1,630 research outputs found

    Oxygen impurities in NiAl: Relaxation effects

    Get PDF
    We have used a full-potential linear muffin-tin orbital method to calculate the effects of oxygen impurities on the electronic structure of NiAl. Using the supercell method with a 16-atom supercell we have investigated the cases where an oxygen atom is substitutionally placed at either a nickel or an aluminum site. Full relaxation of the atoms within the supercell was allowed. We found that oxygen prefers to occupy a nickel site over an aluminum site with a site selection energy of 138 mRy (21,370 K). An oxygen atom placed at an aluminum site is found to cause a substantial relaxation of its nickel neighbors away from it. In contrast, this steric repulsion is hardly present when the oxygen atom occupies the nickel site and is surrounded by aluminum neighbors. We comment on the possible relation of this effect to the pesting degradation phenomenon (essentially spontaneous disintegration in air) in nickel aluminides.Comment: To appear in Phys. Rev. B (Aug. 15, 2001

    Size-dependent decoherence of excitonic states in semiconductor microcrystallites

    Full text link
    The size-dependent decoherence of the exciton states resulting from the spontaneous emission is investigated in a semiconductor spherical microcrystallite under condition aBR0λa_{B}\ll R_{0}\leq\lambda. In general, the larger size of the microcrystallite corresponds to the shorter coherence time. If the initial state is a superposition of two different excitonic coherent states, the coherence time depends on both the overlap of two excitonic coherent states and the size of the microcrystallite. When the system with fixed size is initially in the even or odd coherent states, the larger average number of the excitons corresponds to the faster decoherence. When the average number of the excitons is given, the bigger size of the microcrystallite corresponds to the faster decoherence. The decoherence of the exciton states for the materials GaAs and CdS is numerically studied by our theoretical analysis.Comment: 4 pages, two figure

    Predictive Ability of QCD Sum Rules for Excited Baryons

    Get PDF
    The masses of octet baryons are calculated by the method of QCD sum rules. Using generalized interpolating fields, three independent sets of QCD sum rules are derived which allow the extraction of low-lying N* states with spin-parity 1/2+, 1/2- and 3/2- in both the non-strange and strange channels. The predictive ability of the sum rules is examined by a Monte-Carlo based analysis procedure in which the three phenomenological parameters (mass, coupling, threshold) are treated as free parameters simultaneously. Realistic uncertainties in these parameters are obtained by simultaneously exploring all uncertainties in the QCD input parameters. Those sum rules with good predictive power are identified and their predictions are compared with experiment where available.Comment: 33 pages, 2 figure

    Diffusion Enhances Spontaneous Electroweak Baryogenesis

    Full text link
    We include the effects of diffusion in the electroweak spontaneous baryogenesis scenario and show that it can greatly enhance the resultant baryon density, by as much as a factor of 1/αw41061/\alpha_w^4 \sim 10^6 over previous estimates. Furthermore, the baryon density produced is rather insensitive to parameters characterizing the first order weak phase transition, such as the width and propagation velocity of the phase boundary.Comment: 15 pages, uses harvmac and epsf macro

    A Lattice Study of the Magnetic Moment and the Spin Structure of the Nucleon

    Get PDF
    Using an approach free from momentum extrapolation, we calculate the nucleon magnetic moment and the fraction of the nucleon spin carried by the quark angular momentum in the quenched lattice QCD approximation. Quarks with three values of lattice masses, 210, 124 and 80 MeV, are formulated on the lattice using the standard Wilson approach. At every mass, 100 gluon configurations on 16^3 x 32 lattice with \beta=6.0 are used for statistical averaging. The results are compared with the previous calculations with momentum extrapolation. The contribution of the disconnected diagrams is studied at the largest quark mass using noise theory technique.Comment: 14 pages, 3 figures, Talk given at Lattice2001, Berlin, German

    Parity-violating neutron spin rotation in hydrogen and deuterium

    Full text link
    We calculate the (parity-violating) spin rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity-violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Using naive dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be 10^-7 to 10^-6 rad/m for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.Comment: 44 pages, 17 figures; minor corrections; to be published in EPJ

    Parity violation in nuclear systems

    Full text link
    Parity violation in nuclear systems is reviewed. A few ingredients relevant to the description of the parity-violating nucleon-nucleon force in terms of meson exchanges are reminded. Effects in nuclear systems are then considered. They involve pp scattering, some complex nuclei and the deuteron system.Comment: 4 pages, to be published in the proceedings of the worksho

    Nonperturbative renormalisation of composite operators with overlap quarks

    Get PDF
    We compute non-perturbatively the renormalisation constants of composite operators on a 163×3216^3 \times 32 lattice with lattice spacing aa = 0.093 fm for the overlap fermion action by using the regularisation independent (RI) scheme. The quenched gauge configurations are generated by tadpole improved plaquette plus rectangle action. We test the perturbative continuum relation ZA=ZVZ_A = Z_V and ZS=ZP Z_S=Z_P and find that they agree well above μ\mu = 1.6 GeV. We also perform a Renormalisation Group analysis at the next-to-next-to-leading order and convert the renormalisation constants to the MSˉ\bar{MS} scheme.Comment: Talk given at LHP2003, Cairns, Australi

    The Complete Flux Scheme : error analysis and application to plasma simulation

    Get PDF
    The Complete Flux scheme (CFS) (J.H.M. ten Thije Boonkkamp et al., J. Sci. Comput. 46 (2011) 47–70) is an extension of the widely used exponential di¿erence scheme for advection-di¿usion-reaction equations. In the present paper we provide a rigorous proof that the convergence order of this scheme is 2 for all grid Péclet numbers, whereas that of the exponential scheme reduces to 1 for high grid Péclet numbers in the presence of source terms. The performance of both schemes is compared in two case studies: a model system and a real-world model of a parallel-plate glow discharge. The results indicate that the usage of CFS allows a considerable reduction of the number of grid points that is required to obtain the same accuracy. The MATLAB/Octave source code that has been used in these studies has been made available

    Ion-beam-driven intense electrostatic solitary waves in reconnection jet

    Get PDF
    Electrostatic solitary waves (ESWs) have been reported inside reconnection jets, but their source and role remain unclear hitherto. Here we present the first observational evidence of ESWs generation by cold ion beams inside the jet, by using high-cadence measurements from the Magnetospheric Multiscale spacecraft in the Earth's magnetotail. Inside the jet, intense ESWs with amplitude up to 30 mV m(-1) and potential up to similar to 7% of the electron temperature are observed in association with accelerated cold ion beams. Instability analysis shows that the ion beams are unstable, providing free energy for the ESWs. The waves are observed to thermalize the beams, thus providing a new channel for ion heating inside the jet. Our study suggests that electrostatic turbulence can play an important role in the jet dynamics.Peer reviewe
    corecore