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Abstract. A scheme for construcing linear and nor -linear codes is presented. II constructs a 
code of block length 2n from two constituent codes of block length n. Codes u) constructed 
can be either linear or non-linear even when the constituent codes are linear. The construction 
of many known linear and non-linear codes using this scheme will be shown. 

1, Introduction 

The discovery of non-linear codes that are superior to known linear 
codes has generated a great deal of interest in studying the structure of 
non-linear codes as well as methods for constructing thl:m. However. 
since non-linear codes are defined for their lack of a certain mathemat- 
ical structure (the codewords do not form a linear vector space), to ob- 
tain a general mathematical description of non-linear codes is a rather 
difficult task. Consequently, our knowledge on how to construct non- 

linear codes is quite limited. In this paper, we present a scheme for con- 
structing linear and non-linear codes which we hope will also shed some 
light on the mathematical structure of non-linear codes. 

2. The comtruction scheme 

Our scheme constnxts a (2~. qn ) q-at-y code’ from two q-ary codes 

’ We me tbc term ‘WI (h Ul c&c” and *‘an 01. M. d) code” to rer?r IO a block code with block 

kfqtb 1. dbtm d. and N -fds. 
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a m rlr(c cd the constituent codes. Let G, be an (n. qL) q-ary 
llwv col, d L&nce d, . Let G2 be an (n. @) q-ary code of distance 
It Iyrt+ Q, b a Yncu code, we can divide the set of all ordered q-ary 
q iw@ &tinct corcts of G, . Clearly, there are qn-’ cosets. We 
.L.. $0 rrb caaet a codeword of Cz. We now construct a (2n. qm ) 
_ code G as fdlows: Let i be a q-ary information word of n 
&@@s. lA /I@ denote the codeword of Gz that is assigned to the coset 
crl G, oak- i. The encoded word for i in C is then the concatena- 
Hrm & the twu words i and i *f(i), denoted by (i, i + f(i)). 

l.A u iktratc the construction procedure by a simple example. 
ti ‘;, - (000. I 10,Ol I, 1011 and G, ={OOO, 1111 bethetwocon- 
Uttrmt COOCS. ‘k cosets of G, and the codewords of G2 assigned to 
Ikrcri AR shown in table I(a). The encoded words in G are then shown 
In bbk I(b). 

Table l(a) 

Cosalb af G, Assignment of codewords 
of G2 t3 the cosets 

- - - 

000 110 011 101 000 
001 111 010 100 111 

Ta’4e l(b) 

-- -- - 

Information words Encodad words in G 
_-- 

MN ooom 
001 001110 
010 010101 
01 I 01101 I 
100 10001 I 
101 101101 
110 110110 
111 111000 

Theorem 2.1. The code C constructed above its a (2~. gp ) rmk &r* 
distance is at least equal to min( 2cl,. d, ). 

Roof. It is clear that the block length of C is 2n. Tlutce are e cu#eti 
in G, because there are qR distinct information wor&. 



Let (il, i, +f(i, 1) and (i 2, i2 + f(i2 1) be two codewords in G. To 
determine the distance between these two words, we examine two cases: 

Case 1. i, and i2 are in the same coset of G,. In this case, f(i, ) = f(i, ). 
Thus2 

D[(it ,i, +f(i, 11, (i2,i2 +f(i2))1 =Wi, ,i,l+D[i,, i2 1 > W,. 

Cizse 2. i, and i2 are not in the same coset of G,. In this case, 

fCil I# f(i2 1. Thus, 

DIG, .i, +f(i, 1). (i2,i2 +f(i2))1 = Dti, ,i2 I +Ni, +f(i, hi2 +f(i, )I 
2 DIf(i, Lf(j2)l = d2 . 

It should be noted that min(2d,, d2 1 is only a lower bound on the 
distance of the code G. In particular, if 2d, 5 d2, then the distance of 

C is equal to 2d,. However, if 2.d, > d2, then min(2dl, d,) is a lower 
bound on the distance of G. (In the following, we shall see examples in 
which the distance of G exceeds min (3,. d2 ). where 2d, > d, .) 

