476 GT of 

76 planetary carbon that occurs as biomass (Bar-On et al., 2018).  Yet, for over 90% of early 

77 Earth history, the majority of biomass existed only as microbial communities below the Earth 

78 surface (McMahon and Parnell, 2018), spatially divorced from contemporaneous sedimentary 

79 processes. Despite this, the origin and ancestry of life influences on Earth surface processes 

80 and sedimentation have only infrequently been considered, particularly with respect to clastic 

81 sediments.  

82 We contend that, when exploring the heritage of the planetary surface, it is essential to 

83 consider how different biological agents (which have evolved through Earth history) 

84 influenced the type, frequency, and intensity of physical processes that operate at the Earth's 

85 surface, and how this compares to modern observations. In order to do this, we must consider 

86 the SSR as a single entity; the 3.8 Ga accrual of which has exceeded the evolutionary 

87 lineages of all domains of life, with the possible exception of certain microbiota (Knoll and 

88 Nowak, 2017). In this respect the SSR is a thin (< 20 km [Allen et al., 2002]) and partial 

89 (62.5-69.5% coverage [Blatt and Jones, 1975]) exogenic veneer of planet Earth: a 

90 sedimentary shell that (1) has been accumulating since Earth formed a crust; and (2) consists 

91 of fragments of strata from deep time that have fortuitously survived to the present, avoiding 

92 destructive recycling through erosion and subduction (Ronov et al 1980, Veizer and 

93 Mackenzie, 2014, Peters and Husson 2017).

94 1.1.  Deep time biosphere signatures 

95 As we look back at successively older portions of the whole SSR, we can see that its older 

96 strata were formed on ‘alternative Earths’ (Beerling and Butterfield, 2012), in existence prior 
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97 to the evolution of particular organisms, groups of organisms, and behaviours. These 

98 alternative Earths are recorded in the SSR as synchronous strata from different parts of the 

99 globe which, taken together at any common interval of geological time, could potentially 

100 harbour the same range of abiotic allogenic (e.g., tectonic, climatic and sea-level) 

101 sedimentary signatures as are known from the recent Earth (albeit at different rates and 

102 intensities). However, for any particular synchronous interval, only a finite selection of the 

103 full census of biologically-affected sedimentary materials and traits (as known to 

104 cumulatively exist within the global SSR) can be recognised, because some will not yet have 

105 arisen, and some will have ceased to operate, at the time of deposition. When the global SSR 

106 is considered as a single entity, escalation from its oldest to youngest strata reveals that some 

107 of its intrinsic materials and traits have first occurrences (or major shifts in frequency of 

108 occurrence), in stratigraphic synchrony with the fossil record of prospective life triggers 

109 (Figure 1).  

110 In this paper, we explore what is already known about biosphere signatures, discuss the 

111 philosophical background, potential and practicalities for further investigation, provide a 

112 catalogue of selected signatures, and explain why there could be significant implications 

113 arising from an improved understanding of life signals in the SSR.  We place extra emphasis 

114 on biosphere signatures in siliciclastic strata, which have traditionally been less well-

115 investigated than those in biogenic or chemogenic strata.  

116 2. Classes of biosphere signatures

117 We here distinguish two overarching classes of biosphere signatures, as preserved in the SSR 

118 (Figure 1): 1) Biologically-dependent signatures (BDS) which directly incorporate material or 

119 structure generated by life; and 2) Biologically-influenced signatures (BIS) which are 
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120 favoured by life-induced parameter changes to the rates, frequency of occurrence, and spatial 

121 influence of sedimentary processes.  

122 2.1.  Biologically-dependent signatures (BDS)

123 Lithologies, materials, structures and facies which could never occur without particular 

124 biogenic detritus, biochemical processes, or the manipulation of sediment by organism life 

125 habits are classed as biologically-dependent signatures. BDS can be directly recognised 

126 within the SSR, so the known historical record of such characteristics is relatively complete, 

127 well-documented, and well-accepted. Discussions of BDS can be found in analyses of secular 

128 trends in certain carbonate (e.g., Riding, 2000) or coal lithologies (e.g., Diessel, 2010), or 

129 trace fossils (e.g., Buatois and Mángano, 2018), throughout the SSR. The demonstrable role 

130 of life in forming these signatures mean that it is usually undisputed that they have defined 

131 stratigraphic onsets or durations in the SSR, in approximate evolutionary synchrony with 

132 their formative organisms.

133 2.2.  Biologically-influenced signatures (BIS)

134 Many of the life influences on Earth surface processes, listed in Table 1, do not involve the 

135 direct supply of matter or direct forces from life. Instead, they involve altering the magnitude, 

136 or frequency of occurrence, of contributive physical parameters within a system. For 

137 example, in alluvial sediments, certain signatures may reflect conditions of enhanced bank 

138 stability: in modern rivers, bank stability is greatly enhanced by a variety of binding and 

139 baffling effects of vegetation, however abiotic river bank stability can also be afforded by 

140 inorganic chemical precipitates, cohesive sediment, or ice (e.g., Matsubara et al., 2015; 

141 McMahon and Davies, 2018a; Kleinhans et al., 2018). Signatures such as these are here 

142 classed as biologically-influenced signatures. BIS have been less commonly discussed in 

143 previous literature than BDS, and many examples likely remain to be identified. This is 
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144 because BIS require a holistic view of the SSR and are rarely detectable from any individual 

145 outcrop: since the resultant signature may occur without life, their positive identification is 

146 hindered by equifinality - the potential for different processes, or the same process with 

147 different drivers, to have resulted in similar sedimentary end-states (see Section 3.1.1.).  

148 At present, the reported record of BIS is biased to organisms and behaviours that are 

149 voluminous and sessile (such as vegetation [Davies and Gibling, 2010a, McMahon and 

150 Davies, 2018b]), or involve direct interaction with accruing sediment (such as effects arising 

151 from bioturbation [Herringshaw et al., 2017; Mángano and Buatois, 2017]).  

152 3. Time-length scales of biosphere signatures

153 There is a general correlation between the time and length scales of most Earth surface 

154 phenomena, both with and without biological influences (Figure 2; Kleinhans et al., 2005, 

155 2009).  For example, it is possible to contrast phenomena such as an instance of bioturbation 

156 (occurring over an interval of minutes to weeks, over an area approximately metres-squared), 

157 with the formation of a soil, peat or reef (over hundreds to thousands of years, over 

158 kilometres-squared), to the biological forcing of the evolution of the proto-atmosphere (up to 

159 a billion years or more, over the whole globe). The time-length scale of any particular 

160 phenomenon determines the frame of reference that needs to be accessed in order to 

161 understand its formative mechanisms. Using the examples given, an instance of modern 

162 bioturbation is best understood at the small scale over short time periods (e.g., Dorgan, 2015), 

163 whilst the evolution of the proto-atmosphere requires a global compendium of data, from a 

164 substantial interval of geological time (e.g., Holland, 2006). Conversely, applying an 

165 inappropriate time-length frame of reference risks producing meaningless or fallible 

166 conclusions (e.g., changes to the morphology of a single burrow over hundreds of years, or 

167 determining proto-atmospheric evolution from one datapoint).
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168 When we seek to elucidate life influences on the whole SSR, we are often either searching for 

169 trends in a multitude of small- or medium- time-length scale phenomena, or singularities in 

170 long- time-length scale phenomena. A challenge in achieving this is presented by the fact that 

171 we cannot always choose the time-length scales at which we make observations from the 

172 ancient SSR, because of its inconsistent exposure and preservation. We here emphasise that 

173 BDS and BIS may be variably recognisable depending on whether we look at: 1) an 

174 individual outcrop (or core, etc.) or regional group of outcrops, revealing strata that are 

175 particular to the age and geological setting at a location; or 2) the holistic SSR, uniting 

176 reported instances of phenomena from the entire stratigraphic expanse of the geological 

177 timescale across the globe.  

178 These distinct approaches offer two wholly-different focal lengths with which to interrogate 

179 the SSR, and either one may be more or less suited to identifying particular traits, depending 

180 on the time-length scales of the phenomena associated with those traits.

181 3.1.  Biosphere signatures at outcrop

182 Outcrops are present-day geomorphological features: exposures of rock that are finite in their 

183 extent and terminate against areas of non-exposure or erosion, and may be internally 

184 partitioned by faults and unconformities. Where they consist of sedimentary rock, they can 

185 provide high-resolution windows onto discretized fragments of the global SSR, the time-

186 length scale of which dictates which phenomena may be identified (and the degree of 

187 confidence to which they may be identified) (Davies et al., 2019).  Spatially, outcrops are 

188 small-scale: their area can be significantly less than many ancient geomorphological 

189 landforms (e.g., McMahon and Davies, 2018a), they may reveal only fragmentary records of 

190 spatially heterogeneous phenomena (e.g., Marenco and Hagadorn, 2019), and, in most 

191 instances, they record only a diminutive fraction of a total depositional environment (e.g., 
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192 Runkel et al., 2008; Davies and Shillito, 2018; Davies et al., 2019). Temporally, outcrops 

193 consist of individual beds which formed on timescales ranging from minutes to days (e.g., in 

194 the case of those composed of hydrodynamic bedforms; Miall, 2015; Paola et al., 2018; 

195 Davies et al., 2019) to tens of thousands of years (e.g., in the case of palaeosols; e.g., Candy 

196 et al., 2004; Barnett and Wright, 2008). Within any given outcrop, beds representing these 

197 different time-durations can occur as a stochastically shuffled succession.  Additionally, 

198 packages of individual beds, vertically-stacked to the dimensions of the outcrop, may record 

199 much longer time intervals than the sum of their parts, because the breaks between beds can 

200 record extensive sedimentary stasis or time lost to erosion (Paola et al., 2018).

201 The timescales represented by different outcrops, or within a single outcrop, can thus be 

202 highly variable. In general, however, outcrop-archived timescales are weighted towards 

203 enabling the direct recognition of BDS that arose from Earth surface phenomena on short- to 

204 moderate- time-length scales (Figure 2).  This is particularly true of BDS which occur in 

205 direct association with fossil evidence for biological involvement, or where such an 

206 association can be inferred. Examples of such phenomena include trace fossils, or vegetation-

207 induced sedimentary structures that reflect the modification of local hydrodynamic conditions 

208 by standing vegetation (Rygel et al., 2004) (Figure 3).

209 The limitation of outcrop studies is that they can be used to recognise only very localized 

210 examples of BDS, which can arguably have little significance beyond being geological 

211 curios. The recognition of any life signatures provides evidence only that that BDS could be 

212 formed at a particular place and time, and they are not implicit of any evolutionary context 

213 unless they are compared with a global compendium of outcrops (Section 3.2.). Furthermore, 

214 the direct recognition of most BIS and some BDS at outcrop is hampered by equifinality and 

215 underdetermination.   

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531



10

216 3.1.1. Outcrop: Problems of equifinality

217 Equifinality refers to end-states that can potentially be explained by multiple different causes 

218 (Beven, 1996). In the SSR at outcrop, where every individual bed or sedimentary structure is 

219 effectively an end-state relative to depositional conditions, many sedimentary signatures can 

220 have plural plausible explanations, the most likely explanation for which can only be abduced 

221 by the observer (e.g., Kleinhans et al., 2005, 2009; Shillito and Davies, 2019a). This presents 

222 a particular problem for the recognition of BIS at outcrop. For example, none of the BIS 

223 illustrated in Figure 1 are wholly reliant on life for their formation: their occurrence may be 

224 promoted by particular lifeforms or behaviours, but they can also be generated by purely 

225 abiotic processes.  

226 An example of equifinality between biotic and abiotic sedimentary signatures can be seen in 

227 marine dropstones. Whilst primarily associated with deposition from melting icebergs (e.g., 

228 Bischof, 1990), marine mammals, birds, driftwood, ship ballast release, and floating seaweed 

229 have all been documented as potential rafting agents (Figure 4; Emery, 1941, 1955; 

230 Flemming, 1951; Joliffe, 1989; Woodborne et al., 1989; Bennett et al., 1996; Frey and 

231 Dashtgard, 2012). These biotic explanations are arguably far less likely than a glaciogenic 

232 origin, but nonetheless they must be considered possible alternative explanations for specific 

233 dropstones on any ancient alternative Earths where they were possible. In such instances, 

234 accessory sedimentary features would be needed to weigh the balance of probability as to the 

235 exact cause (e.g., searching for signatures such as abundance, varves, striations, faceted 

236 clasts, or glendonites).

237 Generally, the simpler the form within the SSR, the more problematic it may be to ascribe a 

238 biological origin: many simple trace fossils, body fossils, stromatolites and microbial 

239 sedimentary structures can be hard to distinguish from sedimentary structures of inorganic 
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240 origin (Jensen et al., 2006; McLoughlin et al., 2008; Ohmoto et al., 2008; Buatois and 

241 Mángano, 2016; Davies et al., 2016; Allwood et al., 2018; Brasier et al., 2019). In the case of 

242 microbial sedimentary structures, Davies et al. (2016) suggested that a practical first approach 

243 to circumvent this problem would be to classify sedimentary surface textures according to the 

244 perceived likelihood of a microbial origin, based on the weight of accessory evidence: 

245 Category B being definitively biotic (microbial) and Category A definitively abiotic; 

246 Category Ba is then assigned for structures with supporting evidence for a biotic origin, but 

247 where an abiotic origin cannot be ruled out (or Ab for the converse situation); Surface 

248 textures with a plausible biotic origin, but where there is no clear evidence are Category ab. 

249 Such an approach need not be limited to microbially-induced sedimentary structures and 

250 could be extended to suspected BIS during the initial stages of any investigation; thus 

251 mitigating against problems of equifinality (and acknowledging that some solutions are 

252 inescapably ambiguous).

