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Abstract. A scheme for construcing lincar and nos -linear codes is presented. I constructs a
code of block length 27 from two constituent codcs of block length n. Codes so constructed
can be either linear or non-linear evew when the constitucnt codes are lincar. The construction
of many known linear and non-linear codes using this scheme will bc shown,

1. Introduction

The discovery of non-linear codes that are superior to known linear
codes has generated a great deal of interest in studying the structure of
non-linear codes as well as methods for constructing them. However,
since non-linear codes are defined for their lack of a certain mathemat-
ical structure (the codewords do not form a linear vector space), to ob-
tain a general mathemutical description of non-linear codes is a rather
difficult task. Consequently, our knowledge on how to construct non-
linear codes is quite limited. In this paper, we present a scheme for con-
structing linear and non-linear codes which we hope will aiso shed some
light on the mathematical structure of non-linear codes.

2. The construction scheme

Our scheme constructs a (21, g ) g-ary code! from two g-ary codes

1 we use the term “an (n. M) code™ and “an (1, M, d) code™ to rerer to a block code with block
kngth ». distance d. and M codewords.
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ohich we shel? call the constituent codes. Let G, be an (n, g*) g-ary
Gneur code of distance d, . Let G, be an (1, g"~*) g-ary code of distance
d;, Smxe G, b a lincar code, we can divide the set of all ordered g-ary
~-tuple im0 distinct cosets of G, . Clearly, there are ¢"—* cosets. We
asslpn 10 each coset a codeword of G,. We now construct a (222, q")
syetesmtic code G as follows: Let i be a g-ary information word of n
pts. Let £(i) denote the codeword of G, that is assigned to the coset
of GG, comtaining i. The encoded word for i in G is then the concatena-
tion of the two words ¢ and i + (), denoted by (4, i + f(7)).

L:t us Hlustrate the construction procedure by a simple example.
Let 7%, = (000, 110,011, 101} and G, = {000, 111} be the two con-
stiuent codes. The cosets of G, and the codewords of G, assigned to
them: ase shown in table 1(a). The encoded words in G are then shown

n table i{b).

Table 1(a)

Cosets of G, Assignment of codewords
of G5 to the cosets

000 110 011 101 000

001 1 010 100 111
Ta'le 1(b)
Information words Encoded words in G
00 000000
001 001110
010 010101
011 011011
100 100011
101 10110}
110 110110
111 111000

Theorem 2.1. The code G constructed above is a (2n. ¢" ) code whus»
distance is at least equal to min(2d, .d,).

Proof. It is clear that the block length of G is 2. There are ¢* codewords
in G, because there are g" distinct information words.



§2. The construction scheme 173

Let (5,4, +f(4,)) and (45, i, + f(i;)) be two codewords in G. To
determine the distance between these two words, we examine two cases:

Case 1., and i, are in the same coset of G, . In this case, f(i}) = f(§).
Thus?

D[(ilsil +f(i[ ))s (iz,iz +f(i2))] =D[i1yi2]+D[i|,i2] 2 2d|.

Case 2.i; and i, are not in the same coset of G, . In this case,
f(i| ) #f(iz)- Thus,

DG\ iy + f())), iy, 6y + i3 = Dliy, iy ) +Dliy +£G)), iy +(iy)]
2 DUfGy). fG)l =

It should be noted that min(2d,. d,) is only a lower bound on the
distance of the code G. In particular, if 2d, < d,, then the distance of
G is equal to 2d, . However, if 2d, > d,, then min(2d,.d,) is a lower
bound on the distance of G. (In the following, we shall sec examples in
which the distance of G exceeds min(2d,.d,), where 2d, > d,.)

‘The code G so constructed can be either linear or non-linear as in-
dicated in the next theorem.

