25 research outputs found

    Robotic Minimally Invasive Tools for Restricted Access Confined Spaces

    Get PDF
    A study has been performed in the design and fabrication of deployable borehole robots into confined spaces. Three robot systems have been developed to perform a visual survey of a subterranean space where for any reason humans could not enter. A 12mm diameter snake arm was designed with a focus on the cable tensions and the failure modes for the components that make the snake arm. An iterative solver was developed to model the snake arm and algorithmically calculate the snake arms optimal length with consideration of the failure modes. A robot was developed to extend the range capabilities of borehole robots using reconfigurable borehole robots based around established actuation and manufacturing techniques. The expected distance and weight requirements of the robot are calculated alongside the forces the robot is required to generate in order to achieve them. The whegged design incorporated into the tracks is also analysed to measure the capability of the robot over rough terrain. Finally, the experiments to find the actual driving forces of the tracks are performed and used to calculate the actual range of the robot in comparison to the target range. The potential of reconfigurable mobile robots for deployment through boreholes is limited by the requirement for conventional gears, motors, and joints. This chapter explores the use of smart materials and innovative manufacturing techniques to form a novel concept of a self-folding robotic joint for a self-assembling robotic system. The design uses shape memory alloys fabricated in laminate structures with heaters to create folding structures

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    qFIBS: A Novel Automated Technique for Quantitative Evaluation of Fibrosis, Inflammation, Ballooning, and Steatosis in Patients With Nonalcoholic Steatohepatitis

    Get PDF
    Nonalcoholic steatohepatitis (NASH) is a common cause of chronic liver disease. Clinical trials use the NASH Clinical Research Network (CRN) system for semiquantitative histological assessment of disease severity. Interobserver variability may hamper histological assessment, and diagnostic consensus is not always achieved. We evaluate a novel second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) imaging-based tool to provide an automated quantitative assessment of histological features pertinent to NASH. Images were acquired by SHG/TPEF from 219 nonalcoholic fatty liver disease (NAFLD)/NASH liver biopsy samples from seven centers in Asia and Europe. These were used to develop and validate qFIBS, a computational algorithm that quantifies key histological features of NASH. qFIBS was developed based on in silico analysis of selected signature parameters for four cardinal histopathological features, that is, fibrosis (qFibrosis), inflammation (qInflammation), hepatocyte ballooning (qBallooning), and steatosis (qSteatosis), treating each as a continuous rather than categorical variable. Automated qFIBS analysis outputs showed strong correlation with each respective component of the NASH CRN scoring (P < 0.001) (qFibrosis [r = 0.776], qInflammation [r = 0.557], qBallooning [r = 0.533], and qSteatosis [r = 0.802]) and high area under the receiver operating characteristic curve (AUROC) values (qFibrosis [0.870-0.951; 95% confidence interval (CI), 0.787-1.000; P < 0.001], qInflammation [0.820-0.838; 95% CI, 0.726-0.933; P < 0.001 ), qBallooning [0.813-0.844; 95% CI, 0.708-0.957; P < 0.001], and qSteatosis [0.939-0.986; 95% CI, 0.867-1.000; P < 0.001]) and was able to distinguish differing grades/stages of histological disease. Performance of qFIBS was best when assessing degree of steatosis and fibrosis but performed less well when distinguishing severe inflammation and higher ballooning grades. Conclusion: qFIBS is an automated tool that accurately quantifies the critical components of NASH histological assessment. It offers a tool that could potentially aid reproducibility and standardization of liver biopsy assessments required for NASH therapeutic clinical trial

    qFIBS: An Automated Technique for Quantitative Evaluation of Fibrosis, Inflammation, Ballooning, and Steatosis in Patients With Nonalcoholic Steatohepatitis

    No full text
    [Background and Aims] Nonalcoholic steatohepatitis (NASH) is a common cause of chronic liver disease. Clinical trials use the NASH Clinical Research Network (CRN) system for semiquantitative histological assessment of disease severity. Interobserver variability may hamper histological assessment, and diagnostic consensus is not always achieved. We evaluate a second harmonic generation/two‐photon excitation fluorescence (SHG/TPEF) imaging‐based tool to provide an automated quantitative assessment of histological features pertinent to NASH.[Approach and Results] Images were acquired by SHG/TPEF from 219 nonalcoholic fatty liver disease (NAFLD)/NASH liver biopsy samples from seven centers in Asia and Europe. These were used to develop and validate qFIBS, a computational algorithm that quantifies key histological features of NASH. qFIBS was developed based on in silico analysis of selected signature parameters for four cardinal histopathological features, that is, fibrosis (qFibrosis), inflammation (qInflammation), hepatocyte ballooning (qBallooning), and steatosis (qSteatosis), treating each as a continuous rather than categorical variable. Automated qFIBS analysis outputs showed strong correlation with each respective component of the NASH CRN scoring (P < 0.001; qFibrosis [r = 0.776], qInflammation [r = 0.557], qBallooning [r = 0.533], and qSteatosis [r = 0.802]) and high area under the receiver operating characteristic curve values (qFibrosis [0.870‐0.951; 95% confidence interval {CI}, 0.787‐1.000; P < 0.001], qInflammation [0.820‐0.838; 95% CI, 0.726‐0.933; P < 0.001), qBallooning [0.813‐0.844; 95% CI, 0.708‐0.957; P < 0.001], and qSteatosis [0.939‐0.986; 95% CI, 0.867‐1.000; P < 0.001]) and was able to distinguish differing grades/stages of histological disease. Performance of qFIBS was best when assessing degree of steatosis and fibrosis, but performed less well when distinguishing severe inflammation and higher ballooning grades.[Conclusions] qFIBS is an automated tool that accurately quantifies the critical components of NASH histological assessment. It offers a tool that could potentially aid reproducibility and standardization of liver biopsy assessments required for NASH therapeutic clinical trials

    Mapping and Analysis of Chromatin State Dynamics in Nine Human Cell Types

    Get PDF
    Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.National Human Genome Research Institute (U.S.) (R01HG004037)National Human Genome Research Institute (U.S.) (RC1HG005334)National Science Foundation (U.S.). (Award 0644282)National Science Foundation (U.S.). (Award 0905968)Alfred P. Sloan Foundatio
    corecore