22,717 research outputs found

    Heroes and villains of world history across cultures

    Get PDF
    © 2015 Hanke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedEmergent properties of global political culture were examined using data from the World History Survey (WHS) involving 6,902 university students in 37 countries evaluating 40 figures from world history. Multidimensional scaling and factor analysis techniques found only limited forms of universality in evaluations across Western, Catholic/Orthodox, Muslim, and Asian country clusters. The highest consensus across cultures involved scientific innovators, with Einstein having the most positive evaluation overall. Peaceful humanitarians like Mother Theresa and Gandhi followed. There was much less cross-cultural consistency in the evaluation of negative figures, led by Hitler, Osama bin Laden, and Saddam Hussein. After more traditional empirical methods (e.g., factor analysis) failed to identify meaningful cross-cultural patterns, Latent Profile Analysis (LPA) was used to identify four global representational profiles: Secular and Religious Idealists were overwhelmingly prevalent in Christian countries, and Political Realists were common in Muslim and Asian countries. We discuss possible consequences and interpretations of these different representational profiles.This research was supported by grant RG016-P-10 from the Chiang Ching-Kuo Foundation for International Scholarly Exchange (http://www.cckf.org.tw/). Religion Culture Entropy China Democracy Economic histor

    The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

    Full text link
    A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.Comment: 11 pages, 3 figures in EPS forma

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    Improving Performance Estimation for FPGA-based Accelerators for Convolutional Neural Networks

    Get PDF
    Field-programmable gate array (FPGA) based accelerators are being widely used for acceleration of convolutional neural networks (CNNs) due to their potential in improving the performance and reconfigurability for specific application instances. To determine the optimal configuration of an FPGA-based accelerator, it is necessary to explore the design space and an accurate performance prediction plays an important role during the exploration. This work introduces a novel method for fast and accurate estimation of latency based on a Gaussian process parametrised by an analytic approximation and coupled with runtime data. The experiments conducted on three different CNNs on an FPGA-based accelerator on Intel Arria 10 GX 1150 demonstrated a 30.7% improvement in accuracy with respect to the mean absolute error in comparison to a standard analytic method in leave-one-out cross-validation.Comment: This article is accepted for publication at ARC'202

    DeepRank: Adapting Neural Tensor Networks for Ranking the Recommendations

    Get PDF
    Online real estate property portals are gaining great attraction from masses due to ease in finding properties for rental or sale/purchase. With a few clicks, a real estate portal can display relevant information to a user by ranking the searched items according to user’s specifications. It is highly significant that the ranking results display the most relevant search results to the user. Therefore, an efficient ranking algorithm that takes user’s context is crucial for enhancing user experience in finding real estate properties online. This paper proposes an expressive Neural Tensor Network to rank the properties when searched for based on the similarity between the two property entities. Previous similarity techniques do not take into account the numerous complex features used to define a property. We showed that the performance can be enhanced if the property entities are represented as an average of their constituting features before finding the similarity between them. The proposed method takes into account each feature dynamically and ranks properties according to similarity with an accuracy of 86.6%

    Electronic Devices Based on Purified Carbon Nanotubes Grown By High Pressure Decomposition of Carbon Monoxide

    Full text link
    The excellent properties of transistors, wires, and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems. Gas-phase growth procedures such as the high pressure decomposition of carbon monoxide (HiPCO) method yield large quantities of small diameter semiconducting SWNTs, which are ideal for use in nanoelectronic circuits. As-grown HiPCO material, however, commonly contains a large fraction of carbonaceous impurities that degrade properties of SWNT devices. Here we demonstrate a purification, deposition, and fabrication process that yields devices consisting of metallic and semiconducting nanotubes with electronic characteristics vastly superior to those of circuits made from raw HiPCO. Source-drain current measurements on the circuits as a function of temperature and backgate voltage are used to quantify the energy gap of semiconducting nanotubes in a field effect transistor geometry. This work demonstrates significant progress towards the goal of producing complex integrated circuits from bulk-grown SWNT material.Comment: 6 pages, 4 figures, to appear in Nature Material

    Social Determinants of Community Health Services Utilization among the Users in China: A 4-Year Cross-Sectional Study

    Get PDF
    Background To identify social factors determining the frequency of community health service (CHS) utilization among CHS users in China. Methods Nationwide cross-sectional surveys were conducted in 2008, 2009, 2010, and 2011. A total of 86,116 CHS visitors selected from 35 cities were interviewed. Descriptive analysis and multinomial logistic regression analysis were employed to analyze characteristics of CHS users, frequency of CHS utilization, and the socio-demographic and socio-economic factors influencing frequency of CHS utilization. Results Female and senior CHS clients were more likely to make 3–5 and ≥6 CHS visits (as opposed to 1–2 visits) than male and young clients, respectively. CHS clients with higher education were less frequent users than individuals with primary education or less in 2008 and 2009; in later surveys, CHS clients with higher education were the more frequent users. The association between frequent CHS visits and family income has changed significantly between 2008 and 2011. In 2011, income status did not have a discernible effect on the likelihood of making ≥6 CHS visits, and it only had a slight effect on making 3–5 CHS visits. Conclusion CHS may play an important role in providing primary health care to meet the demands of vulnerable populations in China. Over time, individuals with higher education are increasingly likely to make frequent CHS visits than individuals with primary school education or below. The gap in frequency of CHS utilization among different economic income groups decreased from 2008 to 2011

    Logarithmic rate dependence in deforming granular materials

    Full text link
    Rate-independence for stresses within a granular material is a basic tenet of many models for slow dense granular flows. By contrast, logarithmic rate dependence of stresses is found in solid-on-solid friction, in geological settings, and elsewhere. In this work, we show that logarithmic rate-dependence occurs in granular materials for plastic (irreversible) deformations that occur during shearing but not for elastic (reversible) deformations, such as those that occur under moderate repetitive compression. Increasing the shearing rate, \Omega, leads to an increase in the stress and the stress fluctuations that at least qualitatively resemble what occurs due to an increase in the density. Increases in \Omega also lead to qualitative changes in the distributions of stress build-up and relaxation events. If shearing is stopped at t=0, stress relaxations occur with \sigma(t)/ \sigma(t=0) \simeq A \log(t/t_0). This collective relaxation of the stress network over logarithmically long times provides a mechanism for rate-dependent strengthening.Comment: 4 pages, 5 figures. RevTeX

    Top pair Asymmetries at Hadron colliders with general ZZ' couplings

    Full text link
    Recently it has been shown that measurement of charge asymmetry of top pair production at LHC excludes any flavor violating ZZ' vector gauge boson that could explain Tevatron forward-backward asymmetry (FBA). We consider the general form of a ZZ' gauge boson including left-handed, right-handed vector and tensor couplings to examine FBA and charge asymmetry. To evaluate top pair asymmetries at Tevatron and LHC, we consider Bq0B^0_q mixing constraints on flavor changing ZZ' couplings and show that this model still explain forward-backward asymmetry at Tevatron and charge asymmetry can not exclude it in part of parameters space.Comment: 18 pages, 7 figure
    corecore