A CONSTRUCTION SCHEME FOR LINE 1 R AND NON-LINEAR CODES

C.L. LIU, B.G. ONG and G.R. RUTH
Department of Computer Science, University of Illimots, Urbama, dll. USA
Department of Mathematics, Queens University, Aingston. Omt., Cenada
Department of Electrical Engtncering. Massachusetts Institute of Technology, Cap ibridge, Mass., USA

Received 11 February 1971

Abstract

A scheme for construcing linear and not -linear codes is presented. It construcis a code of block length $2 n$ from two constituent codes of block length n. Codes wo consiructed can be either linear or non-linear even when the constituent codes are linear. The construction of many known linear and non-linear codes using this scheme will be shown.

1. Introduction

The discovery of non-linear codes that are superior to known linear codes has generated a great deal of interest in studying the structure of non-linear codes as well as methods for constructing them. However, since non-linear codes are defined for their lack of a certain mathematical structure (the codewords do not form a linear vector space), to obtain a general mathematical description of non-linear codes is a rather difficult task. Consequently, our knowledge on how to construct nonlincar codes is quite limited. In this paper, we present a scheme for constructing linear and non-linear codes which we hope will also shed some light on the mathematical structure of non-linear codes.

2. The construction scheme

Our scheme constructs a ($2 n, q^{n}$) q-ary code ${ }^{1}$ from two q-ary codes

[^0]canet me strif cell the constituent codes. Let G_{1} be an (n, q^{k}) q-ary mone conter oflance d_{1}. Let G_{2} be an (n, q^{n-k}) q-ary code of distance A_{1} sumet $C_{1} t \rightarrow$ a Hnear code, we can divide the set of all ordered q-ary Dandion inso dintinct cosets of G_{1}. Clearly, there are q^{n-k} cosets. We mine to each conet a code word of G_{2}. We now construct a ($2 n, q^{n}$) yysemptic code G as follows: Let i be a q-ary information word of n nuns. Let $f(i)$ denote the codeword of G_{2} that is assigned to the coset of 6, comaining d. The encoded word for i in G is then the concatenathen of the two words i and $i+f(i)$, denoted by $(i, i+f(i))$.

Lut un ithustrate the construction procedure by a simple example. Let $\sigma_{1}=(000,110,011,101\}$ and $G_{2}=\{000,111)$ be the two conwnuent coces. The cosets of G_{1} and the codewords of G_{2} assigned to them are shown in table 1(a). The encoded words in G are then shown m table l(b).

Table 1(a)

Conets of C_{1}			Assignment of codewords of G_{2} to the cosets	
		110	011	101
000	111	010	100	111

Ta' le 1(b)

	Information words
\cdots	Encoded words in \boldsymbol{C}
000	000000
001	001110
010	010101
011	011011
100	100011
101	101101
110	110110
111	111000

Theorem 2.1. The code G constructed above is a $\left(2 m, q^{n}\right)$ code whurs distance is at least equal to $\min \left(2 d_{1}, d_{2}\right)$.

Proof. It is clear that the block length of G is $2 n$. There are \boldsymbol{q}^{0} codeworts in G, because there are $\boldsymbol{q}^{\boldsymbol{n}}$ distinct information words.

Let $\left(i_{1}, i_{1}+f\left(i_{1}\right)\right)$ and $\left(i_{2}, i_{2}+f\left(i_{2}\right)\right)$ be two codewords in G. To determine the distance between these two words, we examine two cases:

Case $1 . i_{1}$ and i_{2} are in the same coset of G_{1}. In this case, $f\left(i_{1}\right)=f\left(i_{2}\right)$. Thus ${ }^{2}$

$$
D\left[\left(i_{1}, i_{1}+f\left(i_{1}\right)\right),\left(i_{2}, i_{2}+f\left(i_{2}\right)\right)\right]=D\left[i_{1}, i_{2}\right]+D\left[i_{1}, i_{2}\right] \geq 2 d_{1}
$$

Case 2. i_{1} and i_{2} are not in the same coset of G_{1}. In this case, $f\left(i_{1}\right) \neq f\left(i_{2}\right)$. Thus,

$$
\begin{aligned}
D\left[\left(i_{1}, i_{1}+f\left(i_{1}\right)\right),\left(i_{2}, i_{2}+f\left(i_{2}\right)\right)\right] & =D\left[i_{1}, i_{2}\right]+D\left[i_{1}+f\left(i_{1}\right), i_{2}+f\left(i_{2}\right)\right] \\
& \geq D\left[f\left(i_{1}\right), f\left(i_{2}\right)\right]=d_{2}
\end{aligned}
$$

