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Abstract 

Fracture behaviors of multiple interfacial cracks between dissimilar 

magnetoelectroelastic layers subjected to in-plane magnetoelectromechanical loads 

are investigated by using integral transform method and singular integral equation 

technique. The number of the interfacial cracks is arbitrary, and the crack surfaces are 

assumed to be magnetoelectrically impermeable. The field intensity factors (FIFs) 

including stress, electric displacement and magnetic induction intensity factors as well 

as the energy release rates (ERRs) are derived. The effects of loading combinations, 

crack configurations and material property parameters on the fracture behaviors are 

evaluated according to energy release rate criterion. Numerical results show that both 

negative electrical and magnetic loads inhibit crack extension, and that the material 

constants have different and important effects on the ERRs. The results presented here 

should have potential applications to the design of multilayered magnetoelectroelastic 

structures. 
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Energy release rate; Singular integral equation 

1. Introduction 

Magnetoelectroelastic materials have been widely used in electronics industry. 

The technical applications may include waveguides, sensors, phase invertors,  

transducers, etc. (Parton and Kudryavtsev, 1988). Studies on the properties of these 

kinds of composites have been carried out in recent years (Harshe et al., 1993; Nan, 

1994; Alshits et al., 1995; Huang and Kuo, 1997; Huang et al. 1998; Li and Dunn, 

1998; Li, 2000; Wang and Shen, 2003). 

In the design of magnetoelectroelastic structures, it is important to take into 

account imperfections, such as cracks including multiple cracks, which are often 

pre-existing or are generated by external loads during the service life. Therefore, 

research on fracture mechanics of magnetoelectroelastic materials has also drawn 

increased interests (Zhou etal., 2004; Gao et al., 2004; Chue and Liu, 2005; Feng et al., 

2005; Li, 2005; Feng and Su, 2006; Li and Kardomateas, 2006; Wang et al., 2006; 

Zhao et al., 2006; Feng et al., 2007; Yong and Zhou, 2007; Wang et al., 2008) 

For two dimensional (2-D) plane crack problems, Liu et al. (2001) derived the 

Green’s functions for an infinite magnetoelectroelastic plane containing an elliptic 

cavity. They reduced the cavity solution to obtain the solution for a permeable crack. 

Gao et al. (2003a, b) analyzed single and collinear cracks in an infinite 

magnetoelectroelastic material and obtained the extended stress intensity factors. 

Song and Sih (2003) and Sih et al. (2003) investigated the influence of both magnetic 

field and electric field on crack growth, in particular, on crack initiation angle under 

various crack surface conditions for mode-I, mode-II, and mixed mode crack models. 

Tian and Gabbert (2004) and Tian and Rajapakse (2005) studied the interaction 

problem of multiple arbitrarily oriented and distributed cracks in homogeneous 
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magnetoelectroelastic materials. Wang and Mai (2007) discussed the effects of four 

kinds of ideally magnetoelectric crack-face conditions on fracture properties of 

magnetoelectroelastic materials. Zhong and Li (2007) obtained the T-stress for a 

Griffith crack in an infinite magnetoelectroelastic medium based on magnetic and 

electric boundary conditions nonlinearly dependent on the crack opening 

displacement. Zhou et al. (2007; 2008) investigated the static fracture behaviors of a 

single crack or two cracks in piezoelectric/piezomagnetic materials by the Schmidt 

method. However, all the above-mentioned works are related to crack in a 

homogenous magnetoelectroelastic medium. Due to the oscillating singularity of 

crack tips, the study of interfacial crack between dissimilar magnetoelectroelastic 

materials is very limited. Gao et al. (2003c) derived the exact solution for a permeable 

interfacial crack between two dissimilar magnetoelectroelastic solids under general 

applied loads. Li and Kardomateas (2007) investigated the interfacial crack problem 

of dissimilar piezoelectromagneto-elastic anisotropic bimaterials under in-plane 

deformation taking the electric-magnetic field inside the interfacial crack into account. 

Up till now, to the best of our knowledge, the fracture problems of multiple interfacial 

cracks between dissimilar unbounded magnetoelectroelastic materials have not yet 

been reported, let alone for the problems of interfacial cracks between two finite 

magnetoelectroelastic layers. 

In this paper, fracture analyses of multiple collinear interfacial cracks between 

dissimilar magnetoelectroelastic layers are conducted. The magnetoelectrically 

impermeable crack surface condition is adopted. The field intensity factors (FIFs) are 

derived by using the integral transform and singular integral equation methods. The 

energy release rates (ERRs) are further obtained and numerically solved. The effects 

of applied magnetoelectromechanical loads, layer heights especially material 
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combination parameters on the fracture behaviors are discussed in detail. The results 

could be of particular interest to the analysis and design of smart sensors/actuators 

constructed from magnetoelectroelastic composite laminates.  

2. Formulation of the problem 

Consider n cracks along the interface between two transversely isotropic 

magnetroelectroelastic layers with both poling directions as the -axis as shown in 

Fig. 1. The th crack lies from  to  (

z

k ka kb 1 ~k n= ). 

For the 2-D plane strain problem considered here, the constitutive equations 

within the framework of the theory of linear magnetoelectroelastic medium take the 

form (Huang and Kuo, 1997) 
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⎫  (1c) 

where  and  are the displacement components; u w φ  and ψ  are the electric and 

magnetic potentials, respectively; ijσ ,  and  iD iB ( ), ,i j x z=  are the stresses, 

electric displacements and magnetic inductions, respectively; , , ijc ije ijf  and ijg  

 are the elastic, piezoelectric, piezomagnetic and magnetoelectric constants, 

respectively; 

( , 1,3i j = )

ijε  and ijμ   are the dielectric permitivities and magnetic 

permitivities, respectively. 