The code G so constructed can be either linear or non-linear as in- 
dicated in the next theorem. 

Roof. It is clear that ( 11 and (3 are sufficient conditions for G to be 

limrr. TO drop that they atcc alto nermsary conditions, we note that: 
t I) The auded word fat i is (i.i+ f(i)). If G islinear, c(i,i+/(i)) 

tiich k cgurl to Iti. ti + cf(i)) must also be a codeword in G. Since 
Ibe m rwd of ri is W. ci + fki)). we must have f(ci) = cf(i). 

I ?I bt tit. i, l /tit 1) and (il. i, 4 f(i: 1) be two codewords in G. 
tl G‘ is limu. (i, + il. it l ia + /(it l+ /(i, 1) must also be a codeword. 
S#bmthedhxxMuWdofil +ia is(i, +i2.i, +i*+f(i, ti2)).wemust 

lrrnr Iri, +i2 B f fti, 1 +fCi2 b. 
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C&M 2.3. F?u G to be a linear code, it is necessary that G3 is a hear 

fks mwth scheme can be varied slightly to yield codes of rate 
m + to +. bt (;, k an (n. (I&) linear code of distance dl. Let G2 
& a (m. Mj) code of distance d2. We consider now two cases. 

(YH 1. For tk cm M, < p-k, let us select arbitrarily M, of the 
ms & G, and assign to them distinct codewords cf C2. Let i be an 

a~ hfmtbn word that is in one of the cosets selected. We shall 
e& I aa (j, i +f(i)),wheref(ti is the code-word of G2 assigned to the 
m containing i. The resultant code is thus a (2~ M2 l qk 1 code whose 

&tm & at least eq,ual to min(U,, d2). Conditions guaranteeing the 
Wty of the resultant code are the same as that stated in Theorem 
2.2. Cunsequently, in selecting the M2 cosets of G1, it is necessary that 

the fdkrrvrng rules be followed: 
( I ) If a coset A is selected so should be the coset {cat a E A I for any 

Jdmafy c. 
(2) If two cosets A 1 and A 2 are selected so should the coset 

(aI +d21a, EAl.a2 EA2?. 
Cuse 2. Fur the case M, > @-k, let us assume that M2 is a multiple 

of fl A. To be specific, let M2 = rq”-& for some integer r. We ass@ to 
each of the cosets of G,, r distinct codewords of G2. Moreover, let R 

&note a set of r distinct q-ary words. Let there be a one-twnc cotta- 
spondence between the words in R and the words assigned to each coset 
of G, . Let (i, . i2 ) be an information word where i, is an n-digit q-ary 
word, i, is a word in R. Such an information word will be encoded as 
G, . it +f(il , i2 1) where f(i, , i,) denotes the word in G2 that bass&ted 
to the coset containing i, and is in correspondence with the word i,. 

The resultant code is thus a (2~ r@) code. Again, its distance is at least 

equal to min(2d,, d2 ). Linearity of the resultant code ia yurnked. if 

the following conditions are satisfied: 
(1) If B is the set of words assigned to the co& containi= i, then 

{ cbl b E Bl must be the set of words assiped :o the coaet -trim 
ci. 

(2) If B, is the set of words assigned to the coaet mntrinitu i, . #a 

is the set of words assigned to the coset containi~ i, . tkn 
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t b, +b, I b, E B. bi E B,? must be the set of words assigned to the 
coset containing i, + 4. 

3. linearity of the constituent code G, 

A closer look at the construction scheme presented in Section 2 re- 
veals that linearity of the constituent code C, is not a strictly neces- 
sary property. What we need in the construction scheme is only a way 
of partitioning all q-ary ordered n-tuples into disjoint subsets such that 
the distance between any two ordered n-tuples in the same subset is at 
least d, . We illustrate in this section that a systema&ic code G, , either 
linear or non-linear, will also induce one such partition in a natural 
manner. Without loss of generality. let G, be an (n, qk) systematic code 
such that the first k digits of the codewbrds in G, are all the distinct 
q-my ordered k-tuples. Let u1 ,u2, . . . denote all ordered n-tuples of the 
form (@. 6) where b is an ordered (n-k)-tuple. In other words,o, ,a2. .., 
oh: ordered n-tuples with A ieading zeros. Let 