It should be noted that $\min \left(2 d_{1}, d_{2}\right)$ is only a lower bound on the distance of the code G. In particular, if $2 d_{1} \leq d_{2}$, then the distance of G is equal to $2 d_{1}$. However, if $2 d_{1}>d_{2}$, then $\min \left(2 d_{1}, d_{2}\right)$ is a lower bound on the distance of G. (In the following, we shall see examples in which the distance of G exceeds $\min \left(2 d_{1} . d_{2}\right)$, where $2 d_{1}>d_{2}$.)

The code G so constructed can be either linear or non-linear as indicated in the next theorem.

Theoren 2.2. The crode G is linear if and only if the following conditoms are suisfied: (1) $f(c i)=c f(i)$ for any constant c :
(2) $f\left(i_{1}+i_{2}\right)=f\left(i_{1}\right)+f\left(i_{2}\right)$.

Proof. It is clear that (1) and (2) are sufficient conditions for G to be linear. To show that they are alco necessary conditions, we note that:

I I The encoded word for i is $(i, i+f(i))$. If $(i$ is linear, $c(i, i+f(i))$ which is equal to ($\mathrm{ci} . \mathrm{c}+\mathrm{c}(\mathrm{f}(\mathrm{i})$ must also be a codeword in G. Since the encoded word of $\boldsymbol{r i}$ is ($c i, c i+f(c i)$), we must have $f(c i)=c f(i)$.
(i) Lef $\left(i_{1}, i_{1}+f\left(i_{1}\right)\right)$ and $\left(i_{2} . i_{2}+f\left(i_{2}\right)\right)$ be two codewords in G. If G in livent. $\left(i_{1}+i_{2} \cdot i_{1}+i_{2}+f\left(i_{1}\right)+f\left(i_{2}\right)\right)$ must also be a codeword. since the erocoded word of $i_{1}+i_{2}$ is $\left(i_{1}+i_{2}, i_{1}+i_{2}+f\left(i_{1}+i_{2}\right)\right)$. we must have $f\left(i_{1} * i_{2}\right)=f\left(i_{1}\right) * /\left(i_{2}\right)$.

[^1]Cenmer 2.3. For G to be a linear code, it is necessary that G_{2} is a linear rant

The combruction scheme can be varied slightly to yield codes of rate m eqmil to $\frac{1}{2}$. Let G_{1} be an ($n . q^{k}$) linear code of distance d_{1}. Let G_{2} - $n\left(n, M_{2}\right)$ code of distance d_{2}. We consider now two cases.

Cos 1 For the case $M_{2}<q^{n-k}$, let us select arbitrarily M_{2} of the acepts of G_{1} and assign to them distinct codewords of G_{2}. Let i be an asint information word that is in one of the cosets selected. We shall encode if as $(i, i+f(i))$, where $f(i)$ is ihe code-word of G_{2} assigned to the covet containing i. The resultant code is thus a ($2 n, M_{2} \cdot q^{k}$) code whose detance is at least equal to $\min \left(2 d_{1}, d_{2}\right)$. Conditions guarantecing the mearity of the resultant code are the same as that stated in Theorem 2.2. Consequently, in selecting the M_{2} cosets of G_{1}, it is necessary that ine folkwing rules be followed:
(I) If a coset A is selected so should be the coset $\{c a \mid a \in A\}$ for any arbitrary c.
(2) If two cosets A_{1} and A_{2} are selected so should the coset $\left\{a_{1}+a_{2} \mid a_{1} \in A_{1}, a_{2} \in A_{2}\right\}$.