( , 1,3i j = )

In the absence of body forces, free charges and electric charge density, the 
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governing equations for elastic displacements  and , electric potential u w φ , and 

magnetic potential ψ  can be written as follows 

( ) ( ) ( )11 , 44 , 13 44 , 13 15 , 13 15 , 0,xx zz xz xz xzc u c u c c w e e f fφ ψ+ + + + + + + =  (2a) 

( )13 44 , 44 , 33 , 15 , 33 , 15 , 33 , 0,xz xx zz xx zz xx zzc c u c w c w e e f fφ φ ψ ψ+ + + + + + + =  (2b) 

( )13 15 , 15 , 33 , 11 , 33 , 11 , 33 , 0,xz xx zz xx zz xx zze e u e w e w g gε φ ε φ ψ ψ+ + + − − − − =  (2c) 

( )13 15 , 15 , 33 , 11 , 33 , 11 , 33 , 0.xz xx zz xx zz xx zzf f u f w f w g gφ φ μ ψ μ ψ+ + + − − − − =  (2d) 

    For the magnetoelectrically impermeable interfacial cracks considered in this 

study, the boundary and continuity conditions are 

( ) ( ) ( ) ( ) ( )1 2
0

1

,0 ,0 , , ,
n

xz xz k k
k

x x x aσ σ τ
=

= = − ∈U b  (3a) 

( ) ( ) ( ) ( ) ( )1 2
0

1

,0 ,0 , , ,
n

zz zz k k
k

x x x aσ σ σ
=

= = − ∈U b  (3b) 

( ) ( ) ( ) ( )1 2
0,0 ,0 ,z zD x D x D= = −  ( )

1

,
n

k k
k

a b
=

∈U , (3c) x

( ) ( ) ( ) ( )1 2
0,0 ,0 ,z zB x B x B= = −  ( )

1

,
n

k k
k

a b
=

∈U , (3d) x

( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 2,0 ,0 ,u x u x u x− = Δ  
( ) ( ) )1 2,0 ,0 , ,w x w x w x x= Δ −∞ < < +∞  (3e) −

( ) ( ) ( ) ( ) ( )1 2,0 ,0 ,x x xφ φ φ− = Δ  ( ) ( ) (( ) ( ) )1 2,0 ,0 , ,x x x xϕ ϕ ϕ= Δ −∞ < < +∞  (3f) −

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2,0 ,0 , ,0 ,0 , ,xz xz zz zzx x x x xσ σ σ σ= = −∞ < < +∞  (3g) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2,0 ,0 , ,0 ,0 , ,z z z zD x D x B x B x x= = −∞ < < +∞  (3h) 

( ) ( ) ( ) ( )1 1
1 1, 0, , 0,xz zzx h x h xσ σ= = −∞ < ,< +∞  (3i) 

( ) ( ) ( ) ( )1 1
1 1, 0, , 0,z zD x h B x h x= = −∞ < ,< +∞  (3j) 

( ) ( ) ( ) ( )2 2
2 2, 0, , 0,xz zzx h x h xσ σ− = − = −∞ < < +∞,  (3k) 

( ) ( ) ( ) ( )2 2
2 2, 0, , 0,z zD x h B x h x− = − = −∞ < < +∞,  (3l) 

where the superscripts (1) and (2) denote mediums 1 and 2, respectively; 0τ , 0σ ,  0D
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and  are respectively the given shear stress, normal stress, electric displacement 

and magnetic induction applied on the crack-faces;  and  are the heights of 

mediums 1 and 2, respectively; 

0B

1h 2h

,uΔ ,wΔ φΔ  and ϕΔ  are introduced extended 

displacement jump functions, i.e.,  

( )
( ) ( ) ( ) ( ) ( ) ( )
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k k
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φ φ φ
φ

=

⎧Δ = − ∈ =
⎪Δ = ⎨

∉⎪
⎩

L

U

n

k

 (4c) 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

1 2

1

,0 ,0 , , , 1, 2, , ,

0, , .

k k
n

k k
k

x x x x a b k
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x a b

ϕ ϕ ϕ
ϕ

=

⎧Δ = − ∈ =
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⎩

L

U

n
 (4d) 

3. Derivation and solutions of singular integral equations 

 For solving crack problems, two kinds of methods are usually applied. They are 

the Fourier transform method (including singular integral equation technique) and the 

complex variable method. To the best of our knowledge, the complex variable method 

is not able to be used to solve crack problems of finite body, let alone interfacial crack 

problems of bonded magnetroelectroelastic layers. On the other hand, the Fourier 

transform technique has been widely used to solve BVP of piezoelectric ceramics 

(Soh et al. 2000; Gu et al., 2002). In this paper, we intend to extend the work of Gu et 

al. (2002) for piezoelectric bimaterials to magnetoelectroelastic bimaterials with 

multiple interfacial cracks. 
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We define a Fourier transform pair as follows: 

( ) ( ), , isxU s z U x z e dx
∞ −

−∞
= ∫ ,  (5a) 

( ) ( )1, ,
2

isxU x z U s z e ds
π

∞

−∞
= ∫ ,  (5b) 

where ( ,U s z ) ) and   are respectively the function in the Fourier transform 

domain and the original one; s is the Fourier transform parameter. 

( ,U s z

Appling Fourier transforms to Eqs. (2), we can obtain  

( )( ) ( )( ) ( )( )2
11 44 , 13 44 , 13 15 , 13 15 , 0,zz z z zs c u c u is c c w is e e is f fφ− + + + + + + + =ψ  (6a) 

( )( ) 2 2 2
13 44 , 44 33 , 15 33 , 15 33 , 0,z zz zzis c c u s c w c w s e e s f fφ φ ψ ψ+ − + − + − + =zz  (6b) 

( )( ) 2 2 2
13 15 , 15 33 , 11 33 , 11 33 , 0,z zz zzis e e u s e w e w s s g gε φ ε φ ψ ψ+ − + + − + − =zz  (6c) 

( )( ) 2 2 2
13 15 , 15 33 , 11 33 , 11 33 , 0.z zz zzis f f u s f w f w s g g sφ φ μ ψ μ ψ+ − + + − + − =zz  (6d) 

Eqs. (6) are second order system of ordinary differential equations, similar to the 

solutions in Soh et al. (2000) and/or in Gu et al. (2002), and the solutions of Eqs. (6) 

can be easily obtained. Thus, further applying inverse Fourier transforms, the elastic 

displacements, electric potentials and magnetic potentials in Eqs. (2) can be expressed 

as 

( ) ( ) ( ) ( )
( )8

1

1,
2

j z isx
j

j
u x z A s e e ds

αλα α

π
∞ −

−∞
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑∫ ,  (7a) 

( ) ( ) ( ) ( ) ( ) ( )
( )8

1

1,
2

j z isx
j j

j
w x z a s A s e e ds

αλα α α

π
∞ −

−∞
=

⎡
= ⎢

⎣ ⎦
∑∫ ,

⎤
⎥  (7b) 

( ) ( ) ( ) ( ) ( ) ( )
( )8

1

1,
2

j z isx
j j

j
,x z b s A s e e

αλα α αφ
π

∞ −

−∞
=

⎡
= ⎢

⎣ ⎦
∑∫ ds

⎤
⎥  (7c) 

( ) ( ) ( ) ( ) ( ) ( )
( )8

1

1,
2

j z isx
j j

j
,x z c s A s e e

αλα α αψ
π

∞ −

−∞
=

⎡
= ⎢

⎣ ⎦
∑∫ ds

⎤
⎥

)

 (7d) 

where the superscript  stands for the corresponding medium. ( 1,2α α = ( ) ( )ja sα , 

( ) ( )jb sα , ( ) ( )jc sα  and ( ) ( ) ( )1,2, ,8j s jαλ = LL  are some known functions of the Fourier 
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variety  (see Appendix A), and the parameters s ( ) ( ) ( )1,2, ,8jA s jα = LL  are yet 

unknown. 