Tlmmm 3.1. ?Rt set of ail ordered n-tuples is partitioned into q” - k 

dis#oinr substvs U(a, 1. U(a; 1. .., corresponding to the qn-k ordered n- 

tupks at .a2, ._. . M~rrcowr. !hr distance between any two words in u 

scrbser &,I is at kut d, . 

hod. Since q + & # u( + gv for distinct gu and g, in G, , we note that 
crcty subt U(q) contains exactly qk distinct ordered n-tuples. More- 
-t. n &OW that l i + g,, # ai + gu for distinct Ui and ai. If gu = gu, clear- 
ly 8, +& # l 1 +&. If & #g,,,. the first k-digits in g,, must be different 
M tbc tint %-d@ts in&. Since the first k digits in both Pi and ui are 
a map, the tint t di#ts in l r + g,, must be different from the first k 
dirib 6fh4# +&. ntc~forc.r, +g# #ul +g”. 

Fa fry tw WOT&~ +g,, and ai +g,, in iTI( their distance is equal 
‘“~-&I whichisrtkastd,. 

fbux rc cull c9cntl\lct a ( 2% q” ) code G by assigning the codewords 
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Ir Ga lo the aubwb u(o, 1, u(o,4 a*-, when the construction scheme in 
¶gctkn 2 b employed. We shall usef(u,) to denote the codeword in G2 
clrrc b an&ed to the subset C’(U~). We have the following theorem con- 
cIIIJII( UIC Iirtearity of the code G. 

w 3.2. For G to be a linear code, G, must eirhet be a linear code 
or be a coset of a linear code. 

M, Suppose that G is linear. According to Corollary 2.3, G2 must 
be I linear code. Thus, Gz contains the all zero word 5. Let U(u,) de- 
note the subset of ordered n-tuples to which the all zero word 0 is as- 
S&IUI. Let g” andg, be words in G, . Consider the two words 

in G. Since G is linear, for any constants cl. c2, 

is also a word in G. That is, the woid 

(c,gu +c2g, + cc, +~‘2)+.c\g” +qa, + (Cl +9)4) 

can be written as <g, +u,,g,,, +u,- +f(al)) for someg, ad l t. HOW. 
/(II,) is equal to 0 in this case. Thus, clg,, +c& +(CI tq 14 mbd be kr 
U(a,). In other words, for any g,, +ei and g,, +$ in kR+I. cl t& ++I + 
c2 (g, +a,) is also in U(+). It follows that (;I is either & lkrat ti lit 

u[ = 0) or a coset of a linear co& (if r, # 0). 

4 Construction examples 

In this section we sh~il present some exampks OT cadrs &a8 crlll k 

generated by the schem: proposed in tk m rctiors. 
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We show first the construction of an (8, 24,4) binary code. Let G, 
be the (4,23,2) binary code consisting of all words of even weight. 
Let G1 be the (4, 2,4) binary code consisting of the two words 0000 
and I 1 I I. If we assign the word 0000 to the set of code-words in G, 
and assign the word 1111 to the coset of G, consisting of all words of 
odd weight, the resultant code G consists of the words in the following 
list: 

A, a nrrttet of fat. we can cxmstruct a class of linear and non-linear 
&@U’p C&S that have the same parameters (block length, number of 
cobrr#crb gkl &UNWC) 8s the Reed-Muller codes. We shall show the 
cwmtnmticm dcadn of block Ien@h P, distance Zm -’ which has 2k 
mr)lcrt 

mmaeF.thmeurtswpraRctrn of UI tib order Reedy-Muiler code of 

I&x& krp\ .P b &et 6, )Ilr an r@@ o&r Reed-Mulicr code of block 
irqB% SF J nlwdiskcrtof6, is ,2” l 1. The number of codewords 

*c;, in ,y? m‘_ 



urr,.-_P’- ’ 1 ‘1 dbtinc t codewords of G, to each of the case ts 
*I #i, (L mudmat code G b of block length 2” and distance I!‘“-‘. 
tie-‘-- B in G is 

A, +A1 l I +(T)+(T)+...+(T), 

lllr prnwkn of G rre indeed identical to that of an rth order Reed- 
- M of block length 2m Note that our construction procedure 
m II) restriction on how the codewords of Gz are assigned to the 
(r;llllg of G, , ‘Thus, the possibility of obtaining a class of linear and non- 
ti co&s b quite ckar. 