Case 2. For the case $M_{2}>q^{n-k}$, let us assume that M_{2} is a multiple of 4^{n-k}. To be specific, let $M_{2}=r q^{n-k}$ for some integer r. We assign to each of the cosets of G_{1}, r distinct codewords of G_{2}. Moreover, let R denote a set of r distinct q-ary words. Let there be a one-to-one correspondence between the words in R and the words assigned to each coset of G_{1}. Let (i_{1}, i_{2}) be an information word where i_{1} is an n-digit q-ary word, i, is a word in R. Such an information word will be encoded as $\left(i_{1}, i_{1}+f\left(i_{1}, i_{2}\right)\right)$ where $f\left(i_{1}, i_{2}\right)$ denotes the word in G_{2} that is assigned to the coset containing i_{1} and is in correspondence with the word i_{2}. The resultant code is thus a ($2 n, r q^{n}$) code. Again, its distance is at least equal to $\min \left(2 d_{1}, d_{2}\right)$. Linearity of the resultant code is guaranfeed, if the following conditions are satisfied:
(1) If B is the set of words assigned to the coset containing i, then $\{c b \mid b \in B\}$ must be the set of words assigned :o the cosel containing ci.
(2) If B_{1} is the set of words assigned to the coset containing $i_{1} . e_{2}$ is the set of words assigned to the coset containing i_{2}. then
$\left\{b_{1}+b_{2} \mid b_{1} \in B . b_{2} \in B_{2}\right\}$ must be the set of words assigned to the coset containing $i_{1}+i_{2}$.

3. Linearity of the constituent code G_{1}

A closer look at the construction scheme presented in Section 2 reveals that linearity of the constituent code G_{1} is not a strictly necessary property. What we need in the construction scheme is only a way of partitioning all q-ary ordered n-tuples into disjoint subsets such that the distance between any two ordered n-tuples in the same subset is at least d_{1}. We illustrate in this section that a systematic code G_{1}, either linear or non-linear, will also induce one such partition in a natural manner. Without loss of generality, let G_{1} be an (n, q^{k}) systematic code such that the first k digits of the codewords in G_{1} are all the distinct q-ary ordered k-tuples. Let a_{1}, a_{2}, \ldots denote all ordered n-tuples of the form ($0^{k}, b$) where b is an ordered ($n-k$)-tuple. In other words, a_{1}, a_{2}, \ldots arc ordered n-tuples with k ieading zeros. Let

$$
U(a)=\left(a+g \mid g \in G_{1}\right) .
$$

Theorem 3.1. The set of ail ordered n-tuples is partitioned into q^{n-k} disjoint subsets $U\left(a_{1}\right), U(a),, \ldots$ corresponding to the q^{n-k} ordered n inples $a_{1} . a_{2}, \ldots$. Morerver. : the distance between any two words in a subset $U\left(a_{1}\right)$ is at least d_{1}.

Proof. Since $a_{i}+g_{m} \neq a_{i}+g_{v}$ for distinct g_{u} and g_{v} in G_{1}, we note that every subset $U\left(a_{i}\right)$ contains exactly q^{k} distinct ordered n-tuples. Moreover. we show that $a_{i}+g_{m} \neq a_{j}+g_{v}$ for distinct a_{i} and a_{j}. If $g_{u}=g_{v}$, clearly $a_{1}+g_{n} \neq a_{1}+g_{0}$. If $g_{0} \neq g_{0}$. the first k-digits in g_{1}, must be different from the fint k-dipts in g_{6}. Since the first k digits in both a_{i} and a_{i} are all teros. the first A digits in $a_{i}+g_{m}$ must be different from the first k dipits in $a_{j}+g_{0}$. Therefore. $a_{i}+g_{z} \neq a_{i}+g_{v}$.

For any two words $a_{i}+g_{m}$ and $a_{i}+g_{v}$ in $U\left(a_{i}\right)$, their distance is equal 10 DIE. \& I which is at least d_{1}.

Imue we can cominut a ($2 n . q^{n}$) code G by assigning the codewords
$m G_{2}$ to the subsets $U\left(a_{1}\right), U\left(a_{2}\right), \ldots$, when the construction scheme in Section 2 is employed. We shall use $f\left(a_{i}\right)$ to denote the codeword in G_{2} that in maipned to the subset $U\left(a_{i}\right)$. We have the following theorem concerning the linearity of the code G.

Theorem 3.2. For G to be a linear code, G_{1} must either be a linear code of be a coset of a linear code.