253 3.1.2. Outcrop: Problems of underdetermination

254 Equifinality can lead to the related problem of undetermination of biological influence.  

255 Underdetermination refers to the situation that arises when there is insufficient available or 

256 total evidence to ascertain which particular explanation, amongst plural potential 

257 explanations, is the true cause of an observed phenomenon (Kleinhans et al., 2005). Two 

258 examples illustrate this (Figure 4):

259 1) In modern environments, large herbivores such as cows and hippopotamuses are known to 

260 promote the formation of small fluvial channels. Herding trails are grazed of vegetation and 

261 compacted under the animals’ weight, leading to decreased infiltration of meteoric water and 

262 increased surface runoff and erosion (Trimble and Mendel, 1995). During overbank flooding 

263 and avulsion, these conduits may become the preferred route for water in the landscape, 
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264 resulting in the abandonment of previously dominant fluvial channels (McCarthy et al., 

265 1992). If such features were to be translated into the SSR, the sedimentary signature would be 

266 one of multiple small abandoned channels (i.e., discrete channel architectural elements, 

267 aggradationally filled with fine-grained sediment), but direct evidence for the organismal 

268 trigger (i.e., footprints organised within trackways) would have been obliterated by the 

269 physical processes of erosion which they promoted and which created the channels. This 

270 limitation of the SSR is borne out by examples of Mesozoic fluvial successions, such as the 

271 Early Cretaceous Wealden Group of southern England, which contains both abundant 

272 abandoned channel elements and discrete fossilized footprints of herbivorous herding 

273 dinosaurs (Shillito and Davies, 2019b). In similar successions, the possibility of dinosaur-

274 induced avulsion has previously been suggested (Jones and Gustason, 2006). Yet while 

275 modern analogue can tell us that herding dinosaurs (heavier than extant large animals [e.g. 

276 Lockley et al., 2012]) likely promoted channel avulsion during the Mesozoic, and outcrops 

277 can contain evidence that both small channel avulsion processes and dinosaurs co-existed in 

278 ancient environments, underdetermination means that the SSR is unlikely to provide 

279 definitive evidence of specific instances of dinosaur-induced avulsion, because other non-

280 dinosaur causes remain plausible (Shillito and Davies, 2019b).

281 2) Beavers are well-known ecosystem engineers in modern rivers, promoting the formation of 

282 wetlands through their damming of river channels with cut wood. The wood-cutting clade of 

283 beavers arose in the latest Oligocene (Rybczynski, 2008) and so they may be expected to 

284 have left facies signatures within the SSR. Pliocene strata in Arctic Canada contain both 

285 outcrop sedimentary evidence of wetlands, in the form of extensive peats, and beaver activity 

286 (fossil woody debris with characteristic bite marks) (Mitchell et al., 2016a). However, the 

287 peats represent deposition over a c. 49 Ka timescale, and so even in such instances of 

288 remarkable co-occurrence, the discrete outcrop signature cannot be directly attributed to a 
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289 specific beaver damming event, instead recording an amalgam of deposits that show the 

290 dominant sedimentary conditions, apparently under the influence of the presence of a 

291 particular organism (Mitchell et al., 2016a). The non-unique facies signatures arising from 

292 the effects of beaver dams means that the recognition of their effects at outcrop is hampered 

293 by underdetermination.

294 3.2. Biosphere signatures in the whole SSR

295 In a review article entitled “The search for a topographic signature of life”, Dietrich and 

296 Perron (2006) asked the question: ‘if life had not arisen on Earth, would landscapes be 

297 significantly different?’  Using a variety of geomorphic transport laws, they concluded that  

298 there may be no unique geomorphic signature of life, but the influence that different 

299 organisms can have on the frequency distribution of landform properties can be highly 

300 significant. The question that they posed can be directly addressed when we consider Earth’s 

301 SSR as a whole, the longevity of which means that parts of it did accrue on a planet where 

302 particular types of life had not yet arisen. By collecting and collating global outcrop and other 

303 geological observations (from original fieldwork and published records), it is possible to 

304 catalogue the disparity and diversity of sedimentary phenomena that are particular to time 

305 intervals in which different organisms, groups of organisms and behaviours were nascent, 

306 advanced, extinct, or had not yet evolved. Cross-comparison with similar catalogues of 

307 phenomena from antecedent and subsequent intervals makes it possible to identify 

308 hypotheses that life may have played a role in the observed patterns of BDS and suspected 

309 BIS. This is because first appearances and abundance shifts in sedimentary phenomena may 

310 become apparent that are stratigraphically synchronous with the evolutionary origins of life 

311 traits, and which (from modern analogue) are known to be potential causes of those 

312 phenomena.  Holistic study of the SSR thus presents the opportunity to 1) understand trends 

313 within unequivocal BDS (e.g., Riding, 2000; Diessel, 2010; Buatois and Mángano, 2018), 
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314 and 2) infer potential trends in BIS, when alternative explanations can be ruled out, or 

315 recognised as less likely explanations (e.g., Davies and Gibling, 2010a, 2013; McMahon and 

316 Davies, 2018b; Tarhan, 2018; Chen et al., 2019).

317 Trends in suspected BIS (Figure 1) before and after the evolution of particular life traits are 

318 expected to resemble the frequency distribution curve illustrated by Dietrich and Perron 

319 (2006; their fig. 5) for abiotic versus biotic settings. In other words, if one or more of the 

320 parameters that cause a particular phenomenon can be accentuated or dampened by a 

321 particular life trait, then it can be expected that the frequency distribution of that phenomenon 

322 within the SSR will differ in strata deposited before and after the evolution of that life trait.  

323 This is well-ascertained for particular sedimentary signatures within alluvial strata, which 

324 appear more or less abundant after the evolution of land plants (Figure 5). In modern systems, 

325 vegetation plays a fundamental role in affecting fluvial form and process (e.g., Corenblit et 

326 al., 2007, 2009; Wohl, 2013; Gurnell, 2014; Horton et al., 2017; Kleinhans et al., 2018), but it 

327 does so by changing particular physical parameters within the whole river system. As a result, 

328 many signatures in ancient alluvium will be BIS, even where they cannot be directly 

329 recognised as such at an individual outcrop. For example, Davies and Gibling (2010b) noted 

330 that published interpretations of meandering river planforms increased in stratigraphic 

331 alignment with the evolution of land plants, but emphasised that “the presence of 

332 Precambrian and extraterrestrial meandering systems indicates that vegetation is not essential 

333 for meandering” (Davies and Gibling, 2010b, p. 51) (e.g., Matsubara et al., 2015). In this 

334 instance, it is implicit that an individual outcrop of pre-vegetation alluvium that could be 

335 interpreted as the product of a meandering river would tell us little about the larger role of 

336 vegetation in producing BIS. However, trends in the frequency distribution of alluvial 

337 signatures before and after the evolution of land plants, across the whole SSR, begin to reveal 

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826



15

338 patterns in suspected BIS, for which a vegetation cause appears the most probable 

339 explanation.

340 3.2.1. Whole SSR: Problems of equifinality

341 Time-dependent frequency distribution trends in particular sedimentary phenomena are 

342 emergent patterns within the whole SSR, but such observed patterns are end-states that are 

343 potentially as prone to issues of equifinality as individual signatures are at outcrop (i.e., 

344 correlation is not causation). To be recognised as being contingent on biological evolution, 

345 other alternative explanations must be determined to be less likely. In the case of long term 

346 secular trends in the SSR, traditionally the three overarching explanations have been 

347 tectonics, climate and sea-level, and it remains true that many of these controls may leave 

348 non-unique signals that could be mistaken for biosphere signals.  Critically, however, all 

349 three of these forcing mechanisms exhibit cyclicity or episodicity over geological timescales, 

350 albeit at different frequencies, from longest (tectonic cycles) to shortest (sea-level cycles) 

351 (e.g., Allen, 2008; Foreman and Straub, 2017). They are thus inadequate explanations for 

352 singular, non-recurrent shifts in the frequency distribution of sedimentary signatures in the 

353 whole SSR.  

354 The unidirectional nature of evolutionary innovation means that biological signature shifts in 

355 the SSR may be more readily identifiable than those generated by cyclic phenomena. Unless 

356 they are of sufficient magnitude, cyclic signals can suffer from shredding at different scales, 

357 whereby components of the original cyclic record are reworked or removed by autogenic 

358 processes (Jerolmack and Paola, 2010). In order to leave a recognisable signal, the period of 

359 cyclic oscillation must be longer than the key timescales of internal autogenic dynamics in 

360 any sedimentary system that is contributing strata to the SSR (Hajek and Straub, 2017; 

361 Foreman and Straub, 2017). Expanding this concept, consideration of the whole SSR can best 
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362 reveal those cyclic phenomena that occur at the largest time-length scales (e.g., 

363 supercontinent cycles: Bradley, 2011). In contrast, unidirectional signals arise from a binary 

364 system shift (i.e., absence/presence of an evolutionary component), thus while the timing 

365 onset of the signal may be only coarsely recognised, the shift should be globally apparent 

366 (Figure 6).

367 For example, in the case of alluvial signatures attributed to vegetation, the onset of major 

368 sedimentological change occurs towards the end of the Silurian. This is in stratigraphic 

369 correlation with the evolution of tracheophytes (e.g., Edwards et al., 2015; Wellman and 

370 Strother, 2015), but post-dates a multitude of tectonic and climatic cycles in the preceding 3.4 

371 Ga of time recorded in the SSR (e.g., Weller and St-Onge, 2017), some of which would have 

372 harmonized to create abiotic global backdrops that were similar to the late Silurian world 

373 (Torsvik and Cocks, 2016). In the absence of earlier, comparable facies shifts, the evolution 

374 of vegetation appears the most likely trigger. Further support for this hypothesis is then seen 

375 in the persistence in abundance and occurrence of the signatures in the SSR, which do vary 

376 through subsequent intervals (likely due to tectonic and climatic cycles), but which never 

377 revert to pre-vegetation character (Davies and Gibling, 2010a, 2013; Davies et al., 2017). 

378 Additional testing is possible by comparing the distribution of signatures in pre- and syn-

379 biotic worlds, across similar tectonic or climatic settings. For example, McMahon and Davies 

380 (2018b) showed a significant increase in the amount of mudrock in alluvium in stratigraphic 

381 correspondence with the rise of land plants. While mudrock abundance in alluvium may 

382 potentially be explained by proximity to an orogenic source, cross-comparison of mudrock 

383 abundance before and after the evolution of land plants, using the analogous Grenville and 

384 Caledonide orogenies as controls, suggests that tectonic controls are secondary to 

385 evolutionary controls (Figure 7).

386 3.2.2. Whole SSR: Problems of underdetermination
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387 Underdetermination affects whole SSR analyses in instances where 1) there are frequency 

388 distribution shifts in SSR signatures without synchronous fossil evidence, and 2) any 

389 suspected BIS cannot be identified as such due to a lack of predictive modern analogue.

390 In the first instance, Figure 1 omits a number of Precambrian secular changes in the SSR, 

391 which may be attributable to life, but occur where synchronous fossil evidence is lacking.  

392 The recognition of frequency distribution shifts in the SSR requires that strata dating from 

393 before and after the evolution of a particular organism or clade can be studied. This is 

394 possible for most metazoan and plant groups, which have a predominantly Phanerozoic 

395 record, but is considerably more problematic for life in the Precambrian – the fossil record of 

396 which is more poorly understood and which may, in part, have a greater temporal lineage 

397 than the SSR itself (Butterfield, 2015; Knoll and Nowak, 2017). For example, modern 

398 observations attest to ways in which microbiota generate biosignatures by altering bedform 

399 stability fields through biophysical sediment cohesion (Malarkey et al., 2015; Parsons et al., 

400 2016). When preserved in the SSR, however, such bedforms are often erosionally truncated 

401 and the precise flow regimes that formed them are usually unknown: the same array of 

402 physical structures can be developed with or without microbial influence. Furthermore, since 

403 the SSR may not extend far enough back in time to observe any pre-microbial to microbial 

404 shift in the frequency distribution of bedform dimensions, and since the timing of the 

405 evolution of key microbial traits (e.g., the ability to generate extra-cellular polymeric 

406 substances) is wholly unknown, it is not possible to directly ascertain a microbial role in the 

407 formation of relict bedforms; even though such life-sediment interactions should be expected 

408 to have occurred regularly since the evolution of the first interstitial microbial life (Chen et 

409 al., 2017). Additionally, certain microbial controls on sedimentary environments and 

410 geomorphology have limited potential to enter the SSR. For example, at sub-bankfull flood 

411 stage in some modern rivers, microbial mats and biological soil crusts may be seen to 
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412 colonize and stabilize sediment on bar tops and river margins (Dupraz et al., 2009). However, 

413 the dominant record of sedimentation in rivers scales towards seasonal maxima, meaning that 

414 deposits that get preserved in the SSR will often be those formed when sub-bankfull 

415 biosignatures are reworked (Rice et al., 2016) (in this instance, when microbial surfaces are 

416 undercut and destroyed by lateral channel migration). Thus the sedimentary signatures in the 

417 SSR may reveal end-state evidence of reworked channel margins colonized by matgrounds 

418 (e.g., intraformational clasts bearing microbially-induced sedimentary structures), but are 

419 unable to reveal the influence that microbial communities had on fluvial process during 

420 average flow conditions (McMahon et al., 2017).

421 Notwithstanding these issues, some trends in the SSR are so obvious and singular that they 

422 may be considered BIS even without a fully understood trigger. Precambrian chemical 

423 sediments, such as bedded phosphorites and sulphates, are suggested to have been influenced 

424 by the evolution of life, and are reviewed elsewhere: see, for example, Eriksson et al. (2013), 

425 Lepland et al. (2013), and Strauss et al. (2013).  Particularly prominent amongst such 

426 signatures are Banded Iron Formations , the disappearance of which has long been considered 

427 to have been influenced by biological evolution (Cloud, 1973; Erikkson et al., 2013). Recent 

428 studies have shown that Banded Iron Formations may occur near continuously between the 

429 Archean and early Palaeozoic (Canfield et al., 2018; Li et al., 2018), indicating pockets of 

430 ferruginous ocean conditions which became rare during the Phanerozoic. However, while the 

431 disappearance of Banded Iron Formations from the SSR is a strong secular signature, 

432 underdetermination means that we cannot directly point to tangible fossil evidence for the 

433 synchronous evolution of a particular organism or life strategy (e.g., photosynthesis). 