Theorem 2.2. The code G is linear if and only if the following condi-
tions are satisfied: (1) f(c) = cf (i) for any constant c;
) f“‘ ’i] ) ‘f(i‘ )’f(lz)

Proof. It is clear that (1) and (2) are sufficient conditions for G to be
lincar. To show that they are al<o necessary conditions, we note that:

(1) The encoded word for ¢ is (i, § + £()). If G is linear, c(f, i+ /(i)
which is equal to (ci. -3+ ¢/ () must also be a codeword in G. Since
the encoded word of o is (o3, i + f(ci)). we must have f(ci) = cf (i).

() Let (§y. &, * ftiy M and (i,. iy * f(i;)) be two codewords in G.
106 is Vimeat. (i, *dy. 4, *+ iy * f(i}) + [(iy)) must also be a codeword.
Since the encoded word of i, * ij is (i, +i;.i, +iy +/(i) +i)). we must
m!“' “.))*!“l )”'i:'

1 e we 158 2] v devete e dntome betwres the tan words X and .
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Ceonllary 2.3. For G 10 be a linear code, it is necessary that G, is a linear
e

The comstruction scheme can be varied slightly to yield codes of rate
not equal to §. Let G, be an (n, g*) linear code of distance d . Let G,
be an (7. M) code of distance d, . We consider now two cases.

Cave 1. For the case M, < q"-*, let us select arbitrarily M, of the
scents of G, and sssign to them distinct codewords ¢f G,. Let i be an
n-dight information word that is in one of the cosets selected. We shall
encode / o8 (J, i + f(5)), where f(i) is the code-word of G, assigned to the
coset containing . The resultant code is thus a (2n, M, - g*) code whose
distance is at least equal to min(2d4,, d,). Conditions guaranteeing the
Mnearity of the resultant code are the same as that stated in Theorem
2.2. Consequently, in selecting the M, cosets of G, it is necessary that
tve following rules be followed:

(1) If a coset A is selected so should be the coset {cal a € 4] for any
arbitrary c.

(2) If two cosets A, and A, are selected so should the coset
(@, +431a, €A,.a) €Ay}

Case 2. For the case M, > q" %, let us assume that M, is a multiple
of ¢" -*. To be specific, let M, = rq"~* for some integer ». We assign to
each of the cosets of G, r distinct codewords of G, . Moreover, let R
denote a set of r distinct g-ary words. Let there be a one-to-one cofre-
spondence between the words in R and the words assigned to each coset
of G, . Let (i} .i,) be an information word where i, is an n-digit g-ary
word, i, is a word in R. Such an information word will be encoded as
(i,.§) +f(i;, iy)) where f(i,, i;) denotes the word in G, that is assigned
to the coset containing #; and is in correspondence with the word i,.
The resultant code is thus a (2n, rg") code. Again, its distance is at least
equal to min(2d,, d,). Linearity of the resultant code is guaranteed, if
the following conditions are satisfied:

(1) If B is the set of words assigned to the coset containing . then
{cbI b€ B} must be the set of words assigned "0 the coset containing
cs.

(2) If B, is the set of words assigned to the coset containing i,. 8,
is the set of words assigned to the coset containing i, . then
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{b, +b,1 b, € B, b; € B,} must be the set of words assigned to the
coset containing i) + ;.

3. Linearity of the constituent code G,

A closer look at the construction scheme presented in Section 2 re-
veals that linearity of the constituent code G, is not a strictly neces-
sary property. What we need in the construction scheme is only a way
of partitioning all g-ary ordered n-tuples into disjoint subsets such that
the distance between any two ordered n-tuples in the same subset is at
least d, . We illustrate in this section that a systematic code G, cither
linear or non-linear, will also induce one such partition in a natural
manner. Without loss of generality. let G, be an (n, ¢* ) systematic code
such that the first k digits of the codewords in G, are all the distinct
q-ary ordered k-tuples. Let a; 45, ... denote all ordered n-tuples of the
form (0%, b) where b is an ordered (n—k)-tuple. In other words, 4,, a,. ...
arc ordered n-tuples with & ieading zeros. Let

Ua)=a+glgs G, .