Substituting Eqs. (7) into Eqs. (4) and using Eqs. (3e)-(3l), we have 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }T1 1 2 2
1 8 1 8 0 0A A A A u s w s s sφ ϕ= Δ Δ Δ ΔH L L L ,  (8) 

where  is a 16H 16×  matrix, the elements of which are given in Appendix B. ( )u sΔ , 

( )w sΔ , ( )sφΔ  and ( )sψΔ  are the Fourier transforms of ( )u xΔ , , ( )w xΔ ( )sφΔ  and 

( )xψΔ , respectively.  

According to the Cramer’s rule, we get from Eq. (8) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 13 14 15 16, ,
, 1, 2, ,i i i i

i

s u s s p w s s s s p s
A i

s
φ ϕΔ Δ + Δ Δ + Δ Δ + Δ Δ

= =
Δ

L 8,  (9) 

where ( )sΔ  is the determinant of the coefficient matrix of Eq. (8), ( )13i sΔ , ( )14i sΔ  

( )15i sΔ  and ( )16i sΔ  are respectively the corresponding algebra cofactors. 

Substituting Eqs. (7) into Eqs. (1) and using Eqs. (3a)-(3d) and Eq. (9), we have 

( ) ( ) ( ) ( )
1

1 , ,
2

n
isx

k k
k

,s s e ds x x a b
π

+∞ −

−∞
=

= ∈∫ P V Γ U
 

(10) 

where 

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

8 8 8 8
10 13 10 14 10 15 10 16

1 1 1 1

8 8 8 8
9 13 9 14 9 15 9 16

1 1 1 1

8 8 8 8
11 13 11 14 11 15 11 16

1 1 1 1

12 13

j j j j j j j j

j j j j

j j j j j j j j

j j j j

j j j j j j j j

j j j j

j j

h s h s h s h s
s s s s

h s h s h s h s
s s s s

s
h s h s h s h s

s s s s
h s

= = = =

= = = =

= = = =

Δ Δ Δ Δ

Δ Δ Δ Δ

Δ Δ Δ Δ

Δ Δ Δ Δ
=

Δ Δ Δ Δ

Δ Δ Δ Δ

Δ

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
P

( )
( )

( )
( )

( )
( )

( )

8 8 8 8
12 14 12 15 12 16

1 1 1 1

,

j j j j j j

j j j j

h s h s h s
s s s s= = = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ Δ Δ
⎢ ⎥

Δ Δ Δ Δ⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑

 

(11a) 

( ) ( ) ( ) ( ) ( ){ T
,s u s w s s sφ ϕ= Δ Δ Δ ΔV }

}

 (11b) 

( ) ( ) ( ) ( ) ( ){ T
0 0 0 0 .x x x D x B xτ σ= − − − −Γ  (11c) 

Applying inverse Fourier transform for ( )sV , we get the following equation from 
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Eq.(10) (Su et al., 2003) 

( ) ( ) ( ) ( ) (
1 1

1 ,
2

k

k

nn b is v x
ka

k l
), ,l ls v e dv ds x x a b

π
+∞ −

−∞
= =

⎡ ⎤ = ∈⎢ ⎥⎣ ⎦∑∫ ∫ P V Γ U  (12) 

where 

( ) ( ) ( ) ( ) ( ){ T
.k k k k kv u v w v v vφ ϕ= Δ Δ Δ ΔV }  (13) 

By partial integration and introducing dislocation density functions of the th 

crack (Su et al., 2003) 

k

 
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

1 2 3 4

, 1, 2,

k

k k k k

v f v f v f v f v

u v w v v v
k n

v v v v
φ ψ

Τ

Τ

=

⎧∂Δ ∂Δ ∂Δ ∂Δ ⎫
= =⎨ ⎬

∂ ∂ ∂ ∂⎩ ⎭

F

L ,
 (14) 

we can easily obtain from Eq. (12) 

( )

( )
( ) ( ) ( ) ( )

1 1

1 ,
2

k

k

nn b is v x
ka

k l

s v e dv ds x x a b
isπ

+∞ −

−∞
= =

⎡ ⎤
= ∈⎢ ⎥−⎣ ⎦

∑∫ ∫
P F Γ U , .l l  (15) 

By exchanging the integral order, Eq. (15) can be further transformed into the 

following form (Su et al., 2003) 

( )

( )
( ) ( ) ( ) ( )

1 1

1 ,
2

k

k

nn b is v x
ka

k l

s v e dsdv x x a b
isπ

+∞ −

−∞
= =

= ∈
−∑∫ ∫

P F Γ U , .l l  (16) 

It is clear that the singularities of the integral equations are attributable to the 

asymptotic value of matrix P as s →∞ . Similar to the case of piezoelectric media 

solved by Gu et al. (2002), we get 

( ) ( ) ( ) ( ) ( ) (
1 1

1 1 , ,k k

k k

n nb bk
l ka a

k k

v
),l lx dv v x v dv x x a b

v xπ π= =

+ + =
−∑ ∑∫ ∫

F
AF B Q F Γ ∈ , (17) 

where A and B are two known constant matrices with respect to the material constants 

in Eqs. (1), and ( ),v xQ  is a known function matrix (Appendix B). It should be noted 

that in the deriving of Eq. (17), the following relation is used 

( )
0

1sin .s v x ds
v x

∞
− =⎡ ⎤⎣ ⎦ −∫  (18) 
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By introducing two non-dimensional variables η  and ξ , i.e., 

( ), , , , ,
2 2 2 2

k k k k k k k k
k k

b a b a b a b a
v x v x a b kη ξ

− + − +
= + = + ∈ = L1, 2, , ,n  (19) 