Wr Jcnr now the coastruction of a class of non-linear codes that 
lLnr Abe mn parameters as a class of codes discovered by Sloane and 
‘Ic’ycrM 191. Again, because of the flexibility in our construction 
uhmm in assigning codewords in G, to the cosets of G, , correspond- 
- to each of the codes discovered by Sloane and Whitehead, there is 
a ctm of non-linear codes with the same set of parameters. 

Golay I 11 and Jullrl I2 1 have discovered binary single error correc- 
tm co&s of block length 8,9, 10, 11. The parameters of these codes 
are (8, 20,3), (9,38,3), (10,72,3), (I 1, 144,3). We shall denote these 

-bycg.c9*q,.q,, respectively. Let G, be an (8, 2’, 2) single 
parity check code. LA C2 be the (8,20,3) code Cs. By assigning 10 of 
thecodcwordsofCs toeachcosetofGI,weobtaina(16,10~28,3) 
code. Mower, different assignments of the codewords of Cs to the 
cosets of C, yield a whole class of (16,lO l 2s, 3j codes. Let C, be a 
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(9, 2*, 2) single parity check code. Let Gr be the (9, 20. 4, co& otL 
tained by appending a parity check bit to the codeworci~ in (‘a Out 
construction procedure yields a class of ( I 8, I(1 l 29. 4) codct whkh 

can be shortened to yield a class of (I 7, 10. 29, 3) codes. Let G, ?w 

a (9,2*, 2) single parity check code. Let G, bc the (9,38. 2) code C”, 
By assigning 19 of the codewords of G, to each coset of G, , WC oh 

tainaclassof(18,19*29,3)codes.Again,tetGI bea(lO.2’. !) 
single parity check code. Let Gz be the (10,384) code obtained Ry 
appending a parity check bit to the codewords in C,. We can then 
construct a class of (20, 19 l 2t0, 4)codes which can be shortened la 
yieldaclassof(l9, 19=2 10, 3) codes. Similarly, we can construct clac 
ses of codes with the following parameters: (20,36* 2’“. 3). 
(21,36* 2”,3),(22, 72. 2l’, 3)(23,72- 212. 3). 

Furthermore, let G, be a (16, 2r5, 2)single parity check code. 1x1 
G2 be one of the (16, 10*2*, 3) codes constructed above. WC can 
employ our construction procedure to obtain a class of ( 16, 1 Oa 21’. 3) 
codes. Repeating the construction procedure recursively, we have: 

Theorem 4.1. For any block length n satisfying 2m < n < 3 * 2m I. 
there exists a class of non-linear (n, A* 2n-m-1 ,3) codes where 
A = ), #, or Q according to the binary expansion of n that hegim with 
1000, 1001, or 101 . . . . 

Theorem 4.1 is an extension of a theorem due to Sloane and White- 
head 191, who employed a construction scheme quite similar to ours 
(see Section 6). It is not difficult to see that corresponding to each 
code constructed by the Sloane and Whitehead scheme, our construc- 

tion yields a class of codes which can be obtained by adding a certain 
fixed word to half of the words in the code obtained in the Sloane and 
Whitehead construction. We leave the details to the interestr-d reader. 

More construction examples can be found in [81. 

5. Construction of a class of optimal non-linear codes 

As was pointed out above, min( 2,. d2) is only a lower bound to 
the distance of the code constructed according to our scheme. Indeed, 
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we rlrl w br this section the construction of a class of non-linear 
& a db$anccs exceed the lower bound min(U, , d2 1. Intuitively, 
& (I powlbi’ity does not come in as a surprise. Since our construction 
drrrw a&w~ e:omplete freedom in assigning words of Gz to cosets of 
G, . oae wuuld suspect that the distance of the resultant code G might 
br w if a judicious assignment is made. 