Theorem 3.1. The set of ail ordered n-tuples is partitioned into g"-*
disfoint subsets Ua, ). UGa-). ... corresponding to the q"—* ordered n-
tuples @, . @;. ... . Moreover, the distance between any two words in a
subsct Ula,) is at least d .

Proof. Since a, + g, #4, + g, for distinct g, and g, in G, we note that
every subset U(a,) contains exactly g* distinct ordered n-tuples. More-
over. we show thats; +g, #4, +g, for distinct ¢; and ¢;. If g, = g, clear-
lya, +g, ta,+g Ifg, tg,. the first k-digits in g, must be different
from the {int A-digits in g, . Since the first &k digits in both a; and a; are
all zeron, the finst & digits in «; + g, must be different from the first &
digitsina; + g . Therefore. e, +g, #4, +g,.

For any two words &, + g, and g, + g, in U(a)), their distance is equal
g, g | which is at least d, .

Thud we can comtruct a (21, ¢ ) code G by assigning the codewords
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i G, 1o the subsets U(a, ), U(a), ..., when the construction scheme in
Section 2 is employed. We shall use f(4;) to denote the codeword in G,
that is assigned to the subset [/{a;). We have the following theorem con-
cerning the linearity of the code G.

Theovem 3.2. For G to be a linear code, G, must either be a linear code
or be a coset of a linear code.

Proo!. Suppose that G is linear. According to Corollary 2.3, G, must
be a linear code. Thus, G, contains the all zero word'. 7. Let U(4;) de-
note the subset of ordered n-tuples to which the all zero word 0 is as-
signed. Let g, and g, be words in G, . Consider the two words

(‘u +¢iv8u +ai +f(ai)) = (gu +ai’gu +ai)'
@, ta;,8,+a;+f(a))) = (g, ta;.8, +a;)

in G. Since G is linear, for any constants ¢y, ¢,,

€y (gu +al’gu +a,-)+c2(g,, +"i’gv +¢i)
=(c,8, tc;8, t(c) *c3)a; ¢ 8, tc28, +(c) +c))a)

is also a word in G. That is, the word

(c18u tca8, * (€ +p)ai 018, teaf8, + () +Cr)a)
can be written as (g,, +4;,8,, +4;+f(;)) for some g,, and a;. However,
f(a;) is equal to 0 in this case. Thus, ¢, g, +ca8, +(c, +c))a; must be in
U(a)). In other words, for any g, +a; and g, +a, in LNe,). ¢\ (g, *4) *+
¢, (g, +4;) is also in U(a;). It follows that G, is either a linear code (if
a; = 0) or a coset of a linear co:le (if a; # 0).

4 Construction examples

In this section we shzil present some examples of codes that can be
generated by the scheme proposed in the preceding sections.
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We show first the construction of an (8, 24, 4) binary code. Let G,
be the (4, 23, 2) binary code consisting of all words of even weight.
Let G, be the (4, 2, 4) binary code consisting of the two words 0000
and 1111. If we assign the word 0000 to the set of codc-words in &
and assign the word 1111 to the coset of G, consisting of all words of
odd vreight, the resultant code G consists of the words in the following
list:

(0002,0000 + 0000) = 00000000,
001 1,dbi | + 0000) = 00110011,
(0101,0i91 + 0000) = 01010101,
(0110,0110 + 0000) = 01100110,
(1001,1001 + 0000) = 10011001,
(1010,1010 + 0000) = 10101010,
(1100,1100 + 0000) = 11001100,
A1 +0000) = 11111111,
£0001,0001 + 1111) = 0011110,

(0010.0010 + 1111) = 00101101,
(0100,0100 + 1111) = 01001011,
(01110111 + 1111) = 01111000,
(1000.1000 + 1111) = 100CO1 1 1.
(1011.1011 + 1111 = 10110100,
(11011101 + 1111) = 11010010,
(L110.1110+ 1111) = 11100001.