We can obtain from Eq. (17) 

( ) ( ) ( ) ( ) ( )
1 1

1 1
1

1 1 , ,
n

l kl
l k

k
d d

η
ξ η η ξ η η ξ

π η ξ π− −
=

+ + = =
− ∑∫ ∫

F
AF B Q F Γ

%
%% % % L1,2, , ,l l n  (20) 

where 

( ) ,
2 2

k k k k
k k

b a b a
η η

− +⎛= +⎜
⎝ ⎠

F F% ⎞
⎟  (21a) 

( )

( ) -

, ,
2 2 2 2 2

1 ,
2 2 2 2

kl k k k k k k l l l l

k k k k k k l l l l
kl

b a b a b a b a b a

b a b a b a b a b a

η ξ η ξ

δ η ξ

− − + − +⎛ ⎞= + +⎜ ⎟
⎝ ⎠

− ⎡ − + − +⎛ ⎞ ⎛+ − + +⎜ ⎟ ⎜⎢⎝ ⎠ ⎝⎣ ⎦

Q Q

B

%

2
⎤⎞
⎟⎥⎠

 (21b) 

( ) .
2 2

k k k k
k

b a b a
ξ ξ

− +⎛= +⎜
⎝ ⎠

Γ Γ% ⎞
⎟  (21c) 

An approximate method described by Shen and Kuang (1998) is employed to 

solve the Cauchy singular integral equation (20) of the second type. The method was 

also used by Gu et al. (2002) in solving a single interface crack problem of bounded 

piezoelectric layers. The detailed deriving process is as follows.  

The regularization of Eq. (20) leads to 

( ) ( ) ( ) ( ) ( )
1 1

1 1
1

1 1 , ,
n

l kl
l k

k
d d

η
ξ η η ξ η η ξ

π η ξ π− −
=

+ + = =
− ∑∫ ∫

ψ
Λψ Q ψ L L1, 2, , ,l l n  (22) 

where 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , ,kl kl
k k l l

1 ,η η η ξ η ξ ξ− − − −= = =ψ R F Q R B Q R L R B Γ%% % ξ−  (23) 

Λ  and R  are the eigenvalue matrix and eigenvector matrix of the determinant 

( )AB 1− , respectively. They satisfy the following equality: 

1.−-1B A = RΛR  (24) 

The solutions of Eq. (22) can be expressed in the form  
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( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

3 3

4 4

,

0

1 ,

02

,3

04

,

0

0 0 0
0 0 0

, 1, 2, ,
0 0 0
0 0 0

l
s s

s

l
s s

s
l

l
s s

s

l
s s

s

A P

W
B P

W
l

W
C P

W

D P

α β

α β

α β

α β

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ

∞

=

∞

=

∞

=

∞

=

⎧ ⎫
⎪ ⎪
⎪ ⎪

⎡ ⎤ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥= =⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎪ ⎪

⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑

∑

∑

ψ L ,n

)

 (25) 

where  are the Jacobi polynomials, and ( ) (, 1,2, 4j j

sP jα β = L ( ) ( ) ( )1 1j j

jW α βξ ξ ξ= − +  is 

the weight function of Jacobi polynomials, 

1 i 1 i1 i 1 iln , ln ,
2 2 1 i 2 2 1 i

j j
j j

j j

γ γ
α β

π γ π γ
−

= − + = − −
+

−

+
 (26) 

with jγ  being the elements of the eigenvalue matrix  and Λ , ,l l l
s s sA B C  and l

sD  

being the unknown constants to be determined. 

By considering the orthogonality relations of the Jacobi polynomials (Gu et al., 

2002) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 , , 1
,1

0, ,

2 1 1
, ,

! 2 1 1
k j

k

k j

W x P x P x dx k k
k j

k k k

α β α β α β
α β α β

θ
α β α β

+ +

−

≠⎧
⎪

= Γ + + Γ + +⎨
= =⎪ + + + Γ + + +⎩

∫  (27) 

together with ( ) ( ),
0 1P xα β = , it can be concluded that the single-value condition of Eq. 

(22), which can be expressed as 

 
 (28) ( )

1

1
0,dη η

−
=∫ ψ

is identically satisfied if 0 0 0 0 0l l l lA B C D= = = = . 

Substituting Eq. (25) into Eq. (22) and using the following relations (Gu et al., 

2002): 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1, ,

1

1 22
,

1

1 2 ,2

1 1

1
,

2

1 1 1 ,

k k

k

k k

W P W P d

P

P G

α β α β

α β

α β α β

γ ξ ξ η η η
π η ξ

γ
ξ

γ ξ ξ ξ ξ ξ

−

− −
−

∞

+ =
−

⎧ +
⎪ 1,

1,

ξ <⎪
⎨
⎪ ⎡ ⎤− + − + + >⎪ ⎣ ⎦⎩

∫

 (29) 
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where ( )kG ξ∞  is the principal part of ( ) ( ) ( ),
kW P α βξ ξ  at infinity, we obtain the 

following algebraic equations: 

1

11 12 13 14
1 1

,
e

n N
kl k kl k kl k kl k

s s s s mms ms ms ms
k s

T A T B T C T D L
= =

⎡ + + + =⎣∑∑ l
⎤
⎦  (30a) 

2

21 22 23 24
1 1

,
e

n N
kl k kl k kl k kl k

s s s s mms ms ms ms
k s

T A T B T C T D L
= =

⎡ + + + =⎣∑∑ l
⎤
⎦  (30b) 

3

31 32 33 34
1 1

,
e

n N
kl k kl k kl k kl k

s s s s mms ms ms ms
k s

T A T B T C T D L
= =

⎡ + + + =⎣∑∑ l
⎤
⎦  (30c) 

4

41 42 43 44
1 1

,
e

n N
kl k kl k kl k kl k

s s s s mms ms ms ms
k s

T A T B T C T D L
= =

⎡ + + + =⎣∑∑ l
⎤
⎦  (30d) 

where  and 0,1, , 1,m N= −L

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 22
1 1 ,, ,

1 1 1 1

1 1 , ,
2

, 1, 2, , 4, 1, 2, , ,

j ji i i iikl kl
s ij kl i m ij j sij ms m sT W P Q W

i j l n

α βα β α βγ
P d dθ δ δ δ ξ ξ η ξ η η η ξ

π
− − − −
− −− − −

+
= +

= =

∫ ∫
L L

 (31a) 

( ) ( ) ( )
1 ,

1
, , 1, 2, , 4, 1, 2, , ,i iei

m l i m liL W P L d i j lα βξ ξ ξ− −
−−

= =∫ L n= L  (31b) 

with ( ) ( ) ( )1 1j j

jW α βξ ξ ξ− −
− = − + and ijδ  being the Kronecker Delta function. 

