1,321 research outputs found
A construction scheme for linear and non-linear codes
AbstractA scheme for construcing linear and non-linear codes is presented. It constructs a code of block length 2n from two constituent codes of block length n. Codes so constructed can be either linear or non-linear even when the constituent codes are linear. The construction of many known linear and non-linear codes using this scheme will be shown
Sensitivity to measurement perturbation of single atom dynamics in cavity QED
We consider continuous observation of the nonlinear dynamics of single atom
trapped in an optical cavity by a standing wave with intensity modulation. The
motion of the atom changes the phase of the field which is then monitored by
homodyne detection of the output field. We show that the conditional Hilbert
space dynamics of this system, subject to measurement induced perturbations,
depends strongly on whether the corresponding classical dynamics is regular or
chaotic. If the classical dynamics is chaotic the distribution of conditional
Hilbert space vectors corresponding to different observation records tends to
be orthogonal. This is a characteristic feature of hypersensitivity to
perturbation for quantum chaotic systems.Comment: 11 pages, 6 figure
Stirring Strongly Coupled Plasma
We determine the energy it takes to move a test quark along a circle of
radius L with angular frequency w through the strongly coupled plasma of N=4
supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w
the energy deposited by stirring the plasma in this way is governed either by
the drag force acting on a test quark moving through the plasma in a straight
line with speed v=Lw or by the energy radiated by a quark in circular motion in
the absence of any plasma, whichever is larger. There is a continuous crossover
from the drag-dominated regime to the radiation-dominated regime. In the
crossover regime we find evidence for significant destructive interference
between energy loss due to drag and that due to radiation as if in vacuum. The
rotating quark thus serves as a model system in which the relative strength of,
and interplay between, two different mechanisms of parton energy loss is
accessible via a controlled classical gravity calculation. We close by
speculating on the implications of our results for a quark that is moving
through the plasma in a straight line while decelerating, although in this case
the classical calculation breaks down at the same value of the deceleration at
which the radiation-dominated regime sets in.Comment: 27 pages LaTex, 5 figure
Calculating the jet-quenching parameter in STU background
In this paper we use the AdS/CFT correspondence to compute the jet-quenching
parameter in a N=2 thermal plasma. We consider the general three-charge black
hole and discuss some special cases. We add a constant electric field to the
background and find the effect of the electric field on the jet-quenching
parameter. Also we include higher derivative terms and obtain the first-order
correction for the jet-quenching parameter.Comment: 17 pages, 3 figures, revised versio
Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia
Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10–37 °C (optimum, 25–30 °C), at pH 4.0–9.0 (optimum, pH 6.0–7.0) and with 0–2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0–99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4–99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclo ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA–DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. Nov. is proposed, with the type strain ICMP 19430T (=LMG 2841T =HAMBI 3637T)
Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth
The immunogenic clonal-fraction threshold in heterogeneous solid-tumor required to induce effective bystander-killing of non-immunogenic subclones is unknown. Pancreatic cancer poses crucial challenges for immune therapeutic interventions due to low mutational-burden and consequent lack of neoantigens. Here, we designed a model to incorporate artificial-neoantigens into genes-of -interest in cancer-cells and to test their potential to actuate bystander-killing. By precisely controlling a neoantigen's abundance in the tumor, we studied the impact of neoantigen frequency on immune-response and immune-escape. Our results showed single, strong, widely-expressed neoantigen could lead to robust antitumor response when over 80% of cancer cells express the neoantigen. Further, immunological assays demonstrated T-cell responses against non-target self-antigen on KRAS-oncoprotein, when we inoculated animals with a high frequency of tumor-cells expressing test-neoantigen. Using nanoparticle-based gene-therapy, we successfully altered tumor-microenvironment by perturbing interleukin-12 and interleukin-10 gene-expression. The subsequent microenvironment-remodeling reduced the neoantigen frequency threshold at which bioluminescent signal intensity for tumor-burden decreased 1.5-log-fold, marking robust tumor-growth inhibition, from 83% to 29%. Our results thus suggest bystander killing is inefficient in immunologically-cold tumors like pancreatic-cancer and requires high neoantigen abundance. However, bystander killing mediated antitumor response can be rescued by adjuvant-immune therapy
Analysis and modeling of the root system architecture of winter wheat seedling
Plant root system plays an essential role in the acquisition of the edaphic resources, which are subject to local depletion. The size as well as the architecture of the root system determines the efficiency of the acquisition. In the present study, a stochastic model of plant root system architecture is formulated. The continuous growth and development of root system is described and modelled by stochastic processes (discrete events associated with a certain probability). The parameters of the model for each growth cycle include branching probability, w (rhythm ratio main axis vs. lateral roots), b (probability of growth) and c (probability of survival). Root segments were presented as connections of individual nodes. As root has no nodes in the sense of the botanical terms, an imaginary node with an elementary length is introduced. In order to obtain the parameters of the model, winter wheat seedlings were grown in a phytotron in sand culture watered by nutrient solution. Individual roots of 19-days-old se dlings were scanned and the images obtained were analysed with a root image-analysing software WinRhizo. Roots were clustered into 3 relatively homogeneous groups after an analysis of similarity according to 4 criteria: length of main axe, diameter of root apex of the main axe, lateral length density (total length of lateral roots per unit of main axe length), lateral root density (number of lateral roots per unit of main axe). In each root group, the parameters were fitted with a non-linear generalised least square method by comparing the theoretical length of root segments of various orders with the experimental data
Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets
The electrical transport properties of amorphous Bi films prepared by
sequential quench deposition have been studied in situ. A
superconductor-insulator (S-I) transition was observed as the film was made
increasingly thicker, consistent with previous studies. Unexpected behavior was
found at the initial stage of film growth, a regime not explored in detail
prior to the present work. As the temperature was lowered, a positive
temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance
reaching a minimum before the dR/dT became negative again. This behavior was
accompanied by a non-linear and asymmetric I-V characteristic. As the film
became thicker, conventional variable-range hopping (VRH) was recovered. We
attribute the observed crossover in the electrical transport properties to an
amorphous to granular structural transition. The positive dR/dT found in the
amorphous phase of Bi formed at the initial stage of film growth was
qualitatively explained by the formation of metallic droplets within the
electron glass.Comment: 7 pages, 6 figure
- …