As a matter of fact, we can construct a class of linear and non-linear
binary codes that have the same parameters (block length, number of
codewords and distance) as the Reed —Muller codes. We shall show the
comtruction of codes of block length 2%, distance 2™ -” which has 2%
<codewords where

Lele(ProqPre o]

(Chently . these ate the parameters of an r** order Reed-Muller code of
ook lengt™s 2™ ) Let G, be an #** order Reed —Muller code of block
lewgth > Y The dintance of G, is 2™ * 1 The number of codewords
™G, n M were
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Ryele™ He™ihe e ("h.

The mamber of cosets of G, is 27-%1-1_ Let G, be an (r—1)* oxder
fevd Muller code of block length 2™~ 1. The distance of G, is 2m-7.
e somber of codewords in G, is 242 where

kyele(™ e . +(™hH.

W oc sumign M1 ™ 41 1 digtinct codewords of G, to each of the cosets
of ¢, e reewltant code G is of block length 2™ and distance 277,
The rember of codewords in G is

Ny kD) g ok kg

However. unce
Aekys 1+ (Dt v,

e parameters of G Jre indeed identical to that of an rth order Reed~
Waller code of block length 2 Note that our construction procedure
swpmes mo restriction on how the codewords of G, are assigned to the
et of G, . Thus, the possibility of obtaining a class of linear and non-
Nacar codes is quite clear.

We show now the corstruction of a class of non-linear codes that
heve the same parameters as a class of codes discovered by Sloane and
Whiteyead [9]. Again, because of the flexibility in our construction
schem- in assigning codewords in G, to the cosets of G, correspond-
g 30 each of the codes discovered by Sloanc and Whitehead, there is
s clam cf non-inear codes with the same set of parameters.

Golay | 1) and Julin [ 2] have discovered binary single error correc-
ting codes of block length 8, 9, 10, 11. The parameters of these codes
are (8, 20, 3), (9, 38, 3), (10, 72, 3), (11, 144, 3). We shall denote these
codes by Cq. Cy, Cy. Cy,, respectively. Let G, be an (8, 27, 2) single
parity check code. Let G, be the (8, 20, 3) code Cg. By assigning 10 of
the codewords of Cg to each coset of G, we obtain a (16, 10+ 28, 3)
code. Moreover, different assignments of the codewords of Cg to the
cosets of ; yield a whole class of (16,10 28, 3) codes. Let G, be a
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(9, 28, 2) single parity check code. Let G, be the (9, 20, 4) code ob
tained by appending a parity check bit to the codewords in (, Our
construction procedure yields a class of (18, 10+ 22, 4) codes which
can be shortened to yield a class of (17, 10- 2%, 3) codes. Let (;, be
a (9, 28, 2) single parity check code. Let G3 be the (9, 38, 2) code €
By assigning 19 of the codewords of G, to each coset of (5, we oh
tain a class of (18, 19+ 2%, 3) codes. Again, let G, be a (10, 2%, 2)
single parity check code. Let G, be the (10, 38, 4) code obtained by
appending a parity check bit to the codewords in Cy. We can then
construct a class of (20, 19 - 219, g)codes which can be shortened 10
yield a class of (19, 19 210, 3) codes. Similarly, we can construct clas
ses of codes with the following parameters: (20, 36+ 210, 3),

(21,36 211_3),(22, 72 211, 3)(23, 72- 212 3).

Furthermore, let G, be a (16, 215, 2) single parity check code. Let
G, be one of the (16, 10- 28, 3) codes constructed above. We can
employ our construction procedure to obtain a class of (16, 10+ 223, 3)
codes. Repeating the construction procedure recursively, we have:

Theorem 4.1. For any block length n satisfying 2" < n< 3.2m |,
there exists a class of non-linear (n, A+ 27-m~-1 3} codes where
A=%,1, or§ according to the binary expansion of n that begins with
1000, 1001, or 101 ... .