After the constants l
sA , l

sB , l
sC  and ( )1,2, ; 1,2, ,l

sD s N l= =L nL  have been 

determined from Eqs. (30), the equivalent field intensity factors (FIFs) (including 

stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and 

magnetic induction intensity factor (MIIF)) of the right crack tip of the th crack can 

be defined by extending the FIFs of singule crack in piezoelectric bimaterials (Gu et 

al., 2002) to magnetoelectroelastic bimaterials. They are 

l

( )
( )

( )
( )

( ) ( ) ( ) ( )

1

l

2

l

3

l

4
l

IIb

Ib

1
Db

Bb

1 1

1 1
1

1 0 0 0

0 1 0 0
lim

0 0 1 0

0 0 0 1

1 1 ,

l

e

e
e
b l le

e

n
l kl

l k
k

K

K
b a

K

K

d d

α

α

αξ

α

ξ

ξ

ξ

ξ

η
ξ η η ξ η η

π η ξ π

+

−

−

−→

−

− −
=

⎡ ⎤⎡ ⎤ −
⎢ ⎥⎢ ⎥
⎢ ⎥−⎢ ⎥

= = − ⎢ ⎥⎢ ⎥
−⎢⎢ ⎥

⎢⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤

× + +⎢ ⎥−⎣ ⎦
∑∫ ∫

K

ψ
Λψ Q ψ

⎥
⎥  (32) 

 12



and the FIFs can be finally expressed as (Gu et al., 2002) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 11

2 22

3 33

4 44

1 2 ,2
1

II
1 2 ,2

2I

1 2 ,21D 3

1 2B ,2
4

1 2 1

1 2 1
.

1 2 1

1 2 1

l

l

l

l

l

l
s s

b
l

N sb
b l l

lsb s s

b l
s s

P AK
P BK

b a
K P C
K

P D

α ββ

α ββ

α ββ

α ββ

γ

γ

γ

γ

=

⎧ ⎫+⎧ ⎫ ⎪ ⎪
⎪ ⎪ ⎪ ⎪+⎪ ⎪ ⎪= = − −⎨ ⎬ ⎨
⎪ ⎪ ⎪ +
⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪+⎩ ⎭

∑K BR
s ⎪
⎬
⎪
⎪

 (33) 

From Eqs. (25), (23) and (14), the extended crack open displacements (CODs) in 

the vicinity of the right crack tip of the th crack can be given as l

 ( )

( )
( )
( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

3 3

4 4

1 ,
1

1

1 ,
2

1

1 ,
3

1

1 ,
4

1

N
l
s s

s
N

l l l l
s s

sl l l
l l l l N

ll l l
s s

sl l l
N

l
s s

s

A W P d

u c d
B W P d

w c d
c d c

c d
C W P d

c d

D W P d

α β

ξ

α β

ξ

α β

ξ

α β

ξ

ς ς ς⎧ ⎫
⎪ ⎪
⎪ =

=

=

=

ξ
ς ς ς

⎪
⎧ ⎫+ ⎪

ξ
ξ

φ ξ

⎪
⎪ ⎪ ⎪

ς ς ς
ψ ξ

⎪+⎪ ⎪ ⎪+ = = −⎨ ⎬ ⎨+⎪ ⎪ ⎪
⎪ ⎪ ⎪+⎩ ⎭

⎪
⎬
⎪
⎪

ς ς ς
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∫

∑ ∫

∑ ∫

∑ ∫

Δ
Δ

V R
Δ
Δ

1, →  (34) ξ

where  

,
2

l l l l
l l

b a b a
c d

−
= = .

2
+  (35) 

Eq. (33) can be further evaluated by 

 

( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

1 2 31 1 1 1

1 2 3 4

1 2 1 2 1 2 1 22 2 2 2
1 2 3 4

1 1 1 1
diag

2 1 1 1 1

1 1 1 1diag , 1.
1 1 1 1

l

l
l l l

e
b

c
c d

α α αξ ξ ξ ξ
ξ

α α α α

ξ
γ γ γ γ

+ + +⎡ ⎤− − − −
⎢ ⎥+ =

+ + + +⎢ ⎥⎣ ⎦
⎡
⎢ ⎥ →
⎢ ⎥+ + + +⎣ ⎦

V R

K

4α+

⎤
 (36) 

It should be remarked that both the FIFs and CODs in the vicinity of the left crack 

tip of the th crack, which are omitted here, can be similarly derived. It is well 

known that, for magnetoelectrically impermeable cracks, the energy release rates 

(ERRs) are very important to evaluate the behaviors of crack tips. In accordance with 

the definition of the energy release rates proposed by Pak (1990), the ERRs of the th 

crack can be defined as 

l

l
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 ( ) ( )
00

1 1lim V
2

L

l lL
G x L

L
Δ

Δ →
= Π −Δ ⋅

Δ ∫ x dx

}

  (37) 

where 

 ( ) ( ) ( ) ( ) ( ){l zz xz z zx x x D x Bσ σ=Π x  (38) 

and the ERRs can be finally derived as (Soh et al., 2000) 

 1 , ,
4

e e
l lG bΤ

Ξ Ξ Ξ= ΞK UΩK .a=   (39) 

In Eq. (39), the elements of the matrices  and , which are respectively 

expressed as  and , can be written as follows 

Ω U

ijΩ Uij

( ) 1 221ij i ijγ δ
−

Ω = + ,  (40a) , 1,2,3,4,i j =

( ) ( )
( )

1 21U ,
1 3

i j
ij ij

j i j

α α

α α α

Γ + Γ +
= Χ

+ Γ + +
 , 1, 2,3, 4,i j =   (40b) 

and  is the element of the matrix , which can be express as Xij Χ

Τ ΤΧ = R B R . (41) 

It should be noted that Eq. (39) has the same form as the ERR given by Gu et al. 

(2002) for the interfacial crack problems of piezoelectric bimaterials, which implies 

that if the piezomagnetic efect and magnetoelectric coupling effect are neglected, Eq. 

(39) can be deduced to the corresponding results for piezoelectri bimaterials. 

