219,957 research outputs found

    Finite elements for contact problems in two-dimensional elastodynamics

    Get PDF
    A finite element approach for contact problems in two dimensional elastodynamics was proposed. Sticking, sliding, and frictional contact were taken into account. The method consisted of a modification of the shape functions, in the contact region, in order to involve the nodes of the contacting body. The formulation was symmetric (both bodies were contactors and targets), in order to avoid interpenetration. Compatibility over the interfaces was satisfied. The method was applied to the impact of a block on a rigid target. It is shown that the formulation can be applied to fluid structure interaction, and to problems involving material nonlinearity

    Efficient linear and nonlinear heat conduction with a quadrilateral element

    Get PDF
    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems

    Proton-proton and deuteron-gold collisions at RHIC

    Full text link
    We try to understand recent data on proton-proton and deuteron-gold collisions at RHIC, employing a modified parton model approach.Comment: Invited talk, given at the XXth Winter Workshop on Nuclear Dynamics, Trelawny Beach, Jamaica, March 200

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201
    corecore