4,556 research outputs found

    A Cuticular Romance

    Get PDF

    Complement Receptor Type 1 (CR1, CD35) Is a Receptor for C1q

    Get PDF
    AbstractMolecular definition of the cellular receptor for the collagen domain of C1q has been elusive. We now report that C1q binds specifically to human CR1 (CD35), the leukocyte C3b/C4b receptor, and the receptor on erythrocytes for opsonized immune complexes. Biotinylated or radioiodinated C1q (*C1q) bound specifically to transfected K562 cells expressing cell surface CR1 and to immobilized recombinant soluble CR1 (rsCR1). *C1q binding to rsCR1 was completely inhibited by unlabeled C1q and the collagen domain of C1q and was partially inhibited by C3b dimers. Kinetic analysis in physiologic saline of the interaction of unlabeled C1q with immobilized rsCR1 using surface plasmon resonance yielded an apparent equilibrium dissociation constant (Keq2) of 3.9 nM. Thus, CR1 is a cellular C1q receptor that recognizes all three complement opsonins, namely, C1q, C3b, and C4b

    Cell-type-specific whole-brain direct inputs to the anterior and posterior piriform cortex

    Get PDF
    The piriform cortex (PC) is a key region in the brain that is involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimerā€™s disease and autism. The PC consists of anterior (APC) and posterior (PPC) parts, which are largely different both in their anatomy and functions. However, the monosynaptic input networks to specific neural populations within APC and PPC remain poorly understood. Here, we mapped the whole-brain monosynaptic inputs to the two major neural populations, the excitatory glutamatergic principal neurons and the inhibitory Ī³-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory areas (OLF), followed by the isocortex, hippocampal formation (HPF), cortical subplate (CTXsp), cerebral nuclei (CNU) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were either blank or sporadically labeled. However, APC and PPC also showed distinct features in their input distribution patterns. For both types of neurons, the APC was innervated more heavily by bilateral OLF and cortical areas compared to the PPC; whereas the input proportions from the HPF to the PPC were higher than to the APC. Overall, our results revealed that monosynaptic input networks to both excitatory and inhibitory neural populations of different PC subdivisions, may provide the structural architecture for revealing the diverse functions of the PC

    MHC class I chain-related protein A shedding in chronic HIV-1 infection is associated with profound NK cell dysfunction

    Get PDF
    Natural killer (NK) cells play a critical role in host defense against viral infections. However chronic HIV-1 infection is associated with an accumulation of dysfunctional NK cells, that poorly control viral replication. The underlying mechanisms for this NK cell mediated dysfunction are not understood. Certain tumors evade NK cell mediated detection by dampening NK cell activity through the downregulation of NKG2D, via the release of soluble NKG2D-ligands, resulting in a potent suppression of NK cell function. Here we show that chronic HIV-1 infection is associated with a specific defect in NKG2D-mediated NK cell activation, due to reduced expression and transcription of NKG2D. Reduced NKG2D expression was associated with elevated levels of the soluble form of the NKG2D-ligand, MICA, in patient sera, likely released by HIV+CD4+ T cells. Thus, like tumors, HIV-1 may indirectly suppress NK cell recognition of HIV-1-infected CD4+ T cells by enhancing NKG2D-ligand secretion into the serum resulting in a profound impairment of NK cell function

    Investigation of HNF-1B as a diagnostic biomarker for pancreatic ductal adenocarcinoma

    Get PDF
    Background: Diagnosing pancreatic ductal adenocarcinoma (PDAC) in the setting of metastasis with an unknown primary remains very challenging due to the lack of specific biomarkers. HNF-1B has been characterized as an important transcription factor for pancreatic development and was reported as a biomarker for clear cell subtype of PDAC. Methods: To investigate the diagnostic role of HNF-1B for PDAC, we used tissue microarray (TMA) and immunohistochemistry (IHC) to characterize HNF-1B expression in a large cohort of carcinomas, including 127 primary PDACs, 47 biliary adenocarcinomas, 17 metastatic PDACs, and 231 non-pancreaticobiliary carcinomas. Results: HNF-1B was expressed in 107 of 127 (84.3%) of PDACs, 13 of 15 (86.7%) of cholangiocarcinomas, 13 of 18 (72%) of ampullary carcinomas, and 13 of 14 (92.9%) of gallbladder adenocarcinomas. Notably, HNF-1B was expressed in 16 of 17 (94.1%) of metastatic PDACs. Among the non-pancreaticobiliary cancers, HNF-1B was expressed in ~ 77% clear cell carcinomas of the kidney and ovarian clear cell carcinomas. Gastroesophageal, lung, and prostate adenocarcinomas occasionally expressed HNF-1B in up to 37% cases. HNF-1B was completely negative in hepatocellular, colorectal, breast, and lung squamous cell carcinomas. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of HNF-1B for primary pancreaticobiliary carcinoma is 84, 68, 66, 85, and 75%, respectively. HNF-1B expression was not significantly associated with overall survival in patients with PDAC, but tumor size \u3e /=2 cm and high tumor grade were significantly associated with worse overall survival in multivariate analyses. Conclusions: HNF-1B may be used in surgical pathology to aid the diagnosis of metastatic pancreatic and biliary carcinoma with a panel of other markers to exclude lung, kidney, prostate, and Mullerian origins

    Effect of Pulsed or Continuous Delivery of Salt on Sensory Perception Over Short Time Intervals

    Get PDF
    Salt in the human diet is a major risk factor for hypertension and many countries have set targets to reduce salt consumption. Technological solutions are being sought to lower the salt content of processed foods without altering their taste. In this study, the approach was to deliver salt solutions in pulses of different concentrations to determine whether a pulsed delivery profile affected sensory perception of salt. Nine different salt profiles were delivered by a Dynataste device and a trained panel assessed their saltiness using timeā€“intensity and single-score sensory techniques. The profile duration (15 s) was designed to match eating conditions and the effects of intensity and duration of the pulses on sensory perception were investigated. Sensory results from the profiles delivered in either water or in a bouillon base were not statistically different. Maximum perceived salt intensities and the area under the timeā€“ intensity curves correlated well with the overall perceived saltiness intensity despite the stimulus being delivered as several pulses. The overall saltiness scores for profiles delivering the same overall amount of sodium were statistically not different from one another suggesting that, in this system, pulsed delivery did not enhance salt perception but the overall amount of salt delivered in each profile did affect sensory perception

    An AUC-based Permutation Variable Importance Measure for Random Forests

    Get PDF
    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html

    Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons

    Get PDF
    We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malateā€“aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling

    Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase

    Full text link
    We investigate the properties of strongly interacting bosons in two dimensions at zero temperature using mean-field theory, a variational Ansatz for the ground state wave function, and Monte Carlo methods. With on-site and short-range interactions a rich phase diagram is obtained. Apart from the homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density wave phases appear, that are stabilized by the finite-range interaction. Furthermore, our analysis demonstrates the existence of a supersolid phase, in which both long-range order (related to the charge-density wave) and off-diagonal long-range order coexist. We also obtain the critical exponents for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include
    • ā€¦
    corecore