434 Additionally, any precise life trigger for the disappearance of Banded Iron Formations would 

435 have been twice-removed from the effect: the direct cause of their disappearance was a 

436 change in global ocean chemistry, which in turn was influenced by life. 
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437 Sedimentary structures that feasibly exhibit shifts in the Precambrian may include raindrop 

438 imprints, which have been posited to occur within a different range of sizes prior to the Great 

439 Oxidation Event because of a different air density at the time (Som et al., 2012).  However, 

440 this shift in sedimentary signatures is at least thrice-removed from any life trigger (i.e., a 

441 different raindrop size due to different air density due to different atmospheric composition 

442 due to different life metabolism), so any link to biological evolution can only be very 

443 tenuously made. In addition, equifinality means there are non-unique explanations for the 

444 anomalously-sized raindrop impressions that Som et al. (2012) used to calculate atmospheric 

445 density: for example, the rate and duration of rainfall (Kavanagh and Goldblatt, 2015).

446 Underdetermination also limits the opportunity to recognise BIS in the whole SSR when 

447 there is limited understanding concerning what signatures should be sought as potential BIS.  

448 In some instances, new data may offer future opportunities to interrogate the SSR with 

449 respect to these signatures. Examples include the underexplored signatures arising from 

450 changes in ocean circulation and water displacement associated with the evolution of 

451 swimming metazoans (Huntley and Zhou, 2004; Butterfield, 2018); decoupling our 

452 understanding of the evolution of physical (churning) and chemical (gut evolution and 

453 sediment processing) aspects of bioturbation; or distinguishing between the impact of 

454 meiofaunal versus macrofaunal bioturbation.   

455 3.3. Recognition of biosphere signatures

456 BDS and BIS provide records of ancient phenomena that occurred on different time-length 

457 scales. These records can be accessed by studying the SSR at different time-length scales; 

458 from individual beds, through to outcrops, groups of outcrops, and the whole SSR as 

459 presently reported (Figure 2). While it is essential to consider the limitations imposed by 

460 equifinality and underdetermination, it should also be recognised that such problems are not 
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461 unique to biosphere signatures: equivalent issues have always hampered interpretations of 

462 abiotic causal mechanisms (e.g., tectonics, climate, sea-level) drawn from end-state 

463 phenomena. If, in the SSR at outcrop, we cannot recognise those biological sedimentary 

464 phenomena that occur on time-length scales that are comparable to outcrop scales (Figure 2), 

465 then there are only two explanations: 1) they are indistinguishable due to equifinality and 

466 underdetermination (e.g., biogenic turbulence damping), or 2) they did not occur (e.g., 

467 Archean bioturbation).

468 The key to further recognition of hypotheses concerning biosphere signatures is a two-stage 

469 process: 1) finding a consensus between modern analogue and models that attests to a 

470 biological contribution to the formation of a particular signature (e.g., Table 1); and 2) 

471 surveying the whole SSR to see whether there is a sudden origin or abundance shift of that 

472 signature, in stratigraphic alignment with the fossil record of the evolution of the trigger 

473 organism/behaviour. Confirmation that any stratigraphic shift is unidirectional provides 

474 supporting evidence that the suspected biological trigger is more likely than repetitive 

475 tectonic, climatic or sea-level changes that would have continuously occurred before and 

476 after the change (e.g., see Davies et al., 2017). Once unidirectional shifts in presence/absence 

477 or abundance have been recognised that fulfil these criteria, they can be considered robust 

478 hypotheses for the presence of BDS and BIS. 

479 4. Examples of biosphere signatures

480 Figure 1 shows the range, within the SSR, of certain BDS and BIS and the relationship of 

481 these ranges to the origins of certain taxa as evidenced in the fossil record. The purpose of 

482 this paper is to encourage further interrogation of the SSR for biosphere signatures, and 

483 therefore the trends and taxa depicted in Figure 1 should not be considered to be exhaustive.  

484 Alternative signatures could be illustrated: for example, different types of metazoan reefs, 
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485 microbially-induced sedimentary structures, anthropogenic signatures other than plastic, or a 

486 more granular subdivision of features such as burrows. However, recent reviews of such 

487 information are available elsewhere (for example, respectively within Kiessling, 2002; Chen 

488 et al., 2019; Waters et al., 2016; Buatois and Mángano, 2018).

489 The trends shown in Figure 1 are simplified, particularly with respect to secondary 

490 organisms. For example, certain microbiota could be argued to have played a secondary role 

491 in almost all of the signatures listed. We have also shown only proactive instances where 

492 signatures have been directly induced or dampened by taxa: later interactions with other taxa 

493 clearly exist but are not illustrated (e.g., the influence of grazing metazoans on microbialites 

494 (Riding, 2006) or human modification of coal deposits, coral reefs, or river systems (Goudie 

495 and Viles, 2016; Williams et al., 2016; Gibling, 2018)).

496 With these caveats, the examples shown in Figure 1 are amongst the most often reported 

497 biosphere signatures, and this section provides a brief review and explanation of each of 

498 them.  

499 4.1.  Drivers of biosphere signatures

500 The taxa shown in Figure 1 primarily follow the same groupings as those used in Bar-On et 

501 al. (2018), who reported that these groups comprise the most voluminous biomass at the 

502 present day. We have also included taxa omitted by Bar-On et al. (2018), namely: Porifera, 

503 because of their notable contribution to siliceous sedimentary rocks (e.g., Maliva et al., 1989; 

504 Kidder and Erwin, 2001); tetrapods and reptiles, because of their prominent body fossil 

505 records; and angiosperms, grasses and trees, as subdivisions of land plants with particular 

506 roles in the creation of the SSR.

507 Since the purpose of Figure 1 is to illustrate correlation between the tangible fossil record and 

508 the physical SSR, the apparent origins of the taxa included refer to the earliest unequivocal 
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509 body fossil remains of total group representatives of such organisms, rather than origins 

510 inferred from indirect evidence (e.g., trace fossils; here considered a BDS component of the 

511 SSR) or phylogenetic predictions. Earliest occurrences have been determined from the papers 

512 listed in Table 2, which we consider to make the least equivocal and most widely-accepted 

513 claims, though we offer the following caveats: (1) the fossil record of microbial organisms is 

514 inherently opaque and a number of doubtful “earliest” claims have been made (e.g., see 

515 discussion in Allwood et al., 2018): to maintain a cautious estimate, we here use the earliest 

516 unequivocal stromatolites (Allwood et al., 2006; Knoll and Nowak, 2017) as a proxy for the 

517 origins of Archaea, Bacteria and viruses, but concede that this is extremely uncertain; (2) we 

518 have depicted the origin of fungi based on the earliest fossils of fungi-like filaments that have 

519 recently been reported from the Palaeoproterozoic (Bengtson et al., 2017; Loron et al., 2019), 

520 but note that confident identification of fungal fossils is problematic due to widespread 

521 convergence on a filamentous habit; if the recently reported instances were excluded, then the 

522 other oldest putative fungi would be Mesoproterozoic (Butterfield, 2005) or Silurian (Smith, 

523 2016), and the earliest confidently identified crown group fungi would be Devonian 

524 (Peckmann et al., 2008); (3) the earliest known fossils of some taxa, such as protists and 

525 nematodes, likely post-date their true origins by a substantial interval, due to the poor 

526 preservation potential of these taxa; and (4) when reported fossils need to be attributed to 

527 groups with debatable (e.g. paraphyletic) definitions (e.g., bird, fish, mammal, reptile, 

528 tetrapod), we have made a judgement call based on how likely the reported fossil organism 

529 would have been to interact with Earth surface processes in a manner comparable to extant 

530 organisms of that group.

531 4.2.  Examples of BDS: Lithologies

532 Sediments that are all or partially formed from the dead tissues or detritus of once-living 

533 organisms, or which have been precipitated as a result of organism metabolism, are clearly 
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534 recognisable as biogenic lithologies. Examples of BDS lithologies are shown in Figure 8, and 

535 discussed in the following section.

536 4.2.1. Microbialites and Microbialite limestones

537 Stratigraphic range: Isolated stromatolites are known from the Palaeoarchean (3.45 Ga) 

538 Strelley Pool Chert of Western Australia (Allwood et al., 2006). Extensive microbial 

539 carbonates are known from Neoarchean (2.55 Ga) successions in South Africa (Riding, 

540 2011).  Microbialites and microbialite limestones thus have a range from the Archean to 

541 present (Riding, 2000) (Figure 8A-C).

542 Primary Organisms and Role: Various microbiota which induce the precipitation of minerals 

543 including carbonates (Riding, 2008).  While Bacteria, Archaea and certain protists have long 

544 been identified as playing key roles in microbialite production, recent work also shows how 

545 viruses can act as loci for crystal nucleation (Perri et al., 2018) and rupture cyanobacterial 

546 cells to release bicarbonate (Lisle and Robbins, 2016).

547 Further Information: Microbiota may both contribute to and promote carbonate precipitation, 

548 so different microbialites and microbial limestones may variably be classed as both BDS and 

549 BIS.  Extensive reviews of microbialites and microbial carbonates are presented by Riding 

550 (2000, 2006, 2008, 2011), who describes how microbialites have evolved through time.  

551 Riding (2000) notes that the time from the Neoarchean to the end of the Mesoproterozoic was 

552 the acme of stromatolite microbialites, with a decline in abundance beginning in the 

553 Neoproterozoic.  Microbialite limestones are reported to have exhibited other abundance 

554 peaks in the Cambrian to Early Ordovician, Late Devonian to Early Carboniferous and Mid-

555 Triassic to Early Cretaceous, and microbial contribution to ‘metazoan’ and ‘abiotic’ 

556 limestones remains significant throughout the Phanerozoic (Riding, 2000, 2011).

557 4.2.2. Bioclastic limestones
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558 Stratigraphic Range: The oldest bioclastic limestones known are formed from fragments of 

559 early biomineralizing organisms such as Cloudina and Namacalathus (Figure 8D), found in 

560 multiple latest Ediacaran fossil localities globally, including in Paraguay, China, Brazil and 

561 Namibia (e.g. Grant, 1990; Warren et al., 2013; Cai et al., 2019). After their first occurrence 

562 in the terminal Ediacaran, later occurrences throughout the Phanerozoic SSR fluctuate and 

563 evolve in their diversity and composition, coeval with evolutionary histories of different 

564 benthic calcareous organisms (Wilkinson, 1979).

565 Primary Organisms and Role: Shelly metazoans, calcareous algae and foraminifera, often 

566 boosted by biomineralizing micro-organisms (James and Jones, 2016).

567 Further Information: The formation of bioclastic limestones (comprising a significant 

568 proportion of clasts derived from skeletal material) first required the evolution of a calcareous 

569 shelly biota in the latest Ediacaran (Porter, 2007; Wood et al., 2017; Cai et al., 2019). The 

570 skeletal mineralogy of these organisms has fluctuated between calcite and aragonite with 

571 changes in ocean chemistry over geological time (e.g., Turchyn and DePaolo, 2019). There is 

572 a general increase in the diversity of calcareous organisms over time (Figure 8D-F), and 

573 modern carbonate-producers begin to come to prominence from the middle Mesozoic 

574 onwards (Stanley and Hardie, 1998; Veizer and Mackenzie, 2014). 

575 4.2.3. Coal and peat

576 Stratigraphic Range: Coal appears worldwide in the Middle Devonian SSR (Kennedy et al., 

577 2013). An apparent global absence of coal in the earliest Triassic has been ascribed to the 

578 mass extinction of terrestrial flora during the PT Event (Retallack et al., 1996; Benton and 

579 Newell, 2014), but the lithology recovered in the Middle Triassic (albeit with a different 

580 maceral composition), and coals (or their unlithified equivalent, peat), have persisted on 

581 Earth to the present day (Figure 8G-H).
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582 Primary Organisms and Role: The accumulation of the first coal deposits required sufficient 

583 areal coverage and persistence of a lignin-bearing terrestrial flora (particularly woody trees).  

584 Since the earliest coal deposits, various fungi have played a role in the accumulation and 

585 partial decay of woody material, prior to its coalification (Nelsen et al., 2016).

586 Further Information: Coal is defined as a combustible rock resulting from the compaction of 

587 plant remains, containing over 50% by weight and over 70% by volume of carbonaceous 

588 material (Schopf 1966).  Precursor lithologies of carbon-rich coaly shales, formed within 

589 incipient smaller-stature plant communities, first appear in Early Devonian strata (Kennedy et 

590 al., 2013). The subsequent global distribution of coal is tectonically and climatically 

591 controlled: Carboniferous coals are most common in regions that formed equatorial 

592 Euramerica, whilst the assembly of Pangea, and the Kasimovian collapse of equatorial 

593 rainforests (DiMichele, 2013), means that the location of Permian coal deposition can be 

594 tracked towards progressively higher palaeolatitudes during that period (Hilton and Cleal, 

595 2007).  Major evolutionary shifts in the dominant vegetation of ancient coal forests are also 

596 suggested to be reflected in the internal properties of coals. Collinson and Scott (1987) 

597 suggested that Carboniferous coals (dominantly formed from arborescent lycopsids) differ 

598 from Cretaceous and younger coals (dominantly formed by taxodiaceous conifers) in terms of 

599 their degree of compression, maceral composition, and number of coal splits (i.e., clastic 

600 layers within coal successions).

601 4.2.4. Chalk and calcareous ooze

602 Stratigraphic Range: Jurassic chalk deposits are present (though uncommon), but the 

603 lithology has persisted in the SSR since that time (Bernoulli and Jenkyns, 2009).  
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604 Primary Organisms and Role: Chalk is a pelagic carbonate sedimentary rock predominantly 

605 formed from coccolithophore fragments; thus the Triassic evolution of calcifying haptophytes 

606 (De Vargas et al., 2007) was a prerequisite for its accumulation.

607 Further Information: After the first appearance of chalk accumulations in the Jurassic, their 

608 abundance fluctuated in line with tectonic and climatic controls on the location of the calcium 

609 carbonate compensation depth within sediment-accumulating basins: the lithology is globally 

610 most common in Cretaceous North American and European successions (Figure 8I) where 

611 regional basin and sea-level conditions promoted its accumulation (Bernoulli and Jenkyns, 

612 2009). Whilst chalk is a rock type and thus restricted to the lithified SSR, coccoliths remain a 

613 significant component of modern, deeper marine calcareous oozes (James and Jones, 2016).