Theorem 4.1 is an extension of a theorem due to Sloane and White-
head [9], who employed a construction scheme quite similar to ours
(see Section 6). It is not difficult to see that corresponding to each
code constructed by the Sloane and Whitehead scheme, our construc-
tion yields a class of codes which can be obtained by adding a certain
fixed word to half of the words in the code obtained in the Sloane and
Vhitehead construction. We leave the details to the interested reader.

More construction examples can be found in {8].

S. Construction of a class of optimal non-linear codes

As was pointed out above, min(2d,, d,) is only a lower bound to
the distance of the code constructed according to our scheme. Indeed,
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we shell show in this section the construction of a class of non-linear
code- whose ¢ intances exceed the lower bound min(24d;, d,). Intuitively,
such o poseibi’ity does not come in as a surprise. Since our construction
scheme allows .omplete freedom in assigning words of G, to cosets of
G, . one would suspect that the distance of the resultant code G might
be impoved if a judicious assignment is made.

We begin with the construction of a (16, 28, 6) binary code which
is the extendad (15, 2°, 5) code discovered by Robinson and Nordstrom
|4.6]. Let both G, and G, be the (8, 24, 4) binary code obtained by
sppending a oarity check bit to the (7, 24, 3) cyclic code generated by
the polynom:al 1 + x + x3. Any casual assignment of the 16 words in
€7y 1o the 16 cosets of G; will yield a code of distance 4. However, let
us examine the assignment in Table 2, where the cosets of G are identi-
fied by iie ciset Jeaders. (Since the distance of G, is 4, the coset leaders
in Table 2 a: » leade.s of distinct cosets.) We show now that such an as-
signment yields a code of distance 6.

Table 2

Cosets of G, Assignment of words in G,
(identified by their leaders) to the cosets
00000200 00000000
19000000 00010111
0!00000¢ 10001011
00100000 11000101
00010000 01100011
00001000 10110001
00000100 0101100}
00000010 00101101
00C0C0o01 11511111
10000001 11101000
01000001 01110100
00100001 00111010
00010001 10011100
00001001 01001110
00000101 10100110
00000011 11010010

We introduce first some notation. Let x, y be two binary ordered -
tuples. We shall use |x| to denote the (Hamm ng) weight of x. and xy
to denote the ordered n-tuple obtained by compunentwise multiplics
tion of x and y. It is easy to check that
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i+ Wyl = Ix +yl + 2lxyi .
Moreover, we also have

(5.1 Xty + [x+y+2] = |g] + 2|(x +y)(x +y +2))
= |z] + 2li(x+y) + (x ty)z’
= (2| + 2x(x + 3) + y(y + 3)| .

Letl,,1,,... denote the cosets leaders of G, and f(1,), f(i}). ... de-
npte the words assigned to them as shown in Table 2. It can be verified
directly that

I(Il +IZ)(’1 +12 +f(l|) +f(12 »i=1

it +ra=4.

We are now ready to prove that the distance of the code G is equal
to 6. Let (¢, ,i; +f(i,)) and (i,,7, + f(i;)) be two codewords in G. The
distance between these two words is

iy +iy, 6, Yi @) YN

Since i, =/, + m,,i, =I, + m,, where m; and m, denote codewords
in G, according to (5.1), the distance can also be written as

Uy tmy +ly +my 0y +my +ly +my + fG O+
= A HfUDN 20, +0)A, +1, +1A) +fdy)
+(m, +my)my +my +1U))+1U))N

We examine three cases:

Case |. () +1d,)I= 8. Clearly, the distance between the two words
18 larger than or equal to 8.

Case 2. Y ()) + /Uy = 0. This implies that I}, =/, and f(J,) = f{J,).
The distance of the two words is then

2w, + ey Ny +mey)l = 20(my +my)l > 8

because m, # m; .
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Cowe 3 YU, )+ f())) = 4. As was pointed out above, we have
Wy +lp)dy 41y +£0) + 1)) = 1.

