4,501 research outputs found
Metastable behavior of vortex matter in the electronic transport processes of homogenous superconductors
We study numerically the effect of vortex pinning on the hysteresis voltage-temperature (V-T) loop of vortex matter. It is found that different types of the V-T loops result from different densities of vortex pinning center. An anticlockwise V-T loop is observed for the vortex system with dense pinning centers, whereas a clockwise V-T loop is brought about for vortices with dilute pinning centers. It is shown that the size of the V-T loop becomes smaller for lower experimental speed, higher magnetic field, or weak pinning strength. Our numerical observation is in good agreement with experiments
Molecular dynamics simulation of the order-disorder phase transition in solid NaNO
We present molecular dynamics simulations of solid NaNO using pair
potentials with the rigid-ion model. The crystal potential surface is
calculated by using an \emph{a priori} method which integrates the \emph{ab
initio} calculations with the Gordon-Kim electron gas theory. This approach is
carefully examined by using different population analysis methods and comparing
the intermolecular interactions resulting from this approach with those from
the \emph{ab initio} Hartree-Fock calculations. Our numerics shows that the
ferroelectric-paraelectric phase transition in solid NaNO is triggered by
rotation of the nitrite ions around the crystallographical c axis, in agreement
with recent X-ray experiments [Gohda \textit{et al.}, Phys. Rev. B \textbf{63},
14101 (2000)]. The crystal-field effects on the nitrite ion are also addressed.
Remarkable internal charge-transfer effect is found.Comment: RevTeX 4.0, 11 figure
VSCAN: An Enhanced Video Summarization using Density-based Spatial Clustering
In this paper, we present VSCAN, a novel approach for generating static video
summaries. This approach is based on a modified DBSCAN clustering algorithm to
summarize the video content utilizing both color and texture features of the
video frames. The paper also introduces an enhanced evaluation method that
depends on color and texture features. Video Summaries generated by VSCAN are
compared with summaries generated by other approaches found in the literature
and those created by users. Experimental results indicate that the video
summaries generated by VSCAN have a higher quality than those generated by
other approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1401.3590 by
other authors without attributio
Bacterial diversity in the intestine of sea cucumber Stichopus japonicus
The intestinal bacterial diversity of Stichopus japonicus was investigated using 16S ribosomal RNA gene (rDNA) clone library and Polymerase Chain Reaction/Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The clone library yielded a total of 188 clones, and these were sequenced and classified into 106 operational taxonomic units (OTUs) with sequence similarity ranging from 88 to 100%. The coverage of the library was 77.4%, with approximately 88.7% of the sequences affiliated to Proteobacteria. Gammaproteobacteria and Vibrio sp. were the predominant groups in the intestine of S. japonicus. Some bacteria such as Legionella sp., Brachybacterium sp., Streptomyces sp., Propionigenium sp. and Psychrobacter sp were first identified in the intestine of sea cucumber
Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions
The role of neutron transfers is investigated in the fusion process below the
Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A
full coupled-channel calculation of the fusion excitation functions has been
performed for both systems by using multi-neutron transfer coupling for the
more neutron-rich reaction. The enhancement of fusion cross sections for
32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations
including the coupling of the neutron-transfer channels following the Zagrebaev
semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr
fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint
Malo, France, 2-6 mai 201
Quantum feedback with weak measurements
The problem of feedback control of quantum systems by means of weak
measurements is investigated in detail. When weak measurements are made on a
set of identical quantum systems, the single-system density matrix can be
determined to a high degree of accuracy while affecting each system only
slightly. If this information is fed back into the systems by coherent
operations, the single-system density matrix can be made to undergo an
arbitrary nonlinear dynamics, including for example a dynamics governed by a
nonlinear Schr\"odinger equation. We investigate the implications of such
nonlinear quantum dynamics for various problems in quantum control and quantum
information theory, including quantum computation. The nonlinear dynamics
induced by weak quantum feedback could be used to create a novel form of
quantum chaos in which the time evolution of the single-system wave function
depends sensitively on initial conditions.Comment: 11 pages, TeX, replaced to incorporate suggestions of Asher Pere
On the Digital Holographic Interferometry of Fibrous Material, I. Optical Properties of Polymer and Optical Fibers
The digital holographic interferometry (DHI) was utilized for investigating
the optical properties of polymer and optical fibers. The samples investigated
here were polyvinylidene fluoride (PVDF) polymer fiber and graded-index (GRIN)
optical fiber. The phase shifting Mach-Zehnder interferometer was used to
obtain five phase-shifted holograms, in which the phase difference between two
successive holograms is pi/2, for each fiber sample. These holograms were
recorded using a CCD camera and were combined to gain a complex wavefield,
which was numerically reconstructed using the convolution approach into
amplitude and phase distributions. The reconstructed phase distribution was
used to determine the refractive index, birefringence and refractive index
profile of the studied samples. The mean refractive index has been measured
with accuracy up to 4 {\times} 10-4. The main advantage of DHI is to overcome
the manual focusing limitations by means of the numerical focusing. The results
showed accurate measurements of the optical properties of fibers.Comment: abstract, reference
Certain subclasses of multivalent functions defined by new multiplier transformations
In the present paper the new multiplier transformations
\mathrm{{\mathcal{J}% }}_{p}^{\delta }(\lambda ,\mu ,l) (\delta ,l\geq
0,\;\lambda \geq \mu \geq 0;\;p\in \mathrm{% }%\mathbb{N} )} of multivalent
functions is defined. Making use of the operator two new subclasses and \textbf{\ }of multivalent analytic
functions are introduced and investigated in the open unit disk. Some
interesting relations and characteristics such as inclusion relationships,
neighborhoods, partial sums, some applications of fractional calculus and
quasi-convolution properties of functions belonging to each of these subclasses
and
are
investigated. Relevant connections of the definitions and results presented in
this paper with those obtained in several earlier works on the subject are also
pointed out
A characteristic particle method for traffic flow simulations on highway networks
A characteristic particle method for the simulation of first order
macroscopic traffic models on road networks is presented. The approach is based
on the method "particleclaw", which solves scalar one dimensional hyperbolic
conservations laws exactly, except for a small error right around shocks. The
method is generalized to nonlinear network flows, where particle approximations
on the edges are suitably coupled together at the network nodes. It is
demonstrated in numerical examples that the resulting particle method can
approximate traffic jams accurately, while only devoting a few degrees of
freedom to each edge of the network.Comment: 15 pages, 5 figures. Accepted to the proceedings of the Sixth
International Workshop Meshfree Methods for PDE 201
Symmetry Constraints and the Electronic Structures of a Quantum Dot with Thirteen Electrons
The symmetry constraints imposing on the quantum states of a dot with 13
electrons has been investigated. Based on this study, the favorable structures
(FSs) of each state has been identified. Numerical calculations have been
performed to inspect the role played by the FSs. It was found that, if a
first-state has a remarkably competitive FS, this FS would be pursued and the
state would be crystal-like and have a specific core-ring structure associated
with the FS. The magic numbers are found to be closely related to the FSs.Comment: 13 pages, 5 figure
- …