614 4.3.  Examples of BDS: Materials

615 Biogenic materials are dead tissue, waste product, or other matter that require direct 

616 manipulation by organisms.  BDS materials are illustrated in Figure 9.

617 4.3.1. Fecal pellets and bromalites

618 Stratigraphic Range:  The earliest fecal pellets in the SSR are known from the earliest 

619 Cambrian (Fortunian) Lontova and Voosi formations of Estonia (Figure 9A; Slater et al., 

620 2018): they diversify and persist for the remainder of the Phanerozoic (Figure 9B).

621 Primary Organisms and Role: Bilaterian metazoans with a through-gut, enabling 

622 alimentation and excretion of novel biomaterials.

623 Further Information: Material processed through the digestive systems of animals can enter 

624 the SSR in the form of faecal pellets or coprolites (or the more inclusive category of 

625 bromalites). In most instances, where these structures are recognisable they may form only a 

626 minor element of the host sediment, but on occasion their accumulation may reach rock-
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627 forming proportions. Examples of such include the huge volumes of primary carbonate mud 

628 produced within the intestines of teleost fish in the modern tropical carbonate factory (Perry 

629 et al., 2011; Salter et al., 2012), as well as  many peloidal carbonates, phosphate deposits and 

630 some terrestrial soils. Even where cohesive gut-processed material cannot be identified in the 

631 form of recognisable coprolites, modern analogue indicates that all non-chemosynthetic 

632 ecosystems below the photic zone rely on the sedimentation of marine snow. Packaging of 

633 surface water organic materials by pelagic animals provides a fundamental link between the 

634 phytoplankton and the benthos. The rain of organic particles from surface waters to the 

635 seafloor is reliant on processing and clumping into larger particles by zooplankton, and 

636 particularly macrozooplankton (Turner, 2002), since the sinking rate of small particles is too 

637 slow for such material to reach a sedimentary sink before being dissolved or recycled in the 

638 water column. This enhanced export and basis of the modern biological-pump was essentially 

639 ‘invented’ by the evolution of zooplankton grazers in the Cambrian (Logan et al., 1995; 

640 Butterfield, 1997). The processing of material by planktonic metazoans is thus a critical step 

641 in the formation of many marine oozes and other deep sea sediments (e.g., Smayda 1971). 

642 None of these pathways, structures or processes could have formed on Earth prior to the 

643 evolution of the bilaterian through-gut. Identifiable coprolites first appear in marine facies in 

644 the Cambrian, post-dating the late Ediacaran or earlier evolution of  total group bilaterians. 

645 This onset in the SSR possibly represents the first packaging of materials within a peritrophic 

646 membrane, and/or other forms of digestion that are more likely to produce cohesive 

647 coprolites. The earliest known vertebrate coprolites are Ordovician in age (Aldridge et al., 

648 2006), the earliest terrestrial coprolites recorded are Silurian (Edwards et al., 1995), and 

649 recycling of fecal sediment by coprophages is known from at least the Late Cretaceous (Chin 

650 and Gill, 1996), each reflecting the Phanerozoic evolution of producers and their preferred 

651 habitats.
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652 4.3.2. Inertinite and charcoal

653 Stratigraphic Range: The earliest instances of inertinite are known from the late Silurian of 

654 Estonia and Sweden (Diessel, 2010) and it persists in the SSR thereafter. The first 

655 accumulations of charcoal are known from the latest Silurian (Přídolí) Downton Castle 

656 Formation of England (Figure 9C; Glasspool et al., 2004).

657 Primary Organisms and Role: Land plants, both as a fuel source and by creating a fire-

658 sustaining atmosphere.

659 Further Information: Inertinite is a common maceral within coal and forms a minor 

660 carbonaceous component of other lithologies. It records plant material that has undergone 

661 incomplete combustion during wildfires, and thus requires both vegetative matter as fuel and 

662 the requisite atmospheric oxygen to sustain combustion (the latter factor itself promoted by 

663 plant photosynthesis) (Diessel, 2010). The oldest late Silurian instances of inertinite 

664 correspond approximately with the origins of vascular plants, reflecting the ongoing 

665 evolution of land plants as both a combustible fuel and a source of fire-sustaining oxygen 

666 (Figure 9C-D). Subsequent stratigraphic variance in the abundance of the maceral is well-

667 documented as resulting from tectonic and climatic changes (e.g., a global decline in 

668 inertinite abundance at the start of the Permian, reflecting Pangean aridification [Virgili, 

669 2008; Diessel, 2010]).

670 4.3.3. Plastics

671 Stratigraphic Range: Plastics are considered here as biologically-dependent materials 

672 because they are absent from the rock record until their first creation by humans in the latest 

673 Holocene (19th century), but are now common particles of sediments across different 

674 environments (Figure 9E-F; Zalaciewicz et al., 2016).  

675 Primary Organisms and Role: Humans as creators of plastic waste.
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676 Further Information: Plastics are a novel component of the SSR (i.e., having a different range 

677 of densities and shapes in comparison to mineral grains), which were absent from the planet 

678 until a required threshold set of biological anthropogenic (technological) circumstances had 

679 been crossed.  While a multitude of other anthropogenic materials and properties of the SSR 

680 exist (e.g., Waters et al., 2016), plastics are considered to be one of the most significant 

681 anthropogenic contributors to modern sediments (Zalaciewicz et al., 2016).  Unique plastic-

682 related lithologies include conglomerates formed by the melting of plastic on volcanic islands 

683 (Corcoran et al., 2014): while such instances are highly localized and may lack longevity in 

684 the SSR over geological timescales, the spread of particulate microplastic to rivers and 

685 marine basins suggests that some traces of the material may have long-term preservation 

686 potential (Zalaciewicz et al., 2016; Kane and Clare, 2019).  Plastics are an example of a 

687 biologically-dependent material that have a delayed onset relative to the evolution of the 

688 organism that acted as the driver behind their existence (i.e., plastics appear c. 0.15 ka 

689 whereas Homo sapiens originated c. 315 ka (Hublin et al., 2017)), as they additionally 

690 required the origination of particular behaviours in their driver organism (i.e., hydrocarbon 

691 discovery, plastic invention,  mass manufacture, and widespread indifferent disposal).

692 4.4.  Examples of BDS: Structures

693 Structures are patterns or constructions within sediment, sculpted or imparted either directly 

694 or indirectly by living or dead organisms, and with the potential to be preserved within 

695 sedimentary strata. Examples of BDS structures are shown in Figure 10.

696 4.4.1. Burrows

697 Stratigraphic Range: The oldest definitive infaunal burrows date from the late Ediacaran 

698 (reviewed in Buatois and Mángano, 2016). Burrows, as an umbrella grouping, are known 

699 from every subsequent stratigraphic interval of the SSR until the present day (Buatois and 
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700 Mángano, 2018), and show a progressive diversification of architectures (Buatois et al., 2017) 

701 and expansion into new environmental niches (e.g., their first appearance in non-marine strata 

702 in the latest Silurian; Minter et al., 2016, 2017; Shillito and Davies, 2017) (Figure 10A-D).

703 Primary Organisms and Role: Representatives of numerous metazoan phyla and some 

704 protists, excavating burrows for feeding, locomotion, or dwelling, through a variety of 

705 different mechanisms in different sediment types (e.g., Dorgan et al. 2006; Dorgan, 2015). 

706 Note that Figure 1 shows only organisms that have been inferred to create burrows in the 

707 SSR: for example, although both ornithopod dinosaurs (Varricchio et al., 2007) and modern 

708 birds (McGowan et al., 2018) are known burrowers, as yet there appears to be no recognised 

709 trace fossil record of bird burrows. Additionally, the types of organisms forming burrows, 

710 their methods of burrow excavation, and environmental impact vary immensely through 

711 geological time and ‘burrows’ is an extremely broad category: for example, meiofaunal 

712 burrows from the Ediacaran (Parry et al., 2017) are fundamentally different in their signature 

713 and effects to the traces of life in the SSR reflected by the earliest vertebrate burrows (e.g., 

714 suspected fish burrows in Devonian strata: Friedman and Daeschler, 2006) or anthropogenic 

715 tunnel systems (Zalasiewicz et al., 2014).

716 Further Information: Some cnidarians are capable of producing simple vertical burrows, 

717 while cnidarians and some protists can produce surficial trails (e.g. Matz et al., 2008; Liu et 

718 al., 2010). However, production of all other burrow types requires a hydrostatically 

719 manipulated body cavity (e.g. a coelom) and advanced sensory systems, meaning that their 

720 late Ediacaran appearance in the SSR is likely coincident with the evolution of total group 

721 Bilateria (Budd and Jensen 2000). The evolution of burrowing not only resulted in a new 

722 class of biologically-dependent structures in the SSR, but also had a profound effect on the 

723 nature of sedimentation and Earth surface processes. These impacts include the 

724 transformation of the marine sediment-water interface from an essentially 2D plane to a 
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725 heterogeneous 3D construction (Herringshaw et al., 2017), the physical redistribution of 

726 nutrients and particulate matter (Budd and Jensen 2017), changing the carbon, phosphorus 

727 and sulfur cycles (Canfield and Farquhar, 2009; Boyle et al., 2014, 2018; Lenton and Daines, 

728 2018), the modification of porewater chemistry, and a trophic escalation among the benthos 

729 (McIlroy and Logan, 1999; Mángano and Buatois, 2017). The precise timing and details of 

730 how intensified bioturbation caused these secondary effects is discussion topic of current 

731 investigation (e.g., determining an early [Mángano and Buatois, 2017; Gougeon et al., 2018] 

732 versus late [Tarhan et al., 2015] acceleration). Specific burrow structures can be seen to 

733 evolve in terms of their size, depth and environmental facies preferences within the SSR, 

734 subsequent to their initial evolution: for example, the increased depth of penetration and 

735 shifting (offshore) environmental preferences of Zoophycos burrows following their 

736 Cambrian evolution (Zhang et al., 2015).  

737 4.4.2. Coral reefs

738 Stratigraphic Range: The earliest reef-forming corals occur in the early Cambrian of South 

739 Australia (Fuller and Jenkins, 2007), and large-scale coral reefs are known intermittently 

740 throughout the SSR from the Middle Ordovician onwards (James and Wood, 2010), with 

741 particular abundance after the Mesozoic evolution of scleractinian corals (Lipps and Stanley, 

742 2016).

743 Primary Organisms and Role: Cnidarians as reef constructors, extracting calcium and 

744 carbonate ions from seawater to construct their skeletons.

745 Further Information: Coral reefs are the largest biotic constructions that currently exist on 

746 Earth (Dietrich and Perron, 2006). Coral evolution since the first large-scale reefs in the 

747 Middle Ordovician has meant that the types of reef-forming coral have changed through 

748 geological time (for example the Mesozoic shift from tabulate and rugose corals to 
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749 scleractinian corals) (Figure 8F, Figure 10E-F), and the abundance of such reefs has 

750 fluctuated due to biological, tectonic and climatic change, as well as competition from other 

751 reef-building organisms (e.g., Chen et al., 2019). Nonetheless, such structures (and associated 

752 environments such as storm-protected back reef environments) have a defined, biologically-

753 dependent onset in the SSR. Although scleractinian corals are the principle reef-builders in 

754 modern oceans, as with bioclastic limestones, other metazoan and microbial reefs and reef 

755 mounds exist with their own trends within the SSR (for example, Cambrian Archaeocyatha or 

756 Jurassic–Cretaceous rudist bivalves (Wood, 1995, 2017; Zhuravlev, 2001)).  

757 4.4.3. Root structures

758 Stratigraphic Range: Putative root-like structures exist in the latest Silurian (Figure 10G), 

759 and definitive root traces are known in earliest Devonian strata within the Old Red Sandstone 

760 of the Anglo-Welsh Basin, UK (Hillier et al., 2008). Root structures are subsequently 

761 persistent throughout younger non-marine and marginal marine strata (Figure 10H), with 

762 variable diversity of form and depth of penetration (Algeo and Scheckler, 1998).

763 Primary Organisms and Role: Land plants anchored with in-sediment roots, plus symbiotic 

764 mycorrhizal fungi.  

765 Further Information: Root structures are sedimentary structures formed by the casting of 

766 decayed plant roots within heterolithic sediment (Hillier et al., 2008), or can occur as 

767 rhizoliths with associated calcrete (Brasier, 2011).  Recorded fossil material of fully vascular 

768 plant roots (with meristems) are known as carbonaceous impressions from around the same 

769 time as the earliest root casts, from the Early Devonian of Scotland and Wyoming 

770 (Matsunaga and Tomescu, 2016; Hetherington and Dolan, 2018).  After their first 

771 appearance, root structures vary in their diversity of form and depth of penetration, reflecting 

772 the continuation of botanic evolution (Algeo and Scheckler, 1998) as well as progressive 
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773 tracheophyte co-evolution with symbiotic mycorrhizal fungi (Brundrett and Tedersoo, 2018). 

774 Related to roots, recent descriptions of surface trenching and penetrative tunnels, attributed to 

775 the actions of bacteria, fungi and exudates in cryptogamic ground covers (Mitchell et al., 

776 2019) may also prove to be BDS in the SSR, although their simplicity of form would require 

777 careful consideration of issues of equifinality.

778 4.4.4. Trample-grounds

779 Stratigraphic Range: The earliest trample-grounds reported from the SSR occur within Late 

780 Triassic strata from at least two locations: (1) the Chinle Formation of Arizona, where they 

781 are associated with fossilized reptile nests (Hasiotis and Martin, 1999); and (2) the Flemming 

782 Fjord Formation of east Greenland, where they are associated with large theropod dinosaur 

783 trackways (Milan et al., 2004). They remain relatively common in non-marine sedimentary 

784 facies throughout the Mesozoic and Cenozoic.

785 Primary Organisms and Role: Large animals with sufficient weight to load unconsolidated 

786 sedimentary substrates and/or repeatedly congregate in large groups at the same place. 

787 Known examples in the SSR include trample-grounds associated with nesting reptiles 

788 (Hasiotis and Martin, 1999), extremely large terrestrial animals such as dinosaurs (Figure 

789 10I) and mammoths (McNeil et al., 2007; Milan, 2011), and herding, predator avoidance and 

790 congregational feeding activity of large birds (Scott et al., 2012) and mammals (Bromley et 

791 al., 2009).