Proot. Suppose that G is linear. According to Corollary $3.3, G_{2}$ must be a linear code. Thus, G_{2} contains the all zero word ग. Let $U\left(a_{i}\right)$ denote the subset of ordered n-tuples to which the all zero word 0 is asudined. Let g_{u} and g_{v} be words in G_{1}. Consider the two words

$$
\begin{aligned}
& \left(g_{u}+a_{i}, g_{u}+a_{i}+f\left(a_{i}\right)\right)=\left(g_{u}+a_{i}, g_{u}+a_{i}\right), \\
& \left(g_{v}+a_{i}, g_{v}+a_{i}+f\left(a_{i}\right)\right)=\left(g_{v}+a_{i}, g_{v}+a_{i}\right)
\end{aligned}
$$

in \boldsymbol{G}. Since \boldsymbol{G} is linear, for any constants c_{1}, c_{2},

$$
\begin{aligned}
& c_{1}\left(g_{u}+a_{i}, g_{u}+a_{i}\right)+c_{2}\left(g_{v}+c_{i}, g_{v}+a_{i}\right) \\
& =\left(c_{1} g_{u}+c_{2} g_{v}+\left(c_{1}+c_{2}\right) a_{i}, c_{1} g_{u}+c_{2} g_{v}+\left(c_{1}+c_{2}\right) a_{1}\right)
\end{aligned}
$$

is also a word in G. That is, the word

$$
\left(c_{1} g_{u}+c_{2} g_{v}+\left(c_{1}+c_{2}\right) a_{i}, c_{1} g_{u}+c_{2} g_{v}+\left(r_{1}+c_{2}\right) a_{i}\right)
$$

can be written as $\left(g_{w}+a_{j}, g_{w}+a_{j}+f\left(a_{j}\right)\right)$ for some g_{w} and a_{j}. However. $f\left(a_{j}\right)$ is equal to 0 in this case. Thus, $c_{1} g_{w}+c_{2} g_{v}+\left(c_{1}+c_{2}\right) a_{1}$ must be in $U\left(a_{i}\right)$. In other words, for any $g_{u}+a_{i}$ and $g_{v}+a_{i}$ in $\left(\eta_{i}\right), c_{1}\left(c_{t}+a_{i}\right)+$ $c_{2}\left(g_{v}+a_{i}\right)$ is also in $U\left(a_{i}\right)$. It follows that G_{1} is either a lineer code (if $a_{i}=0$) or a coset of a linear code (if $a_{i} \neq 0$).

4 Construction examples

In this section we shall present some examples of codes then cen be generated by the scheme proposed in the preceding sections.

We show first the construction of an $\left(8,2^{4}, 4\right)$ binary code. Let G_{1} be the $\left(4,2^{3}, 2\right)$ binary code consisting of all words of even weight. Let G_{2} be the $(4,2,4)$ binary code consisting of the two words 0000 and 1111 . If we assign the word 0000 to the set of codc-words in G_{1} and assign the word 1111 to the coset of G_{1} consisting of all words of odd weight, the resultant code G consists of the words in the following list:

$$
\begin{aligned}
& (0000,000+0000)=00000000, \\
& (0011,0011+0000)=00110011, \\
& (0101,0101+0000)=01010101, \\
& (0110,0110+0000)=01100110, \\
& (1001,1001+0000)=10011001, \\
& (1010,1010+0000)=10101010, \\
& (1100,1100+0000)=11001100, \\
& (1111,1111+0000)=11111111, \\
& (0001,0001+1111)=0011110, \\
& (0010,0010+1111)=00101101, \\
& (0100,0100+1111)=01001011, \\
& (0111.0111+11111=01111000, \\
& (1000.1000+1111)=1000.0111, \\
& (1011.1011+1111)=10110100, \\
& (1101,1101+1111)=11010010, \\
& (1110.1110+1111)=11100001 .
\end{aligned}
$$

As a motter of fact. we can construct a class of linear and non-linear binary codes that have the same parameters (block length, number of coepwords and distance) as the Reed-Muller codes. We shall show the conpirection of codes of block length $2^{m \pi}$. distance 2^{m-r} which has 2^{k} codruords where

$$
1=1+\left(i_{1}^{\infty}\right)+\left(\frac{m}{2}\right)+\ldots+1,
$$

(Clearly. thexe are the parmmeters of an $r^{\text {th }}$ order Reed-Muller code of

$$
a_{1}=1+\left(m_{1}^{1}\right)+\left(m_{2}^{-1}\right)+\ldots+\left(m_{r}^{-1}\right) .
$$