Moreover, as medium 1 and medium 2 are the same materials, ( )1 1, 2,3, 4
2i iα ≡ − = , 

( ) ( )
( )

1 2

23
i j

i j

α α π
α α

Γ + Γ +
≡

Γ + +
, and  (the 4≡Ω I 4×  identity matrix), thus, the ERR can be 

expressed as 

  1 ,
4

G π Τ −
Ξ Ξ= K B KΞ   (42) 

which is, in fact, the same as those given before (Zhou et al., 2007; Li and 

Kardomateas, 2007).  
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4. Numerical examples 

In this section, some typical numerical calculations are carried out. The fracture 

behaviors of one interfacial crack and two interfacial cracks are discussed. For 

simplicity, in all our numerical procedure, 0τ  is assumed to be zero, which implies 

that only the mode-I interfacial crack problems are investigated in present work. In 

addition, in our numerical examples, without loss of generality, 0σ  is always taken as 

6 24.2 10 N m× . 

As a special example, the normalized ERRs of a central crack in a homogeneous 

magnetoelectroelastic layer versus both electrical and magnetic loads are firstly 

calculated for various ratios of layer height to half crack length, where 

magnetoelectroelastic body is taken as CoFe2O4-BaTiO3 composite with volume 

percentage (or volume fraction) 0.2fv = , the material properties of which are listed in 

Table 1 (Annigeri et al., 2007). Numerical results are plotted in Fig. 2, where  

represents the ERR of a magnetoelectrically impermeable crack in an infinite 

magnetoelectroelastic solid;  is the half crack length. 

0G

a ( )(1) (1)
0 15 0 11D D eλ σ ε=  and 

( )(1) (1)
0 15 0 11B B fλ σ= μ  are the introduced loading combination parameters, which are 

used to reflect the loading combinations between electrical and mechanical loads, and 

between magnetic and mechanical loads, respectively. It should be pointed out that in 

our numerical procedures (including what follows), trial  is taken as 10. Fig. 2 

shows that whether the increasing or decreasing of the ERRs depends on not only the 

amplitudes but also the directions of the applied electrical load and/or magnetic load. 

Fig. 2 also indicates that for a central crack in a homogeneous magnetoelectroelastic 

body, the magnetic load has much smaller influence on the ERRs than the electrical 

load. In addition, it should be noted that as 

N

0D Bλ λ= = , the normalized ERRs 
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approach to 1 with the increasing of 1 2h a h a= . This means that under purely 

mechanical load, with the increasing of the layer height, the ERRs tend to the one of a 

central crack situated in an infinite magnetoelectroelastic solid. Thus, to a certain 

extent, the results have validated our theory. 

As an application, the effects of both electrical and magnetic loads on the fracture 

behaviors of an interfacial crack between two dissimilar CoFe2O4-BaTiO3 composites 

are then examined in this study. Medium 1 and medium 2 correspond to 

CoFe2O4-BaTiO3 composites as vf =0.2 and as vf =0.4, respectively. The material 

constants of medium 2 (i.e., material properties of CoFe2O4-BaTiO3 as vf =0.4) are 

simultaneously listed in Table 1. Fig. 3 shows that similar to a central crack situated in 

a homogeneous magnetoelectroelastic layer, for a small Dλ  and Bλ , at least for 

the material combinations considered here, both negative Dλ  and Bλ  impede 

interfacial crack to propagate and grow, and both positive Dλ  and Bλ  enhance the 

crack propagation and growth, and that the electrical load has much bigger effects on 

the ERRs than the magnetic load. Comparing Fig. 3 with Fig. 2, it is also seen that as 

1 2h a h a= , for a fixed 1h a , the normalized ERRs of an interfacial crack are always 

larger than the corresponding ones of a central crack in a homogeneous material. It 

should be pointed out that  in Fig. 3 (and in what follows) has the same meaning 

as the one presented in Fig. 2, i.e.,  represents the energy release rate for infinite 

medium 1 containing a magnetoelectrically impermeable crack of length  under 

purely mechanical load. 

0G

0G

2a

The effects of material properties on the normalized ERRs under a pure 

mechanical load are further examined in this section. Medium 1 is still taken as 

CoFe2O4-BaTiO3 composite with 0.2fv = . The material properties of medium 2 are 
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determined by the ratios defined as follows: 

( ) ( )2 1
11 11 1,c c r= ( ) ( )2 1

13 13 2 ,c c r= ( ) ( )2 1
33 33 3 ,c c r= ( ) ( )2 1

44 44 4 ,c c r= ( ) ( )2 1
13 13 5 ,e e r= ( ) ( )2 1

33 33 6 ,e e r= ( ) ( )2 1
15 15 7 ,e e r=  

( ) ( )2 1
13 13 8 ,f f r= ( ) ( )2 1

33 33 9 ,f f r= ( ) ( )2 1
15 15 10 ,f f r= ( ) ( )2 1

11 11 11,rε ε = ( ) ( )2 1
33 33 12 ,rε ε = ( ) ( )2 1

11 11 13 ,g g r=  

( ) ( )2 1
33 33 14 ,g g r= ( ) ( )2 1

11 11 15 ,rμ μ = ( ) ( )2 1
33 33 16 ,rμ μ = ( ) ( )2 1

17 .rρ ρ =  

Numerical results are plotted in Figs. 4-10, where except for the material 

parameters pointed out in the corresponding curves, the other material constants 

remain the same as medium 1. Fig. 4 shows that the normalized ERRs decrease with 

the increasing of ,  and , and that on the contrary, the normalized ERRs 

increase with the increasing of . Fig. 5 indicates that the normalized ERRs decrease 

with the increasing either of  or of . However, the ERRs are nearly independent 

of . From Fig. 6, it is easily seen that both decreasing  and increasing  can 

decrease the ERRs, i.e., impede the interfacial crack propagation and growth. Fig. 6 

also implies that adjusting  has relatively smaller effects on the normalized ERRs 

than adjusting either  or . Fig. 7 shows decreasing either  or , i.e., 

decreasing dielectric permittivities can always retard the interfacial crack propagation. 

Figs. 8-10 display that both increasing  and decreasing  and/or  only 

inhabit the crack propagation and growth slightly, and that adjusting both  and  

almost has no influence on the fracture behaviors according to energy release rate 

criterion. 

1r 3r 4r

2r

5r 6r

7r 9r 10r

8r

9r 10r 11r 12r

14r 15r 16r

13r 17r

Finally, the normalized ERRs for the case of two interfacial cracks between two 

dissimilar magnetoelectroelastic layers are numerically evaluated. As discussed in Fig. 