792 Further Information: Trample-grounds form when the integrity of shallow subsurface 

793 sediment layers is disturbed by the weight of large organisms congregating and moving 

794 across a substrate.  They are preserved in the rock record as localized patches of soft-

795 sediment deformation and mixing of heterolithic strata, extending up to a metre beneath a 

796 former substrate. Sometimes these are preserved immediately below discrete footfall 
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797 impressions (for the largest trample-ground makers, such as dinosaurs: Milan et al., 2004; 

798 Shillito and Davies, 2019b). Their formation requires both overburden pressure from heavy 

799 organisms, plus waterlogged sediment that can behave thixotropically when deformed under 

800 the weight of the animal. Large terrestrial tetrapods have existed since at least the 

801 Carboniferous but the largest trackways associated with these animals do not appear to have 

802 left a definitive trample-ground record: large animals such as Dimetrodon are known to have 

803 left ‘ploughed’ furrows (Van Allen et al., 2005) but do not appear to have had the critical 

804 mass to deform substrates at depth.  

805 4.5.  Examples of BDS: Facies

806 Sedimentary facies are groupings of sedimentary signatures that are seen to recur in multiple 

807 sedimentary successions. Facies assemblages are ascribed to particular depositional 

808 environments, because those environments are known to promote the co-occurrence of 

809 particular sedimentary signatures. Of all the biosphere signatures listed, these are most prone 

810 to potential error in their ranges because they first must be abductively interpreted and 

811 defined by geological observers. Nonetheless, instances of sedimentary facies that have 

812 defined stratigraphic ranges, or which, by definition of their formative environment, required 

813 particular life-forms, have been reported. Examples of BDS are discussed and defined in the 

814 following section, and illustrated in Figure 11.

815 4.5.1. Anastomosing fluvial facies

816 Stratigraphic Range: The earliest reported anastomosing fluvial facies occur in the early 

817 Carboniferous (Kekiktuk Formation, Alaska; Melvin, 1993), and persist as a potential facies 

818 style thereafter.

819 Primary Organisms and Role: Anastomosing rivers are a geomorphic sub-category of 

820 anabranching rivers, defined as consisting of multiple channels with vegetated semi-
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821 permanent alluvial islands that have either been excised from an existing floodplain or 

822 formed within channels (Nanson and Knighton, 1996). Their appearance in the rock record 

823 required adaptations within trees and other large land plants which enabled them to colonize 

824 well-drained levees, stabilize islands, and provide large-woody debris to encourage channel 

825 switching through avulsion (Davies and Gibling, 2011, 2013).

826 Further Information: Anastomosing river facies are identified by a combination of features 

827 including multiple fixed-channel ribbon sand bodies along common stratigraphic horizons, a 

828 high mudrock to sandstone ratio, evidence for vertical accretion of channels, evidence for 3D 

829 channel networks, and crevasse splay and levee deposits (Davies and Gibling, 2011). They 

830 are absent from the SSR prior to the Mississippian, suggesting a stratigraphic lag after the 

831 evolution of the first (Devonian) trees (Stein et al., 2012), possibly due to the protracted 

832 adaptation of traits such as increased arborescence, mechanically-complex wood or the 

833 capacity to colonize well-drained substrates: all of which conspire to force the development 

834 of anastomosing river landscapes (Davies and Gibling, 2013).

835 4.5.2. Salt marsh facies

836 Stratigraphic Range: The earliest reported salt marsh facies in the SSR occur within the Late 

837 Cretaceous (latest Cenomanian, c. 94 Ma) Peruc-Korycany Formation, Czech Republic 

838 (Uličny and Špičáková, 1997; Martinius and Van den Berg, 2011). As salt marshes are 

839 geologically-ephemeral environments, with ‘life-spans’ of only a few thousand years 

840 (Fagherazzi, 2013), the oldest extant salt marshes are Holocene.    

841 Primary Organisms and Role: By definition, the earliest salt marshes could not have formed 

842 until after the evolution of halophytic vegetation. Halophily may independently have arisen 

843 multiple times since the evolution of the first land plants (Flowers et al., 2010; Cheeseman, 

844 2015), and exceptionally preserved fossils from the Rhynie Chert suggest that salt-tolerance 
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845 was already present within some Early Devonian flora (Channing and Edwards, 2009). 

846 Almost all modern halophytes (and all of Earth’s extant salt marsh flora) are angiosperms 

847 (Flowers et al., 2010; Cheeseman, 2015)that have physiological characters that promote 

848 sediment accretion– for example, adventitious roots that promote stability, and flexible 

849 above-ground plant parts that induce dampening of fluid flow and sediment accretion (Mudd 

850 et al., 2010; Moor et al., 2017; Schwarz et al., 2018; Corenblit, 2018). Salt marsh 

851 angiosperms also concentrate drainage into tidal creeks and channels, and sustain topography 

852 and stratal accumulation on salt marshes (Temmerman et al., 2007; Da Lio et al., 2013).

853 Further Information: Presently, the earliest SSR evidence for salt marshes post-dates the 

854 evolution of halophyte angiosperms  (Uličny and Špičáková, 1997; Martinius and Van den 

855 Berg, 2011), but further investigation may reveal analogous environments created by earlier 

856 halophytic plant life. Interpreting salt marsh sedimentary facies from the rock record can be 

857 hindered by issues of equifinality, and is reliant on multiple strands of evidence: dark 

858 coloured mudrocks, with a high total organic carbon content, which may yield compacted 

859 halophyte leaf litter fossils, rootlets and marine microfossils, and which occur in association 

860 with transgressive surfaces (Uličny and Špičáková, 1997). The Late Cretaceous rise of salt 

861 marshes appears to mirror that of mangroves (Ellison et al., 1999): however, in that instance 

862 there is limited interaction with sediment, so the biogeomorphic environment is primarily 

863 recorded by certain mangrove fossil species.

864 4.6.  Examples of BIS: Lithologies

865 Examples of BIS lithologies (chert) are shown in Figure 12.

866 4.6.1. Chert (non-detrital and non-hydrothermal) and siliceous ooze

867 Stratigraphic Range: Cherts of all kinds are known throughout the SSR from the Archean, 

868 and occur with variable abundance throughout the rest of the Precambrian and Phanerozoic, 
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869 in part because of strong biological influence on non-detrital and non-hydrothermal 

870 cherts(Kidder and Erwin, 2001; Maliva et al., 2005). 

871 Primary Organisms and Role:  Various silica-biomineralizing organisms. In modern ocean 

872 environments, seawater is bereft of dissolved silica principally because of its removal by 

873 silica-secreting diatoms, but other silica-biomineralizing taxa include radiolaria, 

874 silicoflagellates, sponges and grasses. The biogenic silica produced by these organisms can 

875 become deposited as opal, cherts (bedded and nodular), and siliceous mudstones. The 

876 spatiotemporal distribution and abundance of non-detrital and non-hydrothermal siliceous 

877 marine-deposited sediments throughout the SSR has been perturbed by the evolution of silica 

878 biomineralizers (Maliva et al. 1989, 2005; Siever 1992; Kidder and Erwin, 2001).

879 Further Information: Cherts can be either abiogenic or biogenic, so are classed here as a 

880 biologically-influenced lithology. Prior to the evolution of the major Phanerozoic silica-

881 secreting groups of organisms, the oceans are predicted to have exhibited much higher levels 

882 of dissolved silica, and consequently the Precambrian silica cycle was fundamentally 

883 different to that of today (Siever 1992). Pre-Phanerozoic silica-saturated ocean surface waters 

884 could become concentrated further in shallow, restricted environments, as is evident in the 

885 SSR from the prevalence of diagenetic cherts in ‘sabkha’-like supratidal, peritidal or shallow 

886 water environments from this time (Kidder and Erwin 2001). Arguably the first biotically-

887 driven change in the spatiotemporal concentration of siliceous sediments that can be detected 

888 in the SSR is roughly coincident with the Ediacaran–Cambrian boundary: the early diagenetic 

889 silica that was more abundant in late Proterozoic shallow marine facies largely migrates 

890 towards deeper shelf environments during the earliest Palaeozoic. This retreat of shallow-

891 water siliceous deposition has been widely associated with the drawdown of marine silica 

892 concentrations following the evolution of siliceous demosponges (Siever 1992; Kidder and 

893 Erwin 2001; Butterfield 2003), later followed by the Ordovician radiation of radiolarians. 
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894 During the Palaeozoic, radiolarians were the dominant silica-secreting plankton, and a 

895 substantial sediment-forming clade in their own right (i.e., radiolarite, a form of biogenic 

896 bedded chert composed of radiolarian tests). These were later joined by other silica-secreting 

897 phytoplankton forms (e.g., Dictyochales) before diatoms became the dominant siliceous 

898 plankton during the Cretaceous and Cenozoic. The major Oligocene–Miocene radiation of 

899 diatoms is itself closely tied to the expansion of grasslands and the resulting increased silicate 

900 weathering on the continents, triggered by the incorporation of opal phytoliths by grasses 

901 (Falkowski et al. 2004). The evolution of these major silica biomineralizing clades has left a 

902 statistically detectable signal in the SSR which can be split into four phases; 1) Precambrian 

903 dominantly abiogenic cherts, deposited primarily in silica-saturated peritidal shallow marine, 

904 or hydrothermal, environments; 2) a Cambrian to Ordovician transitional phase, with a mixed 

905 distribution (shallow and deep marine) of cherts; 3) Silurian to Cretaceous cherts, where 

906 bedded cherts are largely controlled by deposits of radiolarian skeletons and sponges, and 

907 abundant nodular cherts form in platform sediments and shallow-water carbonates; 4) a 

908 Cenozoic phase largely dominated by deep sea bedded cherts and controlled primarily by 

909 diatoms (Maliva et al. 1989). The progressive desaturation of seawater during the 

910 Phanerozoic with respect to silica could not have happened in the absence of the evolution of 

911 silica biomineralizers. The evolution of these clades not only provided the raw materials for 

912 the formation of biogenic siliceous sediments, but also altered the environment of deposition, 

913 diagenesis, and the distribution of non-detrital silica deposition.

914 4.7.  Examples of BIS: Materials

915 Examples of BIS materials are shown in Figure 13.

916 4.7.1. Pedogenic clay minerals
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917 Stratigraphic Range: Pedogenic clay minerals are present throughout the SSR, but diversify 

918 in conjunction with biological evolution (Hazen et al., 2008, 2013).

919 Primary Organisms and Role: While the evolution of life in general, and photosynthesis, are 

920 thought to have influenced clay mineral diversity (Hazen et al., 2013), there is limited fossil 

921 evidence to demonstrate direct linkages. However, the role of plants and mycorrhizal fungi in 

922 expanding the critical zone of chemical weathering (Knoll and James, 1987; Moulton et al., 

923 2000; Pate et al., 2001; Verboom et al., 2010) is thought to explain at least 60 clay minerals 

924 that are known today, but which are absent in pre-Silurian strata.

925 Further Information: The diversity of phyllosilicate clay mineral species changes throughout 

926 the SSR. Hazen et al. (2013) related stages of clay mineral evolution to ten different stages of 

927 Earth evolution, some biological (e.g., the evolution of life), some tectonic (e.g., the initiation 

928 of plate tectonics) and some atmospheric (e.g., the Great Oxidation Event). Clay minerals are 

929 suspected to have existed on Earth even before the oldest preserved sedimentary rock in the 

930 SSR (Hazen et al., 2013), and have thus been a component of pedogenic (soil) successions 

931 since the Archean (Figure 13A). 

932 4.7.2. Calcrete

933 Stratigraphic Range: The oldest purportedly pedogenic calcretes have been reported from 2.6 

934 Ga palaeosols from South Africa (Watanabe et al., 2000; Brasier, 2011). They occur 

935 throughout the global Precambrian and Phanerozoic SSR, with an increased abundance after 

936 the Silurian (Davies and Gibling, 2010a).

937 Primary Organisms and Role: Vascular plants, from the Silurian onwards, and vascular 

938 plants with roots and associated mycorrhizal fungi, are thought to have released significant 

939 amounts of calcium ions from silicate rocks, promoting calcrete formation (Brasier, 2011).  

940 Brasier (2011) suggested that other organisms to play a role include arthropods (e.g., calcified 
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941 cocoons and fecal pellets), from the Silurian onwards (Esteban and Klappa, 1983), as well as 

942 bacteria, algae and fungi, which may have contributed to calcite precipitation in pre-Silurian 

943 strata.

944 Further Information: Calcretes are mineral accumulations of calcium carbonate which form 

945 at the near-surface of sediment accumulations in non-marine settings (Wright and Tucker, 

946 1991) and precipitate both in soils and from subterranean groundwaters (Brasier, 2011). 

947 Oversaturation of groundwater with calcium carbonate is not a wholly biologically-dependent 

948 scenario, but it is biologically-influenced. The occurrence of calcretes in the SSR increases 

949 dramatically in line with tracheophytic vegetation because of the enhanced chemical 

950 weathering of calcium silicates and increased atmosphere-substrate connectivity provided by 

951 plant roots (Davies and Gibling, 2010a; Brasier, 2011) (Figure 13B-C). 

952 Plant and microbial bioengineering is also strong contributive factor for other soil duricrusts 

953 (e.g., silcretes, ferricretes) in modern semi-arid environments (Verboom and Pate, 2006). 

954 Further investigation of such features in the SSR is needed to see if their stratigraphic 

955 distribution mirrors that of calcretes.

956 4.8.   Examples of BIS: Structures

957 Examples of BIS structures are shown in Figure 14.

958 4.8.1. Sole marks

959 Stratigraphic Range: Sole marks occur in strata as old as the Archean (Figure 14A; e.g., the 

960 Witwatersrand Group, South Africa; Beukes, 1996) and are present throughout the rest of the 

961 geological time scale, but apparently diminish in abundance after the early Palaeozoic (Figure 

962 14B; Tarhan, 2018).
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963 Primary Organisms and Role: Bioturbating organisms reduce the cohesiveness and sediment 

964 stability of substrates (de Deckere et al., 2001) and force the amalgamation of surface 

965 contacts between sedimentary strata (Tarhan, 2018). Accordingly, the evolution of 

966 bioturbation is argued to have reduced the frequency of both the production of sole marks 

967 (which require a hydroplastic substrate) and the preservation of sole marks (due to mixing of 

968 heterolithic sediments and reduced preservation of bed-junctions) (Tarhan, 2018).

