11 research outputs found

    EFFECTS OF MATRINE ON JAK-STAT SIGNALING TRANSDUCTION PATHWAYS IN BLEOMYCIN-INDUCED PULMONARY FIBROSIS

    Get PDF
    The current study aims to investigate the effects of matrine on the JAK-STAT signaling transduction pathways in bleomycin (BLM)-induced pulmonary fibrosis (PF) and to explore its action mechanism. A total of 72 male C57BL/6 mice were randomized into the control, model, and treatment groups. PF models were established by instilling BLM intratracheally. The treatment group was given daily matrine through gastric lavage. Six mice were sacrificed in each group at 3, 7, 14, and 28 days. The lung tissues were observed using hematoxylin-eosin staining. The expression of JAK, STAT1, and STAT3 was observed using immunohistochemistry and then determined using real-time polymerase chain reaction. Alveolitis and PF significantly improved in the treatment group compared with the model group (P < 0.05). The expression of JAK, STAT1, and STAT3 in the model group increased at day 7, peaked at day 14 and then decreased, but the expression was still higher than that in the control group at day 28 (P < 0.05). The three indices in the treatment group were significantly lower than those in the model group at any detection time point (P < 0.05). PF causes high expression of JAK, STAT1, and STAT3. Matrine exerts an anti-PF effect by inhibiting the JAK-STAT signaling transduction pathways

    Recent Advances in Understanding the Mechanisms of Elemene in Reversing Drug Resistance in Tumor Cells: A Review

    No full text
    Malignant tumors are life-threatening, and chemotherapy is one of the common treatment methods. However, there are often many factors that contribute to the failure of chemotherapy. The multidrug resistance of cancer cells during chemotherapy has been reported, since tumor cells’ sensitivity decreases over time. To overcome these problems, extensive studies have been conducted to reverse drug resistance in tumor cells. Elemene, an extract of the natural drug Curcuma wenyujin, has been found to reverse drug resistance and sensitize cancer cells to chemotherapy. Mechanisms by which elemene reverses tumor resistance include inhibiting the efflux of ATP binding cassette subfamily B member 1(ABCB1) transporter, reducing the transmission of exosomes, inducing apoptosis and autophagy, regulating the expression of key genes and proteins in various signaling pathways, blocking the cell cycle, inhibiting stemness, epithelial–mesenchymal transition, and so on. In this paper, the mechanisms of elemene’s reversal of drug resistance are comprehensively reviewed

    Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation

    No full text
    Mutations in GBA1 gene result in defective acid beta-glucosidase and the complex phenotype of Gaucher disease (GD) related to the accumulation of glucosylceramide-laden macrophages. The phenotype is highly variable even among patients harboring identical GBA1 mutations. We hypothesize that modifier gene(s) underlie phenotypic diversity in GD and performed a GWAS study in Ashkenazi Jewish patients with type 1 GD (GD1), homozygous for N370S mutation. Patients were assigned to mild, moderate, or severe disease categories using composite disease severity scoring systems. Whole-genome genotyping for >500,000 SNPs was performed to search for association signals using OQLS algorithm in 139 eligible patients. Several SNPs in linkage disequilibrium within the CLN8 gene locus were associated with the GD1 severity: SNP rs11986414 was associated with GD1 severity at P value 1.26 x 10-(6). Compared to mild disease, risk allele A at rs11986414 conferred an odds ratio of 3.72 for moderate/severe disease. Loss of function mutations in CLN8 causes neuronal ceroid-lipofuscinosis, but our results indicate that its increased expression may protect against severe GD1. In cultured skin fibroblasts, the relative expression of CLN8 was higher in mild GD compared to severely affected patients, in whom CLN8 risk alleles were overrepresented. In an in vitro cell model of GD, CLN8 expression was increased, which was further enhanced in the presence of bioactive substrate, glucosylsphingosine. Taken together, CLN8 is a candidate modifier gene for GD1 that may function as a protective sphingolipid sensor and/or in glycosphingolipid trafficking. Future studies should explore the role of CLN8 in pathophysiology of GD. Am. J. Hematol., 2012. (C) 2012 Wiley Periodicals, In

    Exploring the neural mechanisms underlying achalasia: A study of functional connectivity and regional brain activity

    No full text
    Background and Aims: The pathophysiology of achalasia, which involves central nuclei abnormalities, remains unknown. We investigated the resting-state functional MRI (rs-fMRI) features of patients with achalasia. Methods: We applied resting-state functional MRI (rs-fMRI) to investigate the brain features in patients with achalasia (n = 27), compared to healthy controls (n = 29). Focusing on three regions of interest (ROIs): the dorsal motor nucleus of the vagus (DMV), the nucleus ambiguus (NA), and the nucleus of the solitary tract (NTS), we analyzed variations in resting-state functional connectivity (rs-FC), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo). Results: Achalasia patients demonstrated stronger functional connectivity between the NA and the right precentral gyrus, left postcentral gyrus, and left insula. No significant changes were found in the DMV or NTS. The fMRI analysis showed higher rs-FC values for NA-DMV and NA-NTS connections in achalasia patients. Achalasia patients exhibited decreased fALFF values in the NA, DMV, and NTS regions, as well as increased ReHo values in the NA and DMV regions. A positive correlation was observed between fALFF values in all six ROIs and the width of the barium meal. The NTS fALFF value and NA ReHo value displayed a positive correlation with integrated relaxation pressure (IRP), while the ReHo value in the right precentral gyrus showed an inverse correlation with the height of the barium meal. Conclusions: Abnormal rs-FC and regional brain activity was found in patients with achalasia. Our study provides new insights into the pathophysiology of achalasia and highlights the potential of rs-fMRI in improving the diagnosis and treatment of this condition
    corecore