764 research outputs found

    Image-Based Analysis to Dissect Vertical Distribution and Horizontal Asymmetry of Conspecific Root System Interactions in Response to Planting Densities, Nutrients and Root Exudates in \u3cem\u3eArabidopsis thaliana\u3c/em\u3e

    Get PDF
    Intraspecific competition is an important plant interaction that has been studied extensively aboveground, but less so belowground, due to the difficulties in accessing the root system experimentally. Recent in vivo and in situ automatic imaging advances help understand root system architecture. In this study, a portable imaging platform and a scalable transplant technique were applied to test intraspecific competition in Arabidopsis thaliana. A single green fluorescent protein labeled plant was placed in the center of a grid of different planting densities of neighboring unlabeled plants or empty spaces, into which different treatments were made to the media. The root system of the central plant showed changes in the vertical distribution with increasing neighbor density, becoming more positively kurtotic, and developing an increasing negative skew with time. Horizontal root distribution was initially asymmetric, but became more evenly circular with time, and mean direction was not affected by the presence of adjacent empty spaces as initially hypothesized. To date, this is the first study to analyze the patterns of both vertical and horizontal growth in conspecific root systems. We present a portable imaging platform with simplicity, accessibility, and scalability, to capture the dynamic interactions of plant root systems

    Promoting Screening of Cognitive Impairment and Dementia in Vermont: A proposal for ongoing continuing medical education (CME)

    Get PDF
    In 2010, 11,382 Vermonters were diagnosed with dementia, many of whom had Alzheimer’s disease (AD). In 2025, an estimated 1 in 8 Vermonters aged 65 or older will have some form of dementia. Reported rates of overlooked dementia are between 35% and 90% or greater. Clinical presentations of dementia are often insidious and attributed to aging, making an accurate diagnosis difficult. Because of the challenges of dementia screening and diagnosis, primary care physicians (PCPs) are often unwilling to diagnose, discuss, and treat dementia due to AD.3 Although physicians are reluctant to screen for dementia, research in Vermont (VT) has shown a clear preference by patients and their families for earlier diagnosis. A timely diagnosis allows the patient and their family to plan for the future and start treatment earlier. Our research demonstrated PCPs may be misinformed about the usefulness and implications of dementia screening and diagnosis. In an effort to further educate physicians, we propose instituting a mandatory continuing medical education (CME) hour focused on screening for dementia. Our project surveyed 72 physicians to determine their attitudes towards screening, the assessment tools they use, and their attitudes towards a required CME hour.https://scholarworks.uvm.edu/comphp_gallery/1079/thumbnail.jp

    Ubiquitination and degradation of the hominoid- specific oncoprotein TBC1D3 Is mediated by CUL7 E3 ligase

    Get PDF
    Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover. Using a yeast two-hybrid screen, we identified CUL7, the scaffolding subunit of the CUL7 E3 ligase complex, as a TBC1D3-interacting protein. We show that CUL7 E3 ligase ubiquitinates TBC1D3 in response to serum stimulation. Moreover, TBC1D3 recruits F-box 8 (Fbw8), the substrate recognition domain of CUL7 E3 ligase, in pull-down experiments and in an in vitro assay. Importantly, alkaline phosphatase treatment of TBC1D3 suppresses its ability to recruit Fbw8, indicating that TBC1D3 phosphorylation is critical for its ubiquitination and degradation. We conclude that serum- and growth factor-stimulated TBC1D3 ubiquitination and degradation are regulated by its interaction with CUL7-Fbw8

    A Secreted BMP Antagonist, Cer1, Fine Tunes the Spatial Organization of the Ureteric Bud Tree during Mouse Kidney Development

    Get PDF
    The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching

    Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria

    Get PDF
    Mycobacteriophage Tweety is a newly isolated phage of Mycobacterium smegmatis. It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative attP site has been identified within a short intergenic region immediately upstream of int. This Tweety attP–int cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNALys gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions

    Effects of Marine Toxins on the Reproduction and Early Stages Development of Aquatic Organisms

    Get PDF
    Marine organisms, and specially phytoplankton species, are able to produce a diverse array of toxic compounds that are not yet fully understood in terms of their main targets and biological function. Toxins such as saxitoxins, tetrodotoxin, palytoxin, nodularin, okadaic acid, domoic acid, may be produced in large amounts by dinoflagellates, cyanobacteria, bacteria and diatoms and accumulate in vectors that transfer the toxin along food chains. These may affect top predator organisms, including human populations, leading in some cases to death. Nevertheless, these toxins may also affect the reproduction of aquatic organisms that may be in contact with the toxins, either by decreasing the amount or quality of gametes or by affecting embryonic development. Adults of some species may be insensitive to toxins but early stages are more prone to intoxication because they lack effective enzymatic systems to detoxify the toxins and are more exposed to the toxins due to a higher metabolic growth rate. In this paper we review the current knowledge on the effects of some of the most common marine toxins on the reproduction and development of early stages of some organisms

    In Vitro Efficacy of Myxococcus fulvus ANSM068 to Biotransform Aflatoxin B1

    Get PDF
    Aflatoxin B1 (AFB1) is commonly found in cereals and animal feeds and causes a significant threat to the food industry and animal production. Several microbial isolates with high AFB1 transformation ability have been identified in our previous studies. The aim of this research was to characterize one of those isolates, Myxococcus fulvus ANSM068, and to explore its biotransformation mechanism. The bacterial isolate of M. fulvus ANSM068, isolated from deer feces, was able to transform AFB1 by 80.7% in liquid VY/2 medium after incubation at 30 °C for 72 h. The supernatant of the bacterial culture was more effective in transforming AFB1 as compared to the cells alone and the cell extract. The transformation activity was significantly reduced and eradicated after the culture supernatant was treated with proteinase K, proteinase K plus SDS and heating. Culture conditions, including nitrogen source, initial pH and incubation temperature were evaluated for an optimal AFB1 transformation. Liquid chromatography mass spectrometry (LCMS) analyses showed that AFB1 was transformed to a structurally different compound. Infrared analysis (IR) indicated that the lactone ring on the AFB1 molecule was modified by the culture supernatant. Chromatographies on DEAE-Ion exchange and Sephadex-Molecular sieve and SDS-PAGE electrophoresis were used to determine active components from the culture supernatant, indicating that enzyme(s) were responsible for the AFB1 biotransformation. This is the first report on AFB1 transformation by a strain of myxobacteria through enzymatic reaction(s)
    corecore