969 Further Information: Sole marks include a variety of tool and prod marks, as well as flute 

970 and groove casts created by fluids. Tarhan (2018) compiled a dataset of global reports of such 

971 features and showed that they diminished drastically after the Cambrian. This was attributed 

972 to the explosion of bioturbating behaviour in the shallow marine realm. However, sole marks 

973 continued to be created and preserved throughout the rest of the Phanerozoic, albeit appearing 

974 in the SSR with reduced frequency.

975 4.8.2. Flat-pebble conglomerates

976 Stratigraphic Range: Palaeoproterozoic flat-pebble conglomerates have been reported from 

977 the 1.8 Ga Changcheng System in China (Hofmann and Jinbiao, 1981).  Wright and Cherns 

978 (2016a) reported that the youngest flat-pebble conglomerate in the SSR is found in the Early 

979 Jurassic (Toarcian) of Portugal: Kullberg et al. (2001) ascribed those particular flat-pebble 

980 conglomerates to have formed by syn-sedimentary seismic activity and the slumping of 

981 incipiently cemented thin carbonate layers.

982 Primary Organisms and Role: Wright and Cherns (2015a,b) attributed the Phanerozoic 

983 diminishment of flat-pebble conglomerate abundance to the increasing depth of penetration 

984 by evolving burrowing animals, which increased the depth of oxygenation and early 

985 carbonate diagenesis. Prior to this, when diagenetic cementation was concentrated into a thin 

986 upper layer in shallow marine carbonate sediment, any storm activity would have been likely 
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987 to exhume flat-pebble clasts from the thin cap of cemented carbonate sediment on the 

988 seafloor, providing the means to create flat-pebble conglomerates (Figure 14C).

989 Further Information: Flat-pebble conglomerates are matrix or clast supported conglomerates 

990 within carbonate strata that contain tabular-shaped and thin (<20 mm) pebble to cobble sized 

991 clasts comprised of fine grainstone to calcimudstone (Myrow et al., 2004). They are most 

992 common in late Cambrian and Early Ordovician strata and rare in post-Middle Ordovician 

993 strata (Wright and Cherns, 2015a,b). The rare existence of younger flat-pebble conglomerates 

994 (i.e., isolated reports from Silurian, Devonian, Triassic and Jurassic rocks) attests that they 

995 reflect an instance where the evolution of a certain behavioural repertoire among living 

996 organisms made a signature in the SSR less likely. However, as flat-pebble conglomerates 

997 may have multiple origins (Myrow et al., 2004), biological evolution did not totally preclude 

998 later special scenarios that promoted their generation (e.g., seismic reworking of shallow-

999 cemented carbonates: Kullberg et al., 2001).

1000 Other potential BIS related to carbonate weathering and erosion may also exist. For example, 

1001 the dissolution of carbonate rocks in modern karst landscapes is strongly contributed to by 

1002 organic acids and biogenic CO2 (Phillips, 2016a). As such, there may be as yet unrecognised 

1003 shifts in the frequency of palaeokarst surfaces within the SSR. However, the fact that 

1004 dissolution can also occur abiotically, and that the stratigraphic range of palaeokarst extends 

1005 throughout the Precambrian and Phanerozoic (e.g., Cherns, 1982; Kerans and Donaldson, 

1006 1988; Vanstone, 1998; Smith et al., 1999), means that such a possibility requires further 

1007 investigation.

1008 4.8.3. Drip impressions

1009 Stratigraphic Range: The earliest reported occurrence of drip impressions is within late 

1010 Carboniferous units including the Bashkirian Tynemouth Creek Formation, New Brunswick, 
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1011 Canada (Figure 14D; Davies et al., 2016) and the Kasimovian Stranger Formation, Kansas, 

1012 USA (Lanier et al., 1993; Buatois et al., 1997).

1013 Primary Organisms and Role: Trees are implicit in the earliest known examples (Davies et 

1014 al., 2016), but earlier elevated drip-nucleating organisms (e.g., large tetrapods) may have left 

1015 impressions. 

1016 Further Information: Drip impressions are circular or ovate impact craters with a raised 

1017 central mound (Twenhofel, 1921), distinguished from rain drop impressions by a lower 

1018 population density, greater dimensions, and a greater variety of sizes within an individual 

1019 population. They develop in subaerial settings when water droplets nucleate at an elevated 

1020 static point source, pinch off due to gravity, and then fall onto an unconsolidated substrate 

1021 (Figure 14E). Ancient depositional sedimentary environments had markedly fewer elevated 

1022 objects for water to drip from. Modern observations attest that elevated sources of dripping 

1023 may include features such as overhanging cliff ledges or rocky outcrops, but since such 

1024 features are erosional aspects of the landscape these have negligible preservation potential in 

1025 the SSR. It was not until the Devonian evolution of trees and larger animals that elevated 

1026 objects with potential drip nucleation points appeared within depositional sedimentary 

1027 environments. The SSR bears evidence for this since the oldest known drip marks, so far 

1028 reported, occur in Carboniferous strata, suggesting that they may be loosely considered to be 

1029 a ‘vegetation-induced sedimentary structure’ (sensu Rygel et al., 2004) when witnessed in the 

1030 SSR. Examples such as this attest to the fact that signatures of life in the SSR are not always 

1031 directly analogous to life signatures in modern landscapes: at the present day, drip marks may 

1032 be seen to develop from abiotic or biotic point sources, but when witnessed through the lens 

1033 of the SSR they can very rarely have abiotic origins.
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1034 Related to drip marks, other rare sedimentary structures such as splash marks may also be 

1035 BIS (Figure 14F). Splash marks record instances where wet sediment has been kicked up by 

1036 moving animals: such features first require the Cambrian evolution of large tracemakers with 

1037 the capacity to spend at least short intervals on damp subaerial substrates (MacNaughton et 

1038 al., 2002).

1039 4.9.  Examples of BIS: Facies

1040 Examples of BIS facies are shown in Figure 15.

1041 4.9.1. Alluvial mudrock

1042 Stratigraphic Range: Mudrock occurs as a negligible lithology within alluvial strata from the 

1043 Palaeoarchean to Cambrian (Figure 15A; McMahon and Davies, 2018b). The earliest alluvial 

1044 successions to contain greater than 50% mudrock relative to coarser lithologies are latest 

1045 Silurian (Přídolí) in age (Figure 15B) and occur across Euramerica: the Bloomsburg 

1046 Formation, New York, USA (Driese et al., 1992), the Clam Bank Formation, Newfoundland, 

1047 Canada (Quinn et al., 1998), and the Moor Cliffs Formation, Wales (Marriott and Wright, 

1048 2004). Similarly muddy units are found worldwide by the earliest Devonian: for example, the 

1049 Xujiachong Formation, China (Xue et al., 2016).

1050 Primary Organisms and Role: Land plants: (a) by promoting the retention of muds in the 

1051 alluvial realm through above-ground baffling and below-ground stabilization, and (b) by 

1052 promoting chemical weathering and mud production, in concert with mycorrhizal fungi 

1053 (Davies et al., 2017; McMahon and Davies, 2018b; Fischer, 2018). 

1054 Further Information: Mudrocks are siliciclastic sedimentary rocks comprised of grains 

1055 smaller than 0.063 mm diameter (silt: Ilgen et al., 2017).  Alluvial mudrocks are those which 

1056 achieved final resting, before their interment into the SSR, within continental waterlain 

1057 deposits, and are rare in pre-vegetation strata (e.g., Long, 2004). Using data from 704 
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1058 reported Archean-Carboniferous alluvial sedimentary formations, McMahon and Davies 

1059 (2018b) showed a strong stratigraphic positive correlation between the abundance of 

1060 mudrock within alluvial facies and the rise and evolution of land plants. The initial onset of 

1061 this trend appears to occur coevally with the very first record of land plants in the Ordovician, 

1062 and rises in conjunction with the increasing depth of rooting seen throughout the later 

1063 Palaeozoic. The existence of alluvial mudrock that pre-dates the oldest land plants 

1064 demonstrates that land plants did not ‘invent’ alluvial mudrock, but nonetheless, the 1.4 order 

1065 of magnitude rise in alluvial mudrock abundance in syn-vegetation strata (when compared 

1066 with alluvium deposited during the preceding 90% of Earth history) attests that land plants 

1067 played a major role in promoting this environment-specific lithology.

1068 4.9.2. ‘Sheet-braided’ alluvium

1069 Stratigraphic Range: Globally common in units older than and including the early Silurian 

1070 Tuscarora Sandstone, Pennsylvania, USA (Cotter, 1978; Davies et al., 2011), but globally 

1071 rare in younger strata. 

1072 Primary Organisms and Role: Land plants colonizing riparian corridors and subsequently 

1073 inducing an increase in geomorphic complexity and decrease in channel dimensions, leading 

1074 to a dramatic decrease in the frequency of deposition of sheet-braided alluvium (Davies et al., 

1075 2011).

1076 Further Information: ‘Sheet-braided’ alluvium is a facies style that refers to alluvial 

1077 sedimentary successions that are almost uniformly composed of repeated sandstone bodies 

1078 with an aspect ratio greater than 20:1 (Figure 15C-D; Cotter, 1978; Davies and Gibling, 

1079 2010a; Davies et al., 2011; McMahon and Davies, 2018c). The term refers only to rock 

1080 outcrop architecture and not depositional geomorphology (see McMahon and Davies, 2018c). 

1081 Early Silurian and older alluvial units are almost always composed (dominantly or entirely) 
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1082 of sandstone beds of width:thickness ratio 20:1 or more (Long, 2004, 2006, 2011, 2018; 

1083 Davies et al., 2011; McMahon and Davies, 2018c).  In contrast, the ‘sheet-braided’ facies 

1084 style is anomalous globally in late Silurian and younger alluvium (Davies and Gibling, 

1085 2010a; Gibling and Davies, 2012).

1086 4.9.3. Fluvial IHS-LA sets

1087 Stratigraphic Range: The earliest reported occurrence of inclined heterolithic stratification – 

1088 lateral accretion sets (IHS-LA; McMahon and Davies, 2018a) is within the Neoproterozoic 

1089 Allt-Na-Béiste Member of the Diabaig Formation, Scotland (Figure 15E; Santos and Owen, 

1090 2016; McMahon and Davies, 2018a).  Globally they are very rare in fluvial strata prior to the 

1091 latest Silurian, but very common thereafter (Figure 15F).

1092 Primary Organisms and Role: Land plants, encouraging small- to medium-sized fluvial 

1093 channels to adopt a meandering planform through bank stabilization (rooting plus cohesive-

1094 sediment retention) (Davies and Gibling, 2010b; McMahon and Davies, 2018a).

1095 Further Information: Inclined heterolithic stratification, organised into lateral accretion sets, 

1096 is a diagnostic facies signature of meandering channels within fluvial facies (although, 

1097 conversely, not all meandering channels create IHS-LA: Long, 2011; McMahon and Davies, 

1098 2018a). In order to form self-sustaining meanders, small–moderate sized river channels 

1099 require bank stability (Lazarus and Constantine, 2013). While factors such as cohesive 

1100 sediment or ice could provide such stability on pre-vegetation Earth (Davies and Gibling, 

1101 2010a,b), the advent of land plants introduced a new form of biological stability, both directly 

1102 (through rooting) and indirectly (through retaining/producing cohesive sediment). The SSR 

1103 contains very few instances of fluvial IHS-LA sets from before the Siluro-Devonian 

1104 evolution of tracheophyte vegetation, but such facies signatures are extremely common in 

1105 fluvial facies of the SSR in Devonian and younger strata (Davies and Gibling, 2010b).
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1106 5. Implications of viewing the SSR as a part-biological construct

1107 The recognition that incremental stages of biosphere evolution in Earth history have acted as 

1108 unidirectional allogenic sedimentary controls of a higher-order to, and independent of, abiotic 

1109 controls, should not be controversial, but it is presently under-acknowledged. A greater 

1110 understanding of the biosphere’s role in constructing the SSR will inform predictions 

1111 regarding a number of topical concerns in Earth Sciences, as follows:

1112 5.1.  The singularity of Earth amongst known rocky planets

1113 Rover missions on Mars are increasingly returning information regarding the Martian SSR 

1114 (e.g., Stein et al., 2018), enabling direct analogy with that of Earth. Under the present null 

1115 hypothesis that the planet has always been abiotic, Martian sedimentary signatures are 

1116 assumed to provide useful insights into the range of sedimentary attributes that may be 

1117 attained in the absence of life (even having been deposited with other variable parameters to 

1118 Earth; McLennan et al., 2019). Conversely, when considered a target of astrobiological 

1119 interest, the recognition that equifinality hampers the identification of genuine terrestrial 

1120 biological signatures indicates that it is extremely unlikely that diagnostic visual geological 

1121 signals of life will be identified within isolated outcrops of the Martian SSR, such as those so 

1122 far imaged by rovers (Davies et al., 2018; McMahon et al., 2018; Chan et al., 2019; Corenblit 

1123 et al., 2019). In the longer term, an improved understanding of those sedimentary traits that 

1124 can be BIS on Earth, combined with a more refined stratigraphy for Mars and the 

1125 identification of any unidirectional secular trends in the Martian SSR, will open robust 

1126 avenues of exploration for ancient life on the planet.  

