2,040 research outputs found
Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium
We calculate three-loop radiative-recoil corrections to hyperfine splitting
in muonium generated by the diagrams with the first order electron and muon
polarization loop insertions in graphs with two exchanged photons. These
corrections are enhanced by the large logarithm of the electron-muon mass
ratio. The leading logarithm squared contribution was obtained a long time ago.
Here we calculate the single-logarithmic and nonlogarithmic contributions. We
previously calculated the three-loop radiative-recoil corrections generated by
two-loop polarization insertions in the exchanged photons. The current paper
therefore concludes calculation of all three-loop radiative-recoil corrections
to hyperfine splitting in muonium generated by diagrams with closed fermion
loop insertions in the exchanged photons. The new results obtained here improve
the theory of hyperfine splitting, and affect the value of the electron-muon
mass ratio extracted from experimental data on the muonium hyperfine splitting.Comment: 27 pages, 6 figures, 7 table
Cell cycle-dependent and independent mating blocks ensure fungal zygote survival and ploidy maintenance.
To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating
The SDSS spectroscopic catalogue of white dwarf-main-sequence binaries: new identifications from DR 9–12
We present an updated version of the spectroscopic catalogue of white dwarf-main-sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS). We identify 938 WDMS binaries within the data releases (DR) 9–12 of SDSS plus 40 objects from DR 1–8 that we missed in our previous works, 646 of which are new. The total number of spectroscopic SDSS WDMS binaries increases to 3294. This is by far the largest and most homogeneous sample of compact binaries currently available. We use a decomposition/fitting routine to derive the stellar parameters of all systems identified here (white dwarf effective temperatures, surface gravities and masses, and secondary star spectral types). The analysis of the corresponding stellar parameter distributions shows that the SDSS WDMS binary population is seriously affected by selection effects. We also measure the Na I λλ 8183.27, 8194.81 absorption doublet and H α emission radial velocities (RV) from all SDSS WDMS binary spectra identified in this work. 98 objects are found to display RV variations, 62 of which are new. The RV data are sufficient enough to estimate the orbital periods of three close binaries
Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes
Azido sugars have found frequent use as probes of biological systems in approaches ranging from cell surface metabolic labeling to activity-based proteomic profiling of glycosidases. However, little attention is typically paid to how well azide-substituted sugars represent the parent molecule, despite the substantial difference in size and structure of an azide compared to a hydroxyl. To quantitatively assess how well azides are accommodated, we have used glycosidases as tractable model enzyme systems reflecting what would also be expected for glycosyltransferases and other sugar binding/modifying proteins. In this vein, specificity constants have been measured for the hydrolysis of a series of azidodeoxy glucosides and N-acetylhexosaminides by a large number of glycosidases produced from expressed synthetic gene and metagenomic libraries. Azides at secondary carbons are not significantly accommodated, and thus, associated substrates are not processed, while those at primary carbons are productively recognized by only a small subset of the enzymes and often then only very poorly. Accordingly, in the absence of careful controls, results obtained with azide-modified sugars may not be representative of the situation with the natural sugar and should be interpreted with considerable caution. Azide incorporation can indeed provide a useful tool to monitor and detect glycosylation, but careful consideration should go into the selection of sites of azide substitution; such studies should not be used to quantitate glycosylation or to infer the absence of glycosylation activity.Bio-organic Synthesi
Comparison of structural transformations and superconductivity in compressed Sulfur and Selenium
Density-functional calculations are presented for high-pressure structural
phases of S and Se. The structural phase diagrams, phonon spectra,
electron-phonon coupling, and superconducting properties of the isovalent
elements are compared. We find that with increasing pressure, Se adopts a
sequence of ever more closely packed structures (beta-Po, bcc, fcc), while S
favors more open structures (beta-Po, simple cubic, bcc). These differences are
shown to be attributable to differences in the S and Se core states. All the
compressed phases of S and Se considered are calculated to have weak to
moderate electron-phonon coupling strengths consistent with superconducting
transition temperatures in the range of 1 to 20 K. Our results compare well
with experimental data on the beta-Po --> bcc transition pressure in Se and on
the superconducting transition temperature in beta-Po S. Further experiments
are suggested to search for the other structural phases predicted at higher
pressures and to test theoretical results on the electron-phonon interaction
and superconducting properties
Fermion zero modes in N=2 supervortices
We study the fermionic zero modes of BPS semilocal magnetic vortices in N=2
supersymmetric QED with a Fayet-Iliopoulos term and two matter hypermultiplets
of opposite charge. There is a one-parameter family of vortices with
arbitrarily wide magnetic cores. Contrary to the situation in pure
Nielsen-Olesen vortices, new zero modes are found which get their masses from
Yukawa couplings to scalar fields that do not wind and are non-zero at the
core. We clarify the relation between fermion mass and zero modes. The new zero
modes have opposite chiralities and therefore do not affect the net counting
(left minus right) of zero modes coming from index theorems but manage to evade
other index theorems in the literature that count the total number (left plus
right) of zero modes in simpler systems.Comment: 9 pages, 1 figure. Uses Revtex4. Revised version includes discussion
about the back-reaction of the fermions on the background vortex. Version to
be published in Phys. Rev.