Soce m, . m,, fU,y). /) arein Gy, [(m, +my)(my +my + )
& on even number. It follows that

W, +i, +h+1d, )+fy)) + (m+my )Y m+my+ f(1))+U)01> 0.

The distance of the code is thus at least 6.

Out comtruction scheine can be applied to construct a class of optimal
nondinear codes discovered by Preparata [ 7). We outline here the con-
struction steps which are motivated by Preparata’s original construction.
wrt S0t G, and G, be the (m—3)¢ order Reed—Muller code of length
-1 gbtained by appending a parity check bit to the cyclic code ge-
netated by

m-2
52) gx)= /I'(I) (x—a?),

where a is a primitive element in GF(2™-1) (see [3]). Thus, both G,
and G; are (27}, 22m-1-m 4y codes. Consequently, to each of the
2™ cowts of G, , we shall assign 22™~1-2m codewords in G,. Although
any arbitrary assignment will yield a (2™, 22™-2m ) code of distance 4,
the assignment shown below will increase the distance to 6.

In order to obtain a resultant code of distance 6, we must assign to
each coset of G; words of mutual distance at least equal to 6. LetS
denote the cyclic code of length 2m-! —1 whose generator polynomial
has 1, a, a3 as its roots. Clearly, S is a BCH code of distance 6. Note that
S is a subcode of the cyclic code generated by g(x) in (5.2). By append-
ing : parity check bit to the words in S, we obtain a subcode of G,
whose distance is 6. Call this subcode of G,. &'. It can be shown that
S has 22"~ 1-2n codewords when m is even (see [ $]). We now sssign
the words in the coscts of §* (with respect tu G,) to the cosets of G,
as shown in Table 3 where the cosets of G; and S’ are identified by theit
coset leaders. (It is not difficult to show that these are leaders of distinct
cosets.) In Table 3, we use the standard polynomia! notation for ordered
2m -tuples.
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Tablke 3
Cosets of Gy Cosets of §’
0 0
1 () + D+ z2’"‘;*1
x x(Gxy + 1) #x27 -
x2 #2(fx) + 1)+ x27711
Pam-1_3 m-1_, foam-1_
zz'"—l-i X (fx)+ 1)+ :2”'-1-] o
1 +x§z::‘i )+ D+ x2 1y
X «1»"‘2»:—1*l x(f)+ 1)+ xzm: ~1 4wy
X +)‘: -1 x2(f(:;)+ 1) +x2 L 1ix)
M1z am-lg 22y + 1+ 221y

In Table 3, f(x) is the polynomial xth(x), where

h(x) = (x2™ =11+ 1/g(x)

and ¢ is an integer such that
h2(x)=x2™~1-1-th(x).

Also, u(x) is the polynomial
l+x+x2+ 3+ +x2m- 11

corresponding to the ordered 2™ - -tuple of all I's.

We shall not include a proof of the distance of the resuitant code here
(see [ 5]). Moreover. it is also not difficult to see the relationship between
Prcparata’s construction and our construction and thus to invoke Pre-
parata’s results to support the claim. :

6. Remerks

Qur comtruchion scheme bears a close reremblance to that of Slcane
and Whitchead |9) . As a matter of fact, the Sloane and Whitehead
scheme can be viewed a3 a special case of our scheme in which only one
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coset of G; (G, itself) is used and to this coset all words of G, are as-
signed. It should be pointed out that our construction scheme can gen-
erate non-linear codes fram linear constituent codes while the Sloane
and Whitehead scheme generates only linear codes from linear consti-
tuent codes. Also, it is possible in our construction scheine to attain

a distance better than min(2d,, d5); yet in the Sloane and Whitehead
scheme, min(2d,, d,) is always the distance of the resultant code. Un-
fortunately, very little is known at this moment about the assignment
of codewords of G, ta cosets of G| so that a distance larger than
min(2d,. d;) can be attained.
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