We wn with the construction of a (16,2*, 6) binary code which 
b the extended (I 5, 2”. 5) code discovered by Robinson and Nordstrom 
14; 61. Let bd~ G, and Gz be the (8, 24, 4) binary code obtained by 
rppendh# x mwlity check bit to the (7, 24 )I 3) cyclic code generated by 
the podymm,*al I + x + x3. Any casual assignment of the 16 words in 
4;~ to the I6 cosets of G, will yield a code of distance 4. However, let 
us examine the assignment in Table 2, where the cosets of G, are identi- 
kd by tiie zc;set leaders. (Since the distance of G, is 4, the coset leaden 
in Table 2 a; r ieadc;s of distinct cosets.) We show now that such an as- 
tipmcnt yields a code of distance 6. 

-_ 

Cosetr of G, 
Udantifkd by their leaders) 

Assignment of words in C2 
to the cosets 

00010111 
0:tMOOOO 1000101 I 
001OOXtO 11Ow101 
00010000 01100011 
OOOO1fMO 1011001 
OOOOO100 01011001 
l-tmooolO 00101101 
oCOOoO1 11111111 
lmoooO1 11101ooo 
O’dOOOl 01110100 
OOIOOOOl 00111010 
00010001 10011100 
00001001 01001110 
OOOOO101 101001 IO 
OOOOOOlf 11010010 

- a 

We introduce first some notation. Let x, y be m binxy odud u- 
tuples. We shall use 1x1 to denote the (Hamm I@ wei#tt dr. mnd q 
to denote the ordered n-tuple obtained by compuncntwk mda 
tion of x andy. It is easy to check that 
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1x1 + iyl = Ix +yl + 2lxyl . 

Moreover, we also have 

(5.1) Ix+yl + Ix+y+zl = lzl+ 2l(x+y)(x+y+z)1 

= 111 + 2!(x+y) + (x+y)g 

= lzl+2lx(x + 9) +yfy + li)l . 

Let I, ,I,, . . . denote the cosets leaders of G, , and f(f, ),f(l!z 1, . . . dc- 
n,ote the words assigned to them as shown in Table 2. It can be veriktl 

directly that 

IO, +I* )(I, +I, +fu,) +su* ))I = 1 

if UV, )+f(l,)I = 4. 
We are now ready to prove that the distance of the code G is equal 

to 6. Let (i, , i, +f(i, 1) and (iz, i, +f(i, 1) be two codewords in G. I’hc 
distance between these two words is 

Ii, + iz, i, + i, +f(i, ) + f(i* )I . 

Since i, = I, + ml, i, = 1, + m2, where ml and m2 denote codewords 
in G, , according to (5.11, the distance can also be written as 

11, +m, +I, +m2,11 +m, +I2 +m2 +f(;, )+f(!z)I 

= Lf(1,) +f(l,)I +21u, +12N, +J, +fU, 1 +f(l,)) 

+(m, +m2)(ml +.m2 +f(l, )+1‘(12))I- 

We examine three casts: 
C’e I. If@, )+f(f2)(= 8. clearly, the distance between the two words 

I) larger than or equal to 8. 
Crpr 2. v‘(I, 1 +/&)I * 0. This implies that 1, = I2 andf(l, ) =f(12 1. 