3, medium 1 and medium 2 are also set to be CoFe2O4-BaTiO3 composites with 

 and , respectively. For briefly, only some numerical results are 0.2fv = 0.4fv =

graphically given in Figs. 11 and 12, where 1 1 2 2 2b a b a a− = − = , and is defined as 0G  

 17



before. As shown in Figs. 11 and 12, for the ations nsidered here, 

both the electrical and magnetic loads have the same effects as the case of single 

interfacial crack. As expected, Figs. 11 and 12 also indicate that for a larger ( )1 2h h=  

the distance between the two cracks has insignificant effects on the ERRs. 

In addition, it is worth remarking that the ERRs obtained from the

 material combin co

 n

pro

5. Conclusions 

r, fracture analyses of interfacial cracks between two dissimilar 

ma

de-I interfacial crack 

pro

the 

app

ctroelastic layers 

umerical 

cedures in this section are all real. This phenomenon has also been verified for 

interfacial cracks between two dissimilar magnetoelectroelastic half-planes by Li and 

Kardomateas (2007), where the extended Stroh’s theory and analytic continuation 

principle of complex analysis have been used.  

In this pape

gnetoelectroelastic layers are investigated. The magnetoelectrically impermeable 

crack surface condition is adopted. Fourier transform and dislocation density 

functions are applied to reduce the mixed boundary value problem to a system of 

Cauchy singular equations, which can be numerically solved. According to energy 

release rate criterion, the following conclusions may be drawn: 

(1) Although the FIFs exhibit oscillation singularity for mo

blem considered here, the ERRs at least for the present material combinations are 

always real. Thus, this kind of oscillation singularity does not appear in the ERRs. 

(2) For interfacial crack problems, both the amplitudes and directions of 

lied magnetoelectrical loads have effects on the crack extension force. At least for 

the present material combinations, it is easier to inhibit the crack propagation and 

growth by adjusting electrical load than by adjusting magnetic load. 

(3) For a fixed crack length, increasing the heights of magnetoele
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can

t effects on the ERRs of 

inte
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)L  in Eqs. (7) are the roots of the following equation 
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where the matrix 

 impede the interfacial crack initiation and propagation. 

(4) Material combinations have important and differen

rfacial cracks. On one hand, increasing the ratios of material combination 
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and 17r  almost have no effects on the fracture behaviors of the magnetoelectroelastic 

material combinations with interfacial cracks, and the effects of 8r , 14r  and 16r  

even including the effects of 15r  on the ERRs are, in fact, insignificant as well. 
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( 1, 2j jλ = , ,8

( )Det 0,s,λ =⎡ ⎤⎣ ⎦D  

( ),s λ  is given by D

( ) ( ) ( ) ( ) (

( )

) ( )
( ) ( )
( ) ( )
( ) ( )

2
11 13 15 13 15

2 2 2 2 2 2
13 44 33 44 33 15 33 15

2 2 2 2 2 2
13 15 33 15 33 11 33 11

2 2 2 2 2 2
13 15 33 15 33 11 33 11

, .

is e e is f f is
c c is c c s e e s f f s

s
e e is e e s s g g s
f f is f f s g g s s

λ λ λ λ
λ λ λ λ

λ
λ λ ε λ ε λ
λ λ λ μ λ μ

⎤− + − + − + −
⎢ ⎥+ − − − −⎢ ⎥= ⎢ ⎥+ − − − + − +
⎢ ⎥

+ − − − + − +⎢ ⎥⎣ ⎦

D  

 (A.2) 

2
44 13 44c c s c c⎡

The functions ( ) ( ) ( ) ( ),j ja s b sα α  and ( ) ( ) ( )1, ,8jc s jα = LL  in Eqs. (7) can be obtained 
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by 

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 13 14

21 23 24

31 33 34

12 13 14

22 23 24

32 33 34

, , ,

, , ,

, , ,
,

, , ,

, , ,

, , ,

j j

j j

j j
j

j j

j j

j j

d s d s d s

d s d s d s

d s d s d s
a s

d s d s d s

d s d s d s

d s d s d s

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

= −

j

j

j

j

j

j

λ

λ

λ

λ

λ

λ

 (A.3a) 

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

12 11 14

22 21 24

32 31 34

12 13 14

22 23 24

32 33 34

, , ,

, , ,

, , ,
,

, , ,

, , ,

, , ,

j j

j j

j j
j

j j

j j

j j

d s d s d s

d s d s d s

d s d s d s
b s

d s d s d s

d s d s d s

d s d s d s

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

= −

j

j

j

j

j

j

λ
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where ) are the components of matrix ( ) (, 1,2,3 and 1,2,3,4mnd s m nλ = =  ( ),s λD . 

Appendix B 

onents of in Eqs. (8) are respectively The comp H  

( ) ( ) ( )
( )1 8 0,j jλ + =  

,⎣ ⎦  

,

j h
j j j j j j j jh f is f a g b c e hλλ λ μ λ +

⎡ ⎤= − + − − =⎣ ⎦  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
11 1 1 1 1 1 1 1 1 1

1 13 33 33 33 ,j h
j j j j j jh c is c a e b f c e hλλ λ⎡ ⎤= − + + +⎣ ⎦

) (

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )
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11 1 1 1 1 1 1 1

2 44 44 15 15 2 8, 0j h
j j j j j jh c c a is e b is f c is e hλλ +

⎡ ⎤= + − + − + − =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1
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3 13 33 33 33 3 8, 0j h
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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The constant matrices A and B in Eq. (17) can be expressed as 

1112 13 14

22 23 2421

32 33 3431

42 43 4441

0 0 00
00 0 0

,
00 0 0
00 0 0

MM M M
M M MM
M M MM
M M MM

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

A B  (B.2) 

where  
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The function matrix  in Eq. (17) can be written as ( ,v xQ
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with 

    (B.6) 
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0

0
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Q , cos , 1, 2,3, 4, or 2,3,4, 1.
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ij ij ij
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Figure and Table Captions 

Fig.1. Interfacial cracks between two dissimilar magnetoelectroelastic layers. 

Fig.2. Normalized ERRs under different (a) electrical and (b) magnetic loads for a 

magnetoelectrically impermeable central crack in a homogeneous 
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magnetoelectroelastic layer for different layer heights. 

Fig.3. Normalized ERRs under different (a) electrical and (b) magnetic loads for a 

magnetoelectrically impermeable interfacial crack between two dissimilar 

magnetoelectroelastic layers for different layer heights as h1/ h2=1. 

