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SUMMARY

This article summarizes some aspects of research in progress for develop-
ing finite element methods for contact problems. We propose a new''finite ele-
ment approach" for contact problems in two-dimensional elastodynamics. Sticking,
sliding and frictional contact can be taken into account. The method consists
of a modification of the shape functions, in the contact region, in order to
involve the nodes of the contacting body. The formulation is symmetric (both
bodies are contactors and targets), in order to avoid interpenetration. Compati-
bility over the interfaces is satisfied. The method is applied to the impact of
a block on a rigid target. The formulation can be applied to fluid-structure
interaction, and to problems involving material nonlinearity. The extension to
three dimensions presents additional difficulties, but it is possible.

INTRODUCTION

The approach presented in this article was developed while trying to simu-
late the movement of a gas bubble in a liquid. The original idea was to intro-
duce the compatibility of the velocities over the gas-liquid interface via a
constraint equation and to handle it by the Lagrange multiplier method. In a
second step, the Lagrange multiplier method was replaced by a penalty method,
which is easier to implement. In both cases, the constraint equation is a
geometric relationship between gas and liquid velocities. No local remeshing
was performed; the bubble and liquid meshes were simply superposed. This resul-
ted in poor pressure fields along the interface. Looking for an improvement of
this situation, remeshing appeared as the best but also the most cumbersome
solution. Alternatively, a modification of the shape functions appeared to have
the advantages of remeshing, without its inconveniences. This latter approach
is described herein as it is applied to contact problems in two~dimensional
elastodynamics. Frictional contact results in an exchange of momentum between
the two contacting bodies, and can be realised by direct introduction of a
contribution of the contactor's velocity into the target's equation of motion.
This is conveniently done by means of a modification of the shape functions, as
described in the next paragraphs.
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The proposed approach has the advantage, as compared to the Lagrange mul-
tiplier method, of maintaining a constant size of the linear system to be
solved. Compared to a penalty method, it has the advantage that we get auto-
matic compatibility of the field variables over the interface. When the
formulation is symmetric (i.e., both bodies are targets and contactors),
interpenetration is totally avoided.

MODIFIED SHAPE FUNCTIONS
FOR QUADRILATERAL FINITE ELEMENTS

Figure 1 shows a two-dimensional contact problem. Node C contacts element
(1-2-3-4) of the target and from then on contributes to its shape functions.
We start from the initial L-nodes interpolation function

4
v = > Nyv, (1)
a=1

with Na = 0.25(1+ sign(E,) £) (1+sian(m,) 1) (2)

where £, N are local coordinates, and vare the velocities.
In order to take the contribution of point C (node 5) into account, we modify

the interpolation function as follows

5
*
v = 3 Nj v (3)
az1
Notice that from a global point of view there is no new node appearing.

Obviously, a "hat shape function" at node 5 is the most adequate for our
purpose. This yields automatic compatibility of the velocities at the interface,
if a symmetric formulation is used. Further, we want to account for tangential
sliding with friction at the contact point. Therefore, we introduce a factor W
which allows the shape function at node 5 to vary in amplitude between O and 1,
which will lead to a partial exchange of momentum. The resulting shape functions

are (assuming C is on side M = + 1)

_osu(1em)[14(E-85)/(1+E5)] it E<Eg

NZ = N, = .
O.Sp.(1+1])[1—(§-§5)/(1-§5)] if §>§5 (4)
and N7 = Ny-a, N} a=1—>4 (5)
with a, = 0.5(1+sign £y gs)

The local coordinates of C are (E_,1). We can also assume, without restric-
tion, that the contact point is associdted with local coordinates (0, +1), N;
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1.

then becomes

. N¥ = 0.5 (1+7m)(1-sign(E)-E) (6)

This shape function is shown on fjgure 2. Observe that N § (gs, ns) does not
vanish at node 5 when p# 1, but Na = 1 is preserved.

In the sequel, we separate normal (n) and tangential (t) directions and
therefrom the following typical possible situations.

a.p = 1, By = 0, corresponds to frictionless sliding in the tangential direc-
tion and sticking in the normal direction. This yields

*
Nn = Na (a = l——5), the standard 5-nodes interpolation
function,

%
Nt = Na (a = 1—L4), the standard 4-nodes interpolation
function.

b.lln =1, ut =1 corresponds to sticking, and yields
N*¥ = N¥ = N (a = 1—+5).
n t a

c.bp=1, gy €101 this accounts for frictional sliding.

Since Ldepends on orientation, we introduce a second order tensor, which we
need in order to define strain rates and stresses in global coordinates.

In a local orthdogonal frame tangential to the target surface we write

V‘T 0 l“l't vc (T)

where the superscripts T and C stand for target and contactor, respectively, and
the subscripts n and t for normal and tangential.

. Equation (7) defines the contribution of node 5 (contactor) to the target
velocity while the true local veloecity, at C, is given by

. _ -1 if E<O
sign (8) = ] j; E>0

227



wlos N ] [v:] (8)

acl .
where' vi b= [VJ VJ J (9)
vh = lv:n v:t v;n v;‘ ....... th Vs(,:n Vsct T (10)
and [N;] is defined as follows++
[Ng]=Ng [u7] (11)
[N2] =N [1]-eq[N]] (12)
ny_ [Hn 0]
[+"] [0 " (13)

=o 7] -

The matrix Nn is diagonal when defined in a local referential, tangential
to the contact sufface. It does not induce a coupling of the normal and tangen-—
tial components, but this would not be true in a global referential. We can,
therefore, establish the stiffness in this local referential and rotate the
element matrix before we assemble the elements. Alternatively we can make the
derivation in a global coordinate system.