The memet of cometo of G_{1} in $2^{m-n_{1}-1}$. Let G_{2} be an $(r-1)^{3 t}$ order now mation cofe of bock length 2^{m-1}. The distance of G_{2} is 2^{m-r}. ins mamere of cederwords in C_{2} in $2^{k_{2}}$ where

$$
k_{1}=1+\left(m_{1}^{-1}\right)+\left(m_{2}^{-i}\right)+\ldots+\binom{m-1}{r-1} .
$$

ω * minn A, "deninct codewords of G_{2} to each of the cosets W 4.1 . an momant code G is of block length 2^{m} and distance 2^{m-r}. the mameres of coserwords in G is

Moneroer. wace

$$
A_{1}+k_{1}=1+\binom{m}{1}+\binom{m}{2}+\ldots+\binom{m}{r},
$$

the murameters of G are indeed identical to that of an $r^{\text {th }}$ order Reedmatier cole of block length 2^{m} Note that our construction procedure umpens no restriction on how the codewords of G_{2} are assigned to the cometu of G_{1}. Thus, the possibility of obtaining a class of linear and nonmaxer codes in quite clear.

We know now the corstruction of a class of non-linear codes that move the same parameters as a class of codes discovered by Sloane and Wherevend 191. Again, because of the flexibility in our construction chemr in aseigning codewords in G_{2} to the cosets of G_{1}, correspondmestore of the codes discovered by Sloane and Whitehead, there is - ctem ef non-linear codes with the same set of parameters.

Colay | 1] and Julin [2] have discovered binary single error correc1 ming codes of block length $8,9,10,11$. The parameters of these codes are (8, 20, 3), $(9,38,3),(10,72,3),(11,144,3)$. We shall denote these codes by $C_{3} . C_{9} . C_{10}, C_{11}$, respectively. Let G_{1} be an $\left(8,2^{7}, 2\right)$ single parity check code. Let G_{2} be the $(8,20,3)$ code C_{8}. By assigning 10 of the codewords of C_{8} to each coset of G_{1}, we obtain a $\left(16,10 \cdot 2^{8}, 3\right)$ code. Moreover, different assignments of the codewords of C_{8} to the conets of C_{1} yield a whole class of $\left(16,10 \cdot 2^{8}, 3\right)$ codes. Let G_{1} be a
$\left(9,2^{8}, 2\right)$ single parity check code. Let G_{2} be the ($9,2,4$) code wh tained by appending a parity check bit to the codewords in (C_{n} (W) construction procedure yields a class of $\left(18,10 \cdot 2^{9}, 4\right)$ codes whict, can be shortened to yield a class of $\left(17,10 \cdot 2^{9}, 3\right)$ codes. Let G_{i}, the a $\left(9,2^{8}, 2\right)$ single parity check code. Let G_{2} be the $(9,38.2)$ code (. By assigning 19 of the codewords of G_{2} to each coset of G_{1}, we oh tain a class of $\left(18,19 \cdot 2^{9}, 3\right)$ codes. Again, let G; be a (10. $\left.2^{9} .2\right)$ single parity check code. Let G_{2} be the $(10,38,4)$ code obtained hy appending a parity check bit to the codewords in C_{9}. We can then construct a class of $\left(20,19 \cdot 2^{10}, 4\right)$ codes which can be shoftened to yield a class of $\left(19,19 \cdot 2^{10}, 3\right)$ codes. Similarly, we can construce classes of codes with the following parameters: $\left(20,36 \cdot 2^{10}, 3\right)$, $\left(21,36 \cdot 2^{11}, 3\right),\left(22,72 \cdot 2^{11}, 3\right)\left(23,72 \cdot 2^{12}, 3\right)$.

Furthermore, let G_{1} be a $(16,215,2)$ single parity check code. iet G_{2} be one of the $\left(16,10 \cdot 2^{8}, 3\right)$ codes constructed above. We can employ our construction procedure to obtain a class of (16, 10•223.3) codes. Repeating the construction procedure recursively, we have:

Theorem 4.1. For any block length n satisfying $2^{m} \leq n<3 \cdot 2^{m}$ 1. there exists a class of non-linear $\left(n . \lambda \cdot 2^{n-m-1}, 3\right)$ codes where $\lambda=\frac{5}{4}, 1 \frac{1}{6}$, or $\frac{9}{8}$ according to the binary expansion of n that begins with 1000,1001 , or $101 \ldots$.