Fig.4. Normalized ERRs versus r1 (r2=…=r17=1), r2 (r1=1, r3=…=r17=1), r3 (r1=r2=1, 

r4=…= r17=1) and r4 (r1=r2=r3=1, r5=…= r17=1) for single magnetoelectrically 

impermeable interfacial crack under only mechanical load as h1/a= h2/a =2.0. 

Fig.5. Normalized ERRs versus r5 (r1=…=r4=1, r6=…= r17=1), r6 (r1=…=r5=1, r7=…= 

r17=1) and r7 (r1=…=r6=1, r8=…= r17=1) for single magnetoelectrically 

impermeable interfacial crack under only mechanical load as h1/a= h2/a =2.0. 

Fig.6. Normalized ERRs versus r8 (r1=…=r7=1, r9=…=r17=1), r9 (r1=…=r8=1, r10=…= 

r17=1) and r10 (r1=…=r9=1, r11=…= r17=1) for single magnetoelectrically 

impermeable interfacial crack under only mechanical load as h1/a= h2/a =2.0. 

Fig.7. Normalized ERRs versus r11 (r1=…=r10=1, r12=…= r17=1) and r12 (r1=…=r11=1, 

r13=…=r17=1) for single magnetoelectrically impermeable interfacial crack 

under only mechanical load as h1/a= h2/a =2.0. 

Fig.8. Normalized ERRs versus r13 (r1= …=r12=1, r14=… =r17=1) and r14 (r1=…=r13=1, 

r15=r16=r17=1) for single magnetoelectrically impermeable interfacial crack 

under only mechanical load as h1/a= h2/a =2.0. 

Fig.9. Normalized ERRs versus r15 (r1=…=r14=1, r16=r17=1) and r16  (r1=…=r15=1, 

r17=1) for single magnetoelectrically impermeable interfacial crack under only 

mechanical load as h1/a= h2/a =2.0. 

Fig.10. Normalized ERRs versus r17 for single magnetoelectrically impermeable 

interfacial crack under only mechanical load as h1/a= h2/a =2.0 and 

r1=r2=…=r16=1. 

Fig.11. Normalized ERRs versus electrical loads at (a) x=a1 and (b) x=b1 for two 

magnetoelectrically impermeable interface cracks. 

Fig.12. Normalized ERRs versus magnetic loads at (a) x=a1 and (b) x=b1 for two 

magnetoelectrically impermeable interface cracks. 
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Table 1 

Material properties of BaTiO3-CoFe2O4 composites as a percentage (volume fraction 

vf) (cij in 109 N/m2, eij in C/m2, εij in 10-9C/Vm, fij in N/Am, μij in 10-4Ns2/ C2, gij in 

10-12Ns/ VC, ρ in kg/m3) vf=0.0 corresponding to CoFe2O4 and vf=1.0 to BaTiO3. 
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Fig.1. Interfacial cracks between two dissimilar magnetoelectroelastic 
layers. 
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Fig.2. Normalized ERRs under different (a) electrical and (b) magnetic 
loads for a magnetoelectrically impermeable central crack in a 
homogeneous magnetoelectroelastic layer for different layer heights. 
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Fig.3. Normalized ERRs under different (a) electrical and (b) magnetic 
loads for a magnetoelectrically impermeable interfacial crack between 
two dissimilar magnetoelectroelastic layers for different layer heights 
as h1/ h2=1. 
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Fig.4. Normalized ERRs versus r1 (r2=…=r17=1), r2 (r1=1, 
r3=…=r17=1), r3 (r1=r2=1, r4=…= r17=1) and r4 (r1=r2=r3=1, r5=…= 
r17=1) for single magnetoelectrically impermeable interfacial crack 
under only mechanical load as h1/a= h2/a =2.0. 
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magnetoelectrically impermeable interfacial crack under only 
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Fig.6. Normalized ERRs versus r8 (r1=…=r7=1, r9=…=r17=1), r9 
(r1=…=r8=1, r10=…= r17=1) and r10 (r1=…=r9=1, r11=…= r17=1) for 
single magnetoelectrically impermeable interfacial crack under only 
mechanical load as h1/a= h2/a =2.0. 
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Fig.7. Normalized ERRs versus r11 (r1=…=r10=1, r12=…= r17=1) and r12 
(r1=…=r11=1, r13=…=r17=1) for single magnetoelectrically 
impermeable interfacial crack under only mechanical load as h1/a= h2/a 
=2.0.  
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Fig.8. Normalized ERRs versus r13 (r1= …=r12=1, r14=… =r17=1) and 
r14 (r1=…=r13=1, r15=r16=r17=1) for single magnetoelectrically 
impermeable interfacial crack under only mechanical load as h1/a= h2/a 
=2.0. 
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Fig.9. Normalized ERRs versus r15 (r1=…=r14=1, r16=r17=1) and r16  
(r1=…=r15=1, r17=1) for single magnetoelectrically impermeable 
interfacial crack under only mechanical load as h1/a= h2/a =2.0. 
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Fig.10. Normalized ERRs versus r17 for single magnetoelectrically 
impermeable interfacial crack under only mechanical load as h1/a= h2/a 
=2.0 and r1=r2=…=r16=1. 
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Fig.11. Normalized ERRs versus electrical loads at (a) x=a1 and (b) 
x=b1 for two magnetoelectrically impermeable interface cracks. 
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Fig.12. Normalized ERRs versus magnetic loads at (a) x=a1 and (b) 
x=b1 for two magnetoelectrically impermeable interface cracks. 
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Table 1 
Material properties of BaTiO3-CoFe2O4 composites as a percentage (volume fraction 
vf) (cij in 109 N/m2, eij in C/m2, εij in 10-9C/Vm, fij in N/Am, μij in 10-4Ns2/ C2, gij in 
10-12Ns/ VC, ρ in kg/m3) vf=0.0 corresponding to CoFe2O4 and vf=1.0 to BaTiO3. 

 

 c11 c12 c13 c33 c44 e15 e31 e33 ε11

vf=0.2 250 146 145 240 45 0 -2 4 0.33 

vf=0.4 225 125 125 220 45 0 -3 7 0.8 

 ε33 μ11 μ33 f15 f31 f33 g11 g33 ρ 

vf=0.2 2.5 3.9 1.33 340 410 550 2.8 2000 5400 

vf=0.4 5.0 2.5 1.0 220 300 380 4.8 2750 5500 
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