Infant Skin Barrier, Structure, and Enzymatic Activity Differ from Those of Adult in an East Asian Cohort
Skin physiology is dynamically changing over the frst years of postnatal life; however, ethnic variations are still unclear. Te aim
of this study was to characterize infant skin barrier function, epidermal structure, and desquamation-related enzymatic activity
as compared to that of adult skin in an East Asian population. Te skin properties of 52 infants (3-24 months) and 27 adults (20-
40 years) were assessed by noninvasive methods at the dorsal forearm and upper inner arm. Transepidermal water loss and skin
surface conductance values were higher and more dispersed for infants compared to adults. Infant skin surface pH was slightly
lower than adult on the dorsal forearm. Te infant SC and viable epidermis were thinner compared to adults with diferences that
were site-specifc. Although the chymotrypsin-like activity for infant skin was comparable to adult level, the caseinolytic specifc
activity was signifcantly higher for the infant cohort. Tese observations indicate a diferently controlled pattern of corneocyte
desquamation in infants. In conclusion, structural and functional diferences exist between infant and adult skin in the East Asian
population pointing to dynamic maturation of the epidermal barrier early in life
Projected SO(5) Hamiltonian for Cuprates and Its Applications
The projected SO(5) (pSO(5)) Hamiltonian incorporates the quantum spin and
superconducting fluctuations of underdoped cuprates in terms of four bosons
moving on a coarse grained lattice. A simple mean field approximation can
explain some key feautures of the experimental phase diagram: (i) The Mott
transition between antiferromagnet and superconductor, (ii) The increase of T_c
and superfluid stiffness with hole concentration x and (iii) The increase of
antiferromagnetic resonance energy as sqrt{x-x_c} in the superconducting phase.
We apply this theory to explain the ``two gaps'' problem found in underdoped
cuprate Superconductor-Normal- Superconductor junctions. In particular we
explain the sharp subgap Andreev peaks of the differential resistance, as
signatures of the antiferromagnetic resonance (the magnon mass gap). A critical
test of this theory is proposed. The tunneling charge, as measured by shot
noise, should change by increments of Delta Q= 2e at the Andreev peaks, rather
than by Delta Q=e as in conventional superconductors.Comment: 3 EPS figure
Second order gradient ascent pulse engineering
We report some improvements to the gradient ascent pulse engineering (GRAPE)
algorithm for optimal control of quantum systems. These include more accurate
gradients, convergence acceleration using the BFGS quasi-Newton algorithm as
well as faster control derivative calculation algorithms. In all test systems,
the wall clock time and the convergence rates show a considerable improvement
over the approximate gradient ascent.Comment: Submitted for publicatio
Selection of Wavelet Subbands Using Genetic Algorithm for Face Recognition
Abstract. In this paper, a novel representation called the subband face is proposed for face recognition. The subband face is generated from selected subbands obtained using wavelet decomposition of the original face image. It is surmised that certain subbands contain information that is more significant for discriminating faces than other subbands. The problem of subband selection is cast as a combinatorial optimization problem and genetic algorithm (GA) is used to find the optimum subband combination by maximizing Fisher ratio of the training features. The performance of the GA selected subband face is evaluated using three face databases and compared with other wavelet-based representations.
- …