10 research outputs found

    Dramatically enhanced electrical breakdown strength in cellulose nanopaper

    No full text
    Electrical breakdown behaviors of nanopaper prepared from nanofibrillated cellulose (NFC) were investigated. Compared to conventional insulating paper made from micro softwood fibers, nanopaper has a dramatically enhanced breakdown strength. Breakdown field of nanopaper is 67.7 kV/mm, whereas that of conventional paper is only 20 kV/mm. Air voids in the surface of conventional paper are observed by scanning electron microscope (SEM). Further analyses using mercury intrusion show that pore diameter of conventional paper is around 1.7 μm, while that of nanopaper is below 3 nm. Specific pore size of nanopaper is determined to be approximately 2.8 nm by the gas adsorption technique. In addition, theoretical breakdown strengths of nanopaper and conventional paper are also calculated to evaluate the effect of pore size. It turns out that theoretical values agree well with experimental data, indicating that the improved strength in nanopaper is mainly attributed to the decreased pore size. Due to its outstanding breakdown strength, this study indicates the suitability of nanopaper for electrical insulation in ultra-high voltage convert transformers and other electrical devices

    M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects

    No full text
    Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis

    Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil

    No full text
    Fast-growth of single crystal monolayer graphene by CVD using methane and hydrogen has been achieved on ???homemade??? single crystal Cu/Ni(111) alloy foils over large area. Full coverage was achieved in 5 min or less for a particular range of composition (1.3 at.% to 8.6 at.% Ni), as compared to 60 min for a pure Cu(111) foil under identical growth conditions. These are the bulk atomic percentages of Ni, as a superstructure at the surface of these foils with stoichiometry Cu6Ni1 (for 1.3 to 7.8 bulk at.% Ni in the Cu/Ni(111) foil) was discovered by low energy electron diffraction (LEED). Complete large area monolayer graphene films are either single crystal or close to single crystal, and include folded regions that are essentially parallel and that were likely wrinkles that ???fell over??? to bind to the surface; these folds are separated by large, wrinkle-free regions. The folds occur due to the buildup of interfacial compressive stress (and its release) during cooling of the foils from 1075 ??C to room temperature. The fold heights measured by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) prove them to all be 3 layers thick, and scanning electron microscopy (SEM) imaging shows them to be around 10 to 300 nm wide and separated by roughly 20 ??m. These folds are always essentially perpendicular to the steps in this Cu/Ni(111) substrate. Joining of well-aligned graphene islands (in growths that were terminated prior to full film coverage) was investigated with high magnification SEM and aberration-corrected high-resolution transmission electron microscopy (TEM) as well as AFM, STM, and optical microscopy. These methods show that many of the ???join regions??? have folds, and these arise from interfacial adhesion mechanics (they are due to the buildup of compressive stress during cool-down, but these folds are different than for the continuous graphene films—they occur due to ???weak links??? in terms of the interface mechanics). Such Cu/Ni(111) alloy foils are promising substrates for the large-scale synthesis of single-crystal graphene film
    corecore