The dkhnce of the two words is then 

2l(m, +m2xm, +m2)l = 2lbq +m2)l2 8 
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elm 3 @I, ) +/(I2 )I = 4. As was pointed out above, we have 

llrrr I)( ,112. /(I* 1. /(I2 1 are in Gt , i(m, + mz)(ml + m2 +f(ll )+f&))I 
c I m n~mbtt. It follows that 

tlr dbtrncc of the code is thus at least 6. 
Our eomtruction scheme can be applied to construct a class of optimal 

Bt co&s discovered by Preparata [ 71. We outline here the con- 
~meUtm steps which are motivated by Preparata’s original construction. 
i& both Gt and C2 be the O?Z-~)*~ order Reed-IMuller code of length 
T 1 obtained by appending a parity check bit to the cyclic code ge- 

mdby 

m-2 

(9.2) drh) = /no b-u2’) , = 

where a is a primitive element in GF(2m-* ) (see [ 31 J. Thus, both G, 
and G, are (2m--t, 2 2m-‘-m, 4) codes. Consequently, to each of the 
I* cosets of G, , we shall assign 22m-1-2m codewords in Cr. Aithough 
&y arbitrary assignment will yield a (2m, 22”-ti ) code of distance 4, 
the assignment shown below will increase the distance to 6. 

In order to abtain a resultant code of distance 6, we must a&m to 
each coset of Gt words of mutual distance at least equal lo 6. Let S 
&note the cyclic code of length 2m-1 - 1 whose generator polynomial 
has I, a, a3 as its roots. Clearly, S is a BCH code of distance 6. Note that 
S is a subcode of the cyclic code generated by g(xl in (5.2). By append- 
ins :i parity check bit to the words in S, we obtain a subcode of G, 
whose distance is 6. Call this subcode of G,. 5.. It can be shown that 
s has 22m-MM codewords when m is even (see [ 5 I). We now ass@ 
the words in the costs of S (with respect to G*) to the eo~ts of G, 
as shown in Table 3 where the cosets of G, and S art identified by t&r 
caet leaders. (It is not difftcult to show that thew are kuk#r of dbtirct 
cosets.1 In Table 3, we use the standard polynomial notation tw#dcnd 
2m -tuples. 
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Table 3 
- I~ - - 

cosets of c , cows of s 

0 
1 

;2 

;2m-l-2 

,2m-l- i 
1 +x2*-l-! 
x +x2m-l- I 

*2 +.2’“-l-1 

0 
(f(x) + 1) + ?2m-’ -1 

x(f(x, + 1) + .2m-‘-l 
x2fJ.x) + 1) + .2m-‘-1 

-m-l -2 
XL (f(x) + 1) .:, PI;-; 

(f(x)+ l)+Jf2m-l-l :I:=: 
XV(X) + 1) + .2m-1-l + I&r) 

X2;r(,) + 1) + .2m-‘-’ + IdIf) 

x2m-l_2 +,2m-1. 1 
x Zm-l-2(f(x)+ l)ix 2”-‘-1 + u(x) 

P--v--_- ----- ---._. 

In Table 3,jfx) is the polynomial x’h(x), where 

h(x) = (x2” - ‘.- ’ t I )/g(x) 

and r is an integer such that 

Also. u(x) is the polynomial 

1 +x +x2 +x3 + . . . +x2”-‘-1 

~umpsponduut to the ordered F - 1 -tuple of all 1’s. 
We shall not include a proof of the distance of the resultant code here 

(m ISI ). Moreover. it is also not difficult to see the relationship between 
Rrgsnb’s comtruction and our construction and thus to invoke Pre- 
pontr’s results to support the claim. 

6. b 

(kr mtnrctmon scheme bean a close resemblance to that of Sloane 
uml W&&head 191. As a matter of fact. the Sloane and Whitehead 
~r)wnw CM@ k ricw as a special case of our scheme in which only one 
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coset  o f  G 1 (G 1 itself) is used and to  this coset  all words o f  G 2 are as- 
signed. It should be pointed out  that our construct ion scheme can gen- 
elate non-linear codes  from linear const i tuent  codes  while  the Sloane 
and Whitehead scheme generates only  linear codes  from linear consti-  
tuent codes. Also,  it is possible in our  construct ion sche~ne to  attain 
a distance better than min(2d I , d 2 ); yet  in the Sloane and Whitehead 
scheme,  min(2d 1 , d 2 ) is always the distance o f  the resultant code.  Un- 
fortunately,  very little is known at this m o m e n t  about  the assignment 
o f  codewords  o f  G 2 to cosets o f  G l so that a distance larger than 
min(2d I . d 2 ) can be attained. 
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