In practice, the whole effort essentially reduces to minor changes in the
shape function routines.

TRANSIENT SOLUTION PROCEDURE
Search Algorithm

We need to determine at each time step the location of each node of each
body in the contact zone with respect to the mesh of the other one. For that
purpose a connectivity matrix is established in the input phase; this matrix
lists all elements connected to each element. Assuming the time step to be
small, we memorize the previous position of each node (by an element number),
and search for its new position in adjacent elements. A 2-dimensional search
path is shown on figure 3. Once the new position is known, we modify the
shape functions of the target element as described in the previous paragraph
and compute the updated stiffnesses.

+ T as superscript of a matrix stands for transpose
Tt o depends on the local coordinate of the fifth node
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Predictor-Corrector Algorithm

We adopt here an explicit predictor-corrector algorithm, defined by the
following equations, at time step (n + 1) (see ref. 1, 2 for details).

Man,y + N(dn., .Zn.1)=fn.1 (15)
an =!n+At(1'Y)§n (17)
doyy =dna + A2 3, (18)
Voo = V¥n.u t Atvan, (19)
do =10 (20)
Yo =X (21)
2, =M (Fy-N(dg.Yo)) (22)

Equations (16) and (1T) are predictor equations (upper tilda), (18) and (19) are
corrector equations, (20) to (22) are initial conditions, and N 1is a nonlinear
algebraic operator’. The implementation procedure can be found in (ref. 1).

If frictional contact occurs, we need in addition a predictor equation for
u Because of lack of space, this is not developed here. For the time being
we a opt

T (23)

NUMERICAL RESULTS

The analysis of an impact of a rectangular block on a rigid surface is
performed (see ref. 3, for comparison). Figure L shows the mesh. The data are

density p=0.01
modulus of elasticity E = 1,000
Poisson's coefficient v=20.3
dimensions L. = 9.9
time step At = 0.002725

t+ If variables are to be memorized at element integration points, as often in
nenlinear problems, remember that these are moving when node 5 moves.
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Newvmark parameters Y = 0.5 B=0.25
(explicit predictor-
corrector algorithm)
initial velocity Vo =1
0.5
wave velocity Ce ={[E(1-V)T1/[(14v)(1-2Vv)-p]} ™ = 366.9

The time step is defined by the transit time for a dilatational wave to
cross one element. The impact takes place at t = 0. Frictionless contact is as-
sumed (ML,= 0). This is introduced via isclated nodes, as shown on figure lLa.
For the purpose of testing the new formulation, both node-to-node and distinct
nodal positions are tested and yield the same results.

The anticipated solution is shown on figure 4b. This exact solution has
two constant zones separated by the dilatational wave front emanating from the
initial impact. The circular wave front is a result of reflections off the free

boundary.

During the early steps of the computation, stresses in zone IT are obtain-
ed from the impulse equaticn applied to a one-dimensional situation (O==c-p-vo)
Stress results shown on figure 5.a confirm the validity of the new approach.
Some overshoot appears, however, in the stress results of the lowest row of
elements, probably due to the absence of a discrete impact condition in the
algorithm. The deformed configuration at t = 0.0218s.is shown on figure 5b.

CONCLUDING REMARKS

A new approach to contact problems involving friction in two-dimensional
elastodynamics is proposed in this article. The basic idea obviously shows some
analogies with local remeshing techniques, like the one proposed in (ref. L).

The treatment of friction via modified shape functions seems similar to the
lines of thinking adopted in (ref. 5) for the treatment of shock waves.

The proposed formulation is symmetric (both bodies are contactor and tar-—
get for each other) and satisfies compatibility of velocities over the contact
interface (when possible), thus avoiding interpenetration. Completeness of the
modified elements remains satisfied. Although no detailed comparison with dif-
ferent approaches has been made as yet, the following advantages can be men-
tioned : constant size of the system of equations (not true for local remeshing
or Lagrange multiplier approach, important if an implicit solution is performed)
and interface compatibility (not true in general for Lagrange multipliers or
penalty methods).

The extension of the method to several contacting nodes per element is
possible, but it is not trivial. The extension to contact problems in three
dimensional space and inclusion problems in 2-D is possible, but at the cost
of losing interface compatibility. As already mentioned, nonlinear analysis may
present minor difficulties because of the fact that integration points can move.
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Further research is needed on the predictor algorithm for sliding with friction
and impact-release conditions have to be added.

Qur main effort, at present, is directed towards testing the approach in
problems involving friction.
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Figure 1.- Contact prcoblem.

Figure 2.~ Modified shape functions.
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Figure 3.- Search path.
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(a) Finite element mesh.

(b) Wave front diagram.

Figure U4.- Impact of rectangular block on a rigid surface.
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(a) Stress results.
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(b) Deformed mesh.

Figure 5.- Stress results and resulting

deformed mesh.
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