Theorem 4.1 is an extension of a theorem due to Sloane and Whitehead [9], who employed a construction scheme quite similar to ours (see Section 6). It is not difficult to see that corresponding to each code constructed by the Sloane and Whitehead scheme, our construction yields a class of codes which can be obtained by adding a certain fixed word to half of the words in the code obtained in the Sloane and W'hitehead construction. We leave the details to the interested reader.

More construction examples can be found in [8].

5. Construction of a class of optimal non-linear codes

As was pointed out above, $\min \left(\lambda d_{1}, d_{2}\right)$ is only a lower bound to the distance of the code constructed according to our scheme. Indeed,
te then show th this section the construction of a class of non-linear celle: whose dinifances exceed the lower bound $\min \left(2 i_{1}, d_{2}\right)$. Intuitively, such a ponalbity does not come in as a surprise. Since our construction ectueme allows :omplete freedom in assigning words of G_{2} to cosets of G_{1}, ove would suspect that the distance of the resultant code G might be tmproved if a judicious assignment is made.

We begin with the construction of a $\left(16,2^{8}, 6\right)$ binary code which is the extended $\left(15,2^{\prime}, 5\right)$ code discovered hy Robinson and Nordstrom |4.6|. Let boith G_{1} and G_{2} be the $\left(8,2^{4}, 4\right)$ binary code obtained by : ppending a sanity check bit to the $\left(7,2^{4}, 3\right)$ cyclic code generated by the polynom:al $1+x+x^{3}$. Any casual assignment of the 16 words in i i_{2} to the 16 cosets of G_{1} will yield a code of distance 4 . However, let wexamine the assignment in Table 2, where the cosets of G_{1} are identified by wire eciset leaders. (Since the distance of G_{1} is 4 , the coset leaders in Table $2 a$: leade s of distinct cosets.) We show now that such an assignment yields a code of distance 6.

Table 2

Cosets of G_{1} (identified by their leaders)	Assignment of words in G_{2} to the cosets
00000000	00000000
10000000	00010111
$0: 000000$	10001011
00100000	11000101
00010000	01100011
00001000	10110001
00000100	01011001
00000010	00101101
00000001	11111111
10000001	11101000
$0: 000001$	01110100
00100001	00111010
00010001	10011100
00001001	01001110
00000101	10100110
00000011	11010010

We introduce first some notation. Let x, y be two binary ordered n tuples. We shall use $|x|$ to denote the (Hamm ng) weight of x, and $x y$ to denote the ordered n-tuple obtained by compunentwise multiplicer tion of \boldsymbol{x} and \boldsymbol{y}. It is easy to check that

$$
|x|+|y|=|x+y|+2|x y| .
$$

Moreover, we also have

$$
\begin{align*}
|x+y|+|x+y+z| & =|z|+2|(x+y)(x+y+z)| \tag{5.1}\\
& =|z|+2!(x+y)+(x+y) z \\
& =|z|+2|x(x+z)+y(y+z)|
\end{align*}
$$

Let l_{1}, l_{2}, \ldots denote the cosets leaders of G_{1}, and $f\left(l_{1}\right), f\left(i_{2}\right), \ldots$ denote the words assigned to them as shown in Table 2. It can be verified directly that

$$
\left|\left(l_{1}+l_{2}\right)\left(l_{1}+l_{2}+f\left(l_{1}\right)+f\left(l_{2}\right)\right)\right|=1
$$

if $\left|f\left(l_{1}\right)+f\left(l_{2}\right)\right|=4$.
We are now ready to prove that the distance of the code G is equal to 6. Let ($i_{1}, i_{1}+f\left(i_{1}\right)$) and ($\left.i_{2}, i_{2}+f\left(i_{2}\right)\right)$ be two codewords in G. The distance between these two words is

$$
\left|i_{1}+i_{2}, i_{1}+i_{2}+f\left(i_{1}\right)+f\left(i_{2}\right)\right| .
$$