1127 5.2.  The historical context of the Anthropocene

1128 The evolution of Homo sapiens and their subsequent technological advances has induced a 

1129 multitude of physico-chemical changes to the Earth surface system, some of which will leave 
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1130 signatures in the future SSR (Waters et al., 2016). Yet from a stratigraphic standpoint, the 

1131 development of novel materials or an induced shift in the frequency distribution of signatures 

1132 of the SSR (Waters et al 2016) does not intrinsically distinguish the Anthropocene from 

1133 earlier intervals of biological innovation (such as those characterised by bioturbation or 

1134 vegetation; Table 3 [Davies and Gibling, 2010; Williams et al., 2014; Mángano and Buatois, 

1135 2017]). Comparable ancient biologically-induced revolutions revealed in the SSR can help to 

1136 frame and inform Anthropocene debate because they are profoundly rare singularities (typical 

1137 >108 year recurrence interval) that often act as irreversible tipping points for Earth surface 

1138 processes. At the same time, the conflation of the concept of a ‘pre-human’ world with that of 

1139 an ‘abiotic’ one (i.e., considering human activity to be the only biological component of 

1140 Earth’s internal dynamics that is a discrete factor alongside astronomical and geophysical 

1141 forcings, e.g., Gaffney and Steffen, 2017), should be avoided, because multiple lifeforms 

1142 were affecting the operation of the Earth system long before human evolution. Further 

1143 investigation and evidence from the SSR will provide informed predictions for the 

1144 consequences of anthropogenic accentuation or reversal of previously-emplaced biologically-

1145 influenced processes (e.g., deforestation or livestock grazing; Goudie and Viles, 2016; 

1146 Horton et al., 2017). A refined understanding of the rates and magnitudes of ancient 

1147 biologically-induced changes will highlight the range and severity of changes to the Earth 

1148 surface system that have the potential to be inflicted on timescales of critical societal 

1149 relevance (Kemp et al., 2015).  

1150 5.3.  The timescales of biological evolution

1151 The recognition of BDS and BIS shifts in the SSR can potentially calibrate evolutionary 

1152 timescales where uncertainty about these has arisen from a suspected incomplete fossil 

1153 record. The body fossil record is less complete than the SSR because it is a ‘record within a 

1154 record’: its incompleteness arises from discovery biases and taphonomic issues of 
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1155 preservation (Holland 2016), as well as requiring preserved SSR to host it. Conversely, one 

1156 of the primary reasons that the SSR is time-incomplete at any given locality is that, during 

1157 intervals of non-deposition or erosion, sediment was being deposited elsewhere on the Earth 

1158 surface (Runkel et al., 2008; Gani, 2017; Paola et al., 2018; Davies and Shillito, 2018; Davies 

1159 et al., 2019). Accordingly, if SSR deposition were being affected by life at a given time 

1160 interval, it is likely that, somewhere, this will have been recorded as an intensive property of 

1161 its constituent strata. This is especially pertinent for the Phanerozoic SSR because (1) this 

1162 encompasses the transition from dominantly subsurface to surface biomass (McMahon and 

1163 Parnell 2018), (2) its fossil record of life is less contentious than in the Precambrian (Brasier, 

1164 2009), so before-and-after SSR traits are readily identifiable, (3) at least 30% of ancient 

1165 global surface area (continental crust) from any one geological period is preserved (Domeier 

1166 and Torsvik, 2017), and (4) its global rock outcrop volume does not exponentially decrease 

1167 with increasing age (Ronov et al., 1980; Husson and Peters, 2018), meaning that its internal 

1168 synchronous increments are broadly comparable. 

1169 An example of how this understanding may assist in the calibration of evolutionary 

1170 timescales is found in the case of total group land plants, which, on the basis of proxy 

1171 evidence, have been asserted to have originated at a variety of mutually-exclusive dates (see 

1172 discussion in Boyce and Lee, 2017). Early molecular timetree models suggested at least a 

1173 Cryogenian origin for land plants (Clarke et al., 2011).  More recent improved soft maxima 

1174 suggest that they originated between the middle Cambrian to Early Ordovician (Morris et al., 

1175 2018), whereas chemical weathering proxies have been used to infer a Neoproterozoic origin 

1176 (Kennedy et al., 2006). Evidence from the SSR suggests that many of these estimated ages 

1177 are unlikely, because plants have left a variety of sedimentary signatures in the alluvium of 

1178 the fluvial environments that they inhabited. Abundant Cryogenian to Cambrian alluvial 

1179 successions exist worldwide yet none contain sedimentary signals associated with younger 
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1180 syn-vegetation strata (Davies and Gibling, 2010a): if plants evolved during this interval they 

1181 apparently did so impassively within their environment, leaving no record of physical 

1182 interaction with ancient watercourses (or any palynomorphs). Conversely, evidence from the 

1183 SSR confidently recognises major facies shifts beginning in the Ordovician (McMahon and 

1184 Davies, 2018b), which can be explained – through modern analogue (Gurnell, 2014; Mitchell 

1185 et al., 2016b) – by the evolution of land plants, and which are stratigraphically synchronous 

1186 with the earliest palynological record (Wellman and Gray, 2000; Edwards et al., 2014). That 

1187 the SSR provides a synchronous and tangible dual physical record of fossils and strata is its 

1188 primary strength.  In the example of the Ordovician origin of land plants, the SSR-supported 

1189 null hypothesis is not easily dispelled by molecular timetrees or geochemical proxies, 

1190 especially as such model-driven and indirect approaches can be compromised, respectively, 

1191 by unforeseen survivorship biases (Budd and Mann, 2018) and non-unique explanations 

1192 (geochemical equifinality) (Tosca et al., 2010).  

1193 5.4.  Other speculative implications

1194 Present day heterogeneity of abiotic surface processes and landforms is known to promote 

1195 biodiversity (Ward et al., 2002; Antonelli et al., 2018). Selection pressures induced by the 

1196 evolution of novel surface processes and physical environments could conceivably have 

1197 functioned as an evolutionary boost to biodiversity (Laland et al., 2017). In this way, BDS 

1198 and BIS could implicate particular taxa as ecosystem engineers (Jones et al., 1994) over 

1199 geological timescales (Erwin, 2008). A robust measure of biodiversity through time, when 

1200 measured against innovations in the SSR, may shed new light on the co-evolution of life and 

1201 the planet, and potentially reveal instances of ancient sedimentary environments that could be 

1202 viewed as ‘extended phenotypes’ (sensu lato, Phillips, 2016b) of the fossil organism that 

1203 inhabited them. In order to assess this, further efforts are needed to unite observations from 
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1204 modern ecological and biogeomorphological studies with long-term geological and 

1205 palaeontological trends (e.g., Corenblit et al., 2015).

1206 A further, highly speculative, implication may transcend palaeoecological considerations and 

1207 concern the nature of the SSR itself. The volume of the SSR generally diminishes further 

1208 back in time, due to accumulated effects of attrition and subduction. However, there is not (as 

1209 was once modelled), an exponential decrease in sedimentary rock volume: rather, there is a 

1210 major contrast in the diminished rock volume of the Precambrian relative to the Phanerozoic 

1211 (Husson and Peters, 2018). Explanations for this have been sought with respect to 

1212 Neoproterozoic glacial erosion (Keller et al., 2019), but this cannot explain why the volume 

1213 of Ediacaran strata is comparable with diminished Cryogenian strata, but not more 

1214 voluminous Cambrian strata. Intriguingly, the shift in rock volume itself seems to correspond 

1215 with the rapid expansion of biomineralized life (Porter, 2007; Wood et al., 2017; Cai et al., 

1216 2019). Here there are open (and possibly intractable) questions: What if the Cambrian 

1217 increase in the preserved volume of rock is a direct result of life evolution? There is certainly 

1218 a rapid increase in the proportion of carbonate rock strata at this time (e.g., Peters and 

1219 Husson, 2018, their Fig. 2) and the sequestration of calcium carbonate onto continental crust, 

1220 by life, could have marked a shift in the locus of a mineral precipitate that was previously 

1221 distributed more evenly (i.e., shared with subductable oceanic crust). At the same time, the 

1222 expansion of rock volume by life-induced interstitial cements or clay minerals, or even the 

1223 additional volume provided by biogenic detritus itself, may have trapped more strata on 

1224 continental crust. We strongly emphasise the speculative nature of this particular avenue of 

1225 thought, but note that the role of life in creating the SSR has so many facets and emergent 

1226 effects that such a potential explanation should not be considered irrational.

1227 6. Conclusions
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1228 The SSR is a tangible planetary characteristic that exhibits sequential variability in its 

1229 lithological character, reflecting its formation, over geological time, in a shared space with 

1230 the evolving biosphere. It plays a dual role in our understanding of the Earth surface: its 

1231 nature is both a direct result of, and an historic archive of, the co-evolution of the biosphere 

1232 and planet through geological time. As it is, at least in part, a residual product of life and life-

1233 induced processes, it should no longer be regarded as a passive repository of geochemical and 

1234 fossil clues to ancient biospheres, but as an integral component of a dynamic archive. Life 

1235 controls may sometimes be intractable, and their variety of manifestations are not always 

1236 easily modelled or generalized, but their influence on the signatures of the SSR must be 

1237 considered at least as consequential as traditionally-invoked controls such as tectonics, 

1238 climate and sea-level; with all of which they are inseparably intertwined (Dietrich and Perron, 

1239 2006; Perron, 2017).  

1240 Individually (Table 1) or at outcrop the effects of life may seem esoteric, but cumulatively the 

1241 geological record proves that they can be profound (Figure 1).  As long as the we choose the 

1242 correct focal length to interrogate the SSR for life signals (Figure 2), there is promise for 

1243 recognising further trends that will promote new hypotheses and help lead us towards a 

1244 mechanistic understanding of how Earth has co-evolved with life.  Such trends must be 

1245 expected because ancient alternative Earths, with different biospheres, would have operated 

1246 under different physical conditions to the present day. Organisms did not change the laws of 

1247 physics that underpin surface processes such as fluid flow, or fluid-grain interactions, but 

1248 their successive evolution involved progressive, fundamental and irreversible alterations to 

1249 the theatre in which these physical processes played out.
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2261 Figure and Table Captions

2262 Figure 1. Stratigraphic range and shifts in abundance and diversity of selected sedimentary 

2263 signatures within the SSR, showing correlation with trigger organisms and the earliest 

2264 unequivocal body fossil remains of total group representatives of such organisms.  See main 

2265 text for details.

2266 Figure 2. Illustrative plots showing the importance of time-length scales in searching for 

2267 biosphere signatures.  A) The different time-length scales at which the SSR can be 

2268 approached using individual specimens, outcrops, groups of outcrops, or compendia of 

2269 information from the whole SSR.  B) Approximate most common ranges of time-length 

2270 scales of different Earth surface processes and phenomena in which life plays a role, 

2271 superimposed on plot from (A), showing how different approaches to the SSR may be more 

2272 or less suitable for recognising ancient biosphere signatures (modified after Kleinhans et al., 

2273 2006). It should be noted that, with the exception of atmospheric evolution, all the illustrated 

2274 phenomena operate at time-length scales far smaller than that recorded by the whole SSR.  As 

2275 such the whole SSR may additionally be utilized to identify secular trends in holistic 
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2276 populations of these phenomena (e.g., long term changes in animal bioturbation).  

2277 Additionally, the crossing of threshold values in some of these process may result in more 

2278 rapid effects, which could potentially be recognised at a smaller scale (e.g., the catastrophic 

2279 failure of a reef system, or the tipping point reached after cumulative atmospheric evolution).

2280 Figure 3. Examples of vegetation-induced sedimentary structures resulting from sediment and 

2281 water diversion around standing sessile plants. A) Recent scour crescent in front of fallen 

2282 tree, Murchison River, Western Australia. B) Undulose sediment surface armoured by dense 

2283 stand of Protolepidodendron, Middle Devonian (c. 385 Ma) Planteryggen Formation, 

2284 Munindalen, Svalbard. C) Mudrock-filled hollow (arrowed) overlain by downturned strata, 

2285 formed by infilling and decay of standing vegetation and subsequent subsidence of 

2286 overburden sediment, Pennsylvanian (c. 320 Ma) Tynemouth Creek Formation, Gardner 

2287 Creek, New Brunswick. D) Scour-and-mound bedding (white arrows) surrounding standing 

2288 Lepidodendron, revealed by stigmarian roots (black arrow), Pennsylvanian (c. 320 Ma) 

2289 Tynemouth Creek Formation, Gardner Creek, New Brunswick. E) Undulose bedding surface 

2290 with multiple stigmaria and rootlets, showing irregular surface of sediment laid down 

2291 between stand of trees, Mississippian (c. 330 Ma) Alston Formation, Lindisfarne, 

2292 Northumberland, England. F) Downturning of beds of Siberian Traps volcanic ash, 

2293 surrounding charcoalified remains of standing tree (arrowed), Early Triassic (c. 252 Ma) 

2294 Abinskaya Series, River Tom, Kuznetsk Basin, Russia. Scale bar is 1 metre in A, D, E, F. 

2295 Scale bar is 10 centimetres in B, C.

2296 Figure 4. Examples showing problem of equifinality in the SSR (see text for full details). 1. 

2297 Dinosaur footprints (A) in the Early Cretaceous Wealden Group (c. 130 Ma) of southern 

2298 England are associated with two mud-filled abandoned channels (bases arrowed) indicative 

2299 of channel avulsion (B).  The former could be a trigger for the latter, but no causality can be 

2300 recognised at outcrop. 2. Beaver-cut wood accumulations are associated with peat 
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2301 accumulations in the Pliocene (c. 5 Ma) Beaufort Formation of Arctic Canada, but 

2302 ascertaining causality between beaver damming and wetland flooding is hindered by 

2303 underdetermination: (C) beaver-cut woody debris showing chewing mark (arrow), Ellesmere 

2304 Island; (D) peat accumulation with woody debris, Meighen Island (Davies et al., 2014).  3. 

2305 Dropstones in the late Permian (c. 255 Ma) Broughton Formation, Wollongong Lighthouse, 

2306 New South Wales, Australia (E), are associated with glendonites, attesting to their likely 

2307 glacial origin.  However, other means of transmitting cobbles to the marine realm are present 

2308 – for example, seaweed buoyancy (F, Caol Ila, Islay, Scotland). Scale bar is 1 cm in C. Scale 

2309 bar is 10 centimetres in A, D, E, F. Scale bar is 1 metre in B.

2310 Figure 5. Conceptual plots showing the shift in frequency distribution of facies signatures in 

2311 alluvium between pre-vegetation strata (red; Archean to Ordovician) versus syn-vegetation 

2312 strata (green; Silurian to recent).  Horizontal axis shows a quantitative measure of rock 

2313 formation properties: the measured proportion of any individual alluvial succession that 

2314 contains the named phenomena (comparable to the ‘quantitative measure of topographic 

2315 features’ in Dietrich and Perron (2006), their Fig. 5).  Vertical axis shows the frequency of 

2316 occurrence of rock formations worldwide that exhibit the measured traits in the horizontal 

2317 axis.

2318 Figure 6. Cartoon diagram illustrating the heightened potential for recognising unidirectional 

2319 shifts, such as signatures pertaining to life evolution, from the SSR.  Three rock successions 

2320 are shown, which accumulated over the same time interval, against a backdrop of two 

2321 different allogenic influences; one unidirectional (red), one cyclic (blue).  Both allogenic 

2322 influences are assumed to have the potential to leave an indirect but readable signature in the 

2323 accumulated sediment pile.  None of the three successions are time-complete, but are 

2324 comprised of preserved sediment (dark yellow) at stochastic intervals.  In this instance, 

2325 because the period of cyclic oscillation is at a greater frequency than the 
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2326 sampling/preservation of sediment, the preserved signals of the cyclic influence will be 

2327 readable only as a distortion of the true cycle and not easily comparable between the different 

2328 sections.  By contrast, all three successions show a defined off/on shift from the 

2329 unidirectional influence, despite the fact that none of the successions preserve strata that are 

2330 precisely contemporaneous with its onset.

2331 Figure 7. Histograms comparing mudrock percentage in worldwide alluvial formations 

2332 deposited during intervals of orogenic events.  A)  Formations whose deposition was affected 

2333 (deposited neighbouring orogeny) and not affected (deposited away from orogeny) by the 

2334 Grenvillian Orogeny (1100-900 Ma); B) Formations whose deposition was affected and not 

2335 affected by the Caledonian/Acadian Orogeny (440-390 Ma).  Data compiled from a 

2336 compendium of whole SSR data (available in McMahon and Davies 2018b).  While in both 

2337 instances a tectonic influence can be recognised (because formations deposited adjacent to 

2338 orogenic uplift contain more mudrock), the heightened abundance of mudrock in all 

2339 formations deposited after the evolution of land plants (B) implies that the age of deposition 

2340 relative to the evolution of vegetation is a more significant predictor of alluvial mudrock 

2341 abundance than proximity to orogenies.

2342 Figure 8.  Examples of BDS lithologies. 1. Microbial carbonates: A) Side view of Archean 

2343 stromatolitic microbial carbonate, Neoarchean (c. 2.6 Ga) Yellowknife Supergroup, Walsh 

2344 Lake, Northwest Teritories, Canada; B) Plan view of Palaeoproterozoic (c. 1.9 Ga) 

2345 stromatolitic carbonate, Gunflint Chert, Flint Island, Ontario, Canada; C) Large thrombolite 

2346 domes in microbial carbonate, late Cambrian (c. 0.5 Ga) Petit Jardin Formation, Flowers 

2347 Cove, Newfoundland, Canada. 2. Bioclastic carbonates: D) Cloudina limestone, late 

2348 Ediacaran (c. 550 Ma) Nama Group, Namibia; E) Bioclastic limestone containing shelly 

2349 debris of crinoids, spiriferid and rhynconellid brachiopods, Mississippian (c. 346 Ma) 

2350 Ballyshannon Limestone Formation, Bundoran, County Donegal, Ireland; F) Bioclastic 
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2351 limestone of scleractinian corals and bivalves, Pleistocene (c. 0.125 Ma) Wallabi Limestone, 

2352 East Wallabi Island, Houtman-Albrohos Islands, Western Australia. 3. Coals: G) Vertically-

2353 bedded coal seams deposited as overbank facies between fluvial sandstone bodies, late 

2354 Permian (c. 254 Ma) Kol’chuginskaya Series, Bachat, Kuznetsk Basin, Siberia, Russia; H) 

2355 Uppermost coal seam preceding the Permian-Triassic extinction and subsequent ‘coal gap’, 

2356 late Permian (c. 252 Ma) Bulli Coal, overlain by fluvial sandstones of the latest Permian 

2357 Eckersley Formation, Clifton, New South Wales, Australia. 4. Chalk: I) Two chalk units, the 

2358 lower one red in colour, in mid-Cretaceous (Albian-Cenomanian, c. 100 Ma) strata, 

2359 Hunstanton Red Chalk Formation and Ferriby Chalk Formation, overlying ferruginous oolitic 

2360 sandstone of the Carstone Formation, Hunstanton, Norfolk, England. Scale bar is 1 

2361 centimetre in A, D, E, F. Scale bar is 1 metre in B, C. Scale bar is 10 metres in G, H, I.

2362 Figure 9. Examples of BDS materials. 1. Coprolites. A) Example of suspected earliest known 

2363 occurrence of micro-coprolites, lower Cambrian (Terreneuvian, c. 529 Ma) Lontova and 

2364 Voosi Formations, Estonia. B) Flattened mammal fecal pellets, Pliocene (c. 3.5 Ma) Beaufort 

2365 Formation, Ellesmere Island, Nunavut, Canada. 2. Charcoal. C) Some of the earliest charcoal 

2366 in the SSR: charcoalified remains of Pachytheca, late Silurian (Ludlow, c. 423 Ma) Lower 

2367 Leintwardine Formation, Stoke Edith, Herefordshire, England. D) Cross-section view of 

2368 fallen and partly compressed trunk of the giant fungi Prototaxites.  Charcoalified trunk is 

2369 entrained with coarse basal lag sediments in the bottom of a fluvial channel body, Early 

2370 Devonian (Emsian, c. 400 Ma) Battery Point Formation, Petit Gaspé, Québec, Canada. 3. 

2371 Plastics. E-F) Examples of different sizes of plastics exhibiting sorting on beaches.  These 

2372 plastics (and human-cut wood) have been transported substantial distances from human 

2373 settlement into unpopulated areas of the High Arctic by ocean currents. Wijdefjorden, 

2374 Svalbard. Scale bar is 0.1 millimetres in A. Scale bar is 1 millimetre in C. Scale bar is 1 

2375 centimetre in B. Scale bar is 10 centimetres in D, E. Scale bar is 1 metre in F.
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2376 Figure 10. Examples of BDS structures. 1. Burrows.  A) Earliest evidence for metazoan 

2377 locomotion: suspected cnidarian surface trail, Ediacaran (c. 565 Ma) Mistaken Point 

2378 Formation, Mistaken Point, Newfoundland, Canada. B) Vertical invertebrate burrows 

2379 (Skolithos and Daedalus) penetrating multiple beds of shallow marine dune cross-bedded 

2380 sandstones, Silurian (c. 430 Ma) Tumblagooda Sandstone, Red Bluff, Kalbarri National Park, 

2381 Western Australia. C) Horizontal network of suspected crustacean burrows (Thalassinoides) 

2382 in marine limestone, Early Jurassic (c. 180 Ma) Beacon Limestone Formation, Eype, Dorset, 

2383 England. D) Cross-sectional view of vertebrate burrow consisting of tunnel (black arrow) 

2384 leading to terminal chamber (white arrow), probably made by a rhyncosaur, Middle Triassic 

2385 (c. 240 Ma) Otter Sandstone Formation, Sidmouth, Devon, England. 2. Coral reefs. E) Cross-

2386 section view of coral and algal bioherms within coral reef, late Silurian (c. 420 Ma) Barlow 

2387 Inlet Formation, Cornwallis Island, Nunavut, Canada; F) Reef knoll limestone with bedding 

2388 of coral reef apron illustrated, Mississippian (c. 330 Ma) Low Limestones Formation, 

2389 Chrome Hill, Derbyshire, England. 3. Roots. G) Putative root like structures, exhibiting 

2390 downwards branching and penetrating for up to 3 cm within palaeosol, latest Silurian (c. 420 

2391 Ma) Silverband Formation, Lake Bellfield, Victoria, Australia.  H) Stigmarian lycopsid 

2392 rhizome showing rootlets, Mississippian (c. 330 Ma) Alston Formation, Lindisfarne, 

2393 Northumberland, England. 4. Trample-grounds. I) Brittle and ductile soft-sediment 

2394 deformation penetrating through heterolithic strata (yellow box) as a result of focussed 

2395 trampling, most likely by a large sauropod dinosaur, Early Cretaceous (c. 120 Ma) Vectis 

2396 Formation, Cowleaze Chine, Isle of Wight, England. Scale bar is 1 centimetre in A, G. Scale 

2397 bar is 10 centimetres in C, E, H. Scale bar is 1 metre in B, D, F, I.

2398 Figure 11. Example of fixed-channel alluvial style associated with anastomosing river facies, 

2399 showing diagnostic criteria and contrast with braided river facies (after Davies and Gibling, 
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2400 2011).  Pennsylvanian-Permian (c. 298 Ma) Cutler Group, Mesa Montosa, New Mexico, 

2401 United States.

2402 Figure 12. Examples of abiogenic and biogenic cherts. A) Abiogenic cherty grainstones 

2403 interbedded within a banded iron formation: chert precipitated due to silica-saturated waters. 

2404 Palaeoproterozoic (c. 1.88 Ga) Ironwood Iron Formation, Mount Whittlesey, Wisconsin, 

2405 United States.  B-C) Cycles of biogenic chert, probably representing precipitation during 

2406 local hiatuses in sedimentation, within chalk (rich in siliceous demosponge spicules, most 

2407 notably Rhaxella). The “wood-grain” texture shown probably relates to fluctuating 

2408 concentrations of silica-rich pore fluids and changing rates of precipitation (Maliva et al., 

2409 1999). Late Jurassic (c. 150 Ma) Portland Chert Member, Portland Bill, Dorset, England. 

2410 Scale bar is 10 centimetres in A, C. Scale bar is 1 metre in B.

2411 Figure 13. Examples of BIS materials.  Pedogenic clay minerals and calcrete.  A) Nodular 

2412 calcrete forming vertic features within pedogenic clay-rich palaeosol, formed coevally with 

2413 the early evolution of tracheophytes, late Silurian (Přídolí, c. 420 Ma) Moor Cliffs Formation, 

2414 Rook’s Cave, Pembrokeshire, Wales. B) Calcretized rhizoliths along layer that also yields 

2415 recognisable stigmarian root structures, late Pennsylvanian (c. 300 Ma) Fountain Formation, 

2416 Manitou Springs, Colorado, United States. C) Micritic calcrete forming pinnacles due to the 

2417 exposure of large rhizoliths, Pleistocene (c. 0.5 Ma) Tamala Limestone, Nambung National 

2418 Park, Western Australia. Scale bar is 1 metre in all images.

2419 Figure 14. Examples of BIS structures.  1. Sole marks.  A) Sole marks on base of turbidite 

2420 sandstone deposited before evolution of bioturbation, Neoarchean (c. 2.6 Ga) Burwash 

2421 Formation, Yellowknife, Northwest Territories, Canada. B) Sole marks on base of lacustrine 

2422 turbidite sandstone, deposited contemporaneously with the evolution of deep lake burrowing, 

2423 Pennsylvanian (c. 315 Ma) Bude Formation, Maer Cliff, Cornwall, England. 2. Flat pebble 
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2424 conglomerate. C) Flat pebble conglomerate within dolomite, Cryogenian (c. 720 Ma) Lossit 

2425 Limestone Formation, Beannan Buidhe, Islay, Scotland. D) Flat pebble conglomerate within 

2426 limestone, Middle Cambrian (c. 500 Ma) Cow Head Group, Beachy Cove, Newfoundland, 

2427 Canada. 3. Drip impressions and splash marks. E) Casts of drip impressions in abandoned 

2428 fluvial channel facies, seen in association with cordaitalean frond debris, Pennsylvanian (c. 

2429 320 Ma) Tynemouth Creek Formation, New Brunswick, Canada. F) Elongate splash marks 

2430 (black arrows) resulting from the displacement of damp sand as an arthropod tracemaker 

2431 traversed a wet subaerial substrate (seen in conjunction with other arthropod trackways; white 

2432 arrows), Silurian (c. 430 Ma) Tumblagooda Sandstone, Z-Bend, Kalbarri National Park, 

2433 Western Australia. Scale bar is 1 metre in A, B. Scale bar is 10 centimetres in D, F. Scale bar 

2434 is 5 centimetres inC.  Scale bar is 1 cm in E.

2435 Figure 15. Examples of BIS facies. 1. Alluvial mudrock. A) Single thin mudrock layer 

2436 (arrowed; c. 15 cm) within 200 metre succession of alluvial sandstones, early Cambrian (c. 

2437 540 Ma) Fréhel Formation, Cap du Chevre, Brittany, France. B) Dominance of alluvial 

2438 mudrock relative to crevasse splay sandstones in syn-vegetation alluvium, Pennsylvanian (c. 

2439 300 Ma) Sangre de Cristo Formation, Durango, Colorado, United States. 2. ‘Sheet-braided’ 

2440 alluvium. C) Archetypal ‘sheet braided’ alluvium, Neoproterozoic (c. 1 Ga) Applecross 

2441 Formation, Cape Wrath, Scotland. D) Detail of ‘sheet-braided’ alluvium, Ediacaran-

2442 Cambrian (c. 541 Ma) Series Rouge, Pleherel, Brittany, France. 3. IHS-LA sets. E) Oldest 

2443 known example of IHS-LA sets (yellow box), recording 41 cm deep sinuous creek draining 

2444 into lake, Neoproterozoic (c. 1 Ga) Diabaig Formation, Diabaig, Scotland. F) Large scale 

2445 LA‐IHS with internal erosion surface (yellow box), recording deposition within 

2446 tidally‐influenced meandering point bar. Late Cretaceous (c. 80 Ma) Horseshoe Canyon 

2447 Formation, Willow Creek, Alberta, Canada.  Scale bar is 1 metre in A, B, D, E.  Scale bar is 

2448 10 metres in C, F.
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2449 Table 1 – Table showing examples of influences of modern organisms to sediments, 

2450 geomorphology and Earth surface processes.

2451 Table 2 – Examples of the earliest fossil evidence for the life triggers shown in Figure 1.

2452 Table 3 – Comparison of the potential effects, recordable as sedimentary signatures, of three 

2453 of the most significant life influences on the properties of the SSR; bioturbation, vegetation 

2454 and humans.
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