Since $i_{1}=l_{1}+m_{1}, i_{2}=l_{2}+m_{2}$, where m_{1} and m_{2} denote codewords in G_{1}, according to (5.1), the distance can also be written as

$$
\begin{aligned}
l_{1} & \left.+m_{1}+l_{2}+m_{2}, l_{1}+m_{1}+l_{2}+m_{2}+f\left(i_{1}\right)+f\left(l_{2}\right)\right) \\
= & V\left(l_{1}\right)+f\left(l_{2}\right)|+2|\left(l_{1}+l_{2}\right)\left(l_{1}+l_{2}+f\left(l_{1}\right)+f\left(l_{2}\right)\right) \\
& +\left(m_{1}+m_{2}\right)\left(m_{1}+m_{2}+f\left(l_{1}\right)+f\left(l_{2}\right)\right) \mid .
\end{aligned}
$$

We examine three cases:

Case 1. $V\left(l_{1}\right)+f\left(l_{2}\right) \|=8$. Clearly, the distance between the two words B larger than or equal to 8.

Case 2. $f\left(l_{1}\right)+f\left(l_{2}\right) \mid=0$. This implies that $l_{1}=l_{2}$ and $f\left(l_{1}\right)=f\left(l_{2}\right)$. The distance of the two words is then

$$
2 \mid\left(m_{1}+m_{2} M\left(m_{1}+m_{2}\right)|=2|\left(m_{1}+m_{2}\right) \mid \geq 8\right.
$$

becouse $m_{1} \neq m_{2}$

($\operatorname{mox} 3\left(U_{1}\right)+f\left(I_{2}\right) \|=4$. As was pointed out above, we have

$$
\left.M_{1}+I_{2} X I_{1}+I_{2}+f\left(I_{1}\right)+f\left(l_{2}\right)\right) \mid=1
$$

gance $m_{1}, m_{1}, f\left(l_{1}\right), f\left(l_{2}\right)$ are in $G_{1},\left|\left(m_{1}+m_{2}\right)\left(m_{1}+m_{2}+f\left(l_{1}\right)+f\left(l_{2}\right)\right)\right|$ man number. It follows that

$$
\left.\omega_{1}+l_{2} M_{1}+l_{2}+f\left(I_{1}\right)+f\left(l_{2}\right)\right)+\left(m_{1}+m_{2}\right)\left(m_{1}+m_{2}+f\left(l_{1}\right)+f\left(l_{2}\right)\right) \mid>0
$$

The detance of the code is thus at least 6.
Owf conefruction scheine can be applied to construct a class of optimal monlinear codes discovered by Preparata [7]. We outline here the conwruction steps which are motivated by Preparata's original construction. Let twin G_{1} and C_{2} be the $(m-3)^{\text {rd }}$ order Reed-Muller code of length $2 \mathbf{~ I ~ o b t a i n e d ~ b y ~ a p p e n d i n g ~ a ~ p a r i t y ~ c h e c k ~ b i t ~ t o ~ t h e ~ c y c l i c ~ c o d e ~ g e - ~}$ merated by

$$
\begin{equation*}
g(x)=\prod_{j=0}^{m-2}\left(x-\alpha^{2}\right) \tag{3.2}
\end{equation*}
$$

where a is a primitive element in $\mathrm{GF}\left(2^{m-1}\right)$ (see [3]). Thus, both \boldsymbol{G}_{1} and G_{2} are $\left(2^{m-1}, 2^{2^{m-1}-m}, 4\right)$ codes. Consequently, to each of the 2^{m} cowets of G_{1}, we shall assign $2^{2^{m-1}-2 m}$ codewords in G_{2}. Although any arbitrary assignment will yield a ($2^{m}, 2^{2^{m}-2 m}$) code of distance 4, the assignment shown below will increase the distance to 6 .

In order to obtain a resultant code of distance 6 , we must assign to each coset of G_{1} words of mutual distance at least equal to 6 . Let S denote the cyclic code of length $2^{m-1}-1$ whose generator polynomial has $1, \alpha, a^{3}$ as its roots. Clearly, S is a BCH code of distance 6 . Note that S is a subcode of the cyclic code generated by $g(x)$ in (5.2). By appending : parity check bit to the words in S, we obtain a subcode of C_{2} whose distance is 6 . Call this subcode of G_{2}, S. It can be shown that S^{\prime} has $2^{2^{m-1}-2 m}$ codewords when m is even (see [5]). We now assimn the words in the cosits of S^{\prime} (with respect tu G_{2}) to the cosets of G_{1} 23 shown in Table 3 where the cosets of G_{1} and 5 are identified by their coset leaders. (It is not difficult to show that these are leaders of distinct cosets.) In Table 3, we use the standard polynomia! notation for ordered 2^{m}-tuples.

Table 3

Cosets of G_{1}	Cosets of S
0	0
1	$(f(x)+1)+x^{2 m-1}-1$
x^{2}	$x^{2}(f(x)+1)+x^{2 m-1}-1$
${ }_{x}{ }^{2 m-1-2}$	$x^{2 m-1}-2(f(x)+1)+x^{2 m-1-1}$
$\mathrm{x}^{2^{m-1-1}}$	$x^{2}-2(f(x)+1)+x^{2}{ }^{2 m-1}-1+u(x)$
$1+x^{2 m-1}-1$	$(f(x)+1)+x^{2 m-1}-1+u(x)$
$x^{x}+x^{2 m-1}{ }^{2 m-1}$	$x(f(x)+1)+x^{2^{m-1}-1}+4(x)$
$x^{2}+x^{2 m-1-1}$	$x^{2}(f(\dot{i})+1)+x^{2 m-1}+u(x)$
$x^{2 m-1}-2+\dot{x}^{2 m-1} .1$	$x^{2^{m-1}-2}(f(x)+1)+x^{2^{m-1}-1}+u(x)$

In Table 3, $f(x)$ is the polynomial $x^{t} h(x)$, where

$$
h(x)=\left(x^{2 m-1}-1+1\right) / g(x)
$$

and t is an integer such that

$$
h^{2}(x)=x^{2 m-1-1-t} h(x) .
$$

Also, $u(x)$ is the polynomial

$$
1+x+x^{2}+x^{3}+\ldots+x^{2 m-1}-1
$$

corresponding to the ordered 2^{m-1}-tuple of all l's.
We shall not include a proof of the distance of the resultant code here (see [5|). Moreover. it is also not difficult to see the relationship between Preparata's construction and our construction and thus to invoke Preperata's results to support the claim.

6. Remerta

Our construction scheme bears a close recemblance to that of Sleane and Whitetread [9]. As a matter of fact, the Sloane and Whitchead wheme cen be riewed as a special case of our scheme in which only one
coset of G_{1} (G_{1} itself) is used and to this coset all words of G_{2} are assigned. It should be pointed out that our construction scheme can generate non-linear codes from linear constituent codes while the Sloane and Whitehead scheme generates only linear codes from linear constituent codes. Also, it is possible in our construction scheme to attain a distance better than $\min \left(2 d_{1}, d_{2}\right)$; yet in the Sloane and Whitehead scheme, $\min \left(2 d_{1}, d_{2}\right)$ is always the distance of the resultant code. Unfortunately, very little is known at this moment about the assignment of codewords of G_{2} to cosets of G_{1} so that a distance larger than $\min \left(2 d_{1}, d_{2}\right)$ can be attained.

References

[1] M.J.E. Golay, Binary coding, IEEE Trans. Inform. Theory PGIT-4 (1954) 23-28.
[2] D. Julin, Two improved block codes, IEEE Trans. Inform. Theory IT-11 (1965) 549.
[3] T. Kasami. S. Lin and W.W. Peterson, Reed-Muller codes, part I: Primitive codes, IEEE Trans. Inform. Theory IT-14 (2) (1968) 189-199.
14] A.E. Nordstrom and J.P. Robinson, An optimum non-linear code, Iniorm. Control (1967) 613-617.
[5] B.G. Ong, A new construction scheme for linear and non-linear codes, S.M. Thesis, Dept. of Elec. Eng., Massachusetts Inst. of Technol., Cambridge, Mass. (1970).
[6] F.P. Preparata, Weight and distance structure of Nordstrom-Robinson quadratic code, Inform. Control (1968) 466-473.
[7] F.P. Preparata, A class of optimum non-linear double-error-correcting codes, Inform. Control (1968) 378-400.
[8] G.R. Ruth, A new technique for the construction of block codes, S.M. Thesis, Dept. of Elec.Eng., Massachusetts Inst. of Technol., Cambridge, Mas3. (1971).
[9] N.J.A. Sloane and D.S. Whitehead, New farnily of single-error-correcting codes, IEEE Trans. Inform Theory IT-16 (6) (1970) 717-719.

[^0]: 1 We wese the term "an (n. M) code" and "an (n, M, d) code" to reisi to a block code with block kepth n. distance d. and M codewords.

[^1]:

