1,549 research outputs found

    Trade Unions and Industrial Injury in Great Britain

    Get PDF
    Anecdotal evidence suggests that trade unions succeed in ameliorating workplace health and safety, but no attempt has been made to link specific workplace injury rates with a respective union presence. Relying on WERS98, this paper establishes a cross-sectional link between trade unions and occupational injury rates, revealing that unions gravitate to accident-prone workplaces and react by reducing injury rates within these types of employment units. However, the ability for unions to reduce injury rates does not appear to increase monotonically as they progress along a workplace instrumentality continuum from recognition alone to a pre-entry closed shop.Unions, industrial injury, occupational injury, health and safety

    3D-XY critical fluctuations of the thermal expansivity in detwinned YBa2Cu3O7-d single crystals near optimal doping

    Full text link
    The strong coupling of superconductivity to the orthorhombic distortion in YBa2Cu3O7-d makes possible an analysis of the superconducting fluctuations without the necessity of subtracting any background. The present high-resolution capacitance dilatometry data unambiguously demonstrate the existence of critical, instead of Gaussian, fluctuations over a wide temperature region (+/- 10 K) around Tc. The values of the amplitude ratio A+/A-=0.9-1.1 and the leading scaling exponent |alpha|<0.018, determined via a least-squares fit of the data, are consistent with the 3D-XY universality class. Small deviations from pure 3D-XY behavior are discussed.Comment: 11 pages including three figure

    On the edge of a new frontier: Is gerontological social work in the UK ready to meet twenty-first-century challenges?

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2013 The Authors.This article explores the readiness of gerontological social work in the UK for meeting the challenges of an ageing society by investigating the focus on work with older people in social work education and the scope of gerontological social work research. The discussion draws on findings from two exploratory studies: a survey of qualifying master's programmes in England and a survey of the content relating to older people over a six-year period in four leading UK social work journals. The evidence from master's programmes suggests widespread neglect of ageing in teaching content and practice learning. Social work journals present a more nuanced picture. Older people emerge within coverage of generic policy issues for adults, such as personalisation and safeguarding, and there is good evidence of the complexity of need in late life. However, there is little attention to effective social work interventions, with an increasingly diverse older population, or to the quality of gerontological social work education. The case is made for infusing content on older people throughout the social work curriculum, for extending practice learning opportunities in social work with older people and for increasing the volume and reporting of gerontological social work research.Brunel Institute for Ageing Studie

    Radiative acceleration and transient, radiation-induced electric fields

    Full text link
    The radiative acceleration of particles and the electrostatic potential fields that arise in low density plasmas hit by radiation produced by a transient, compact source are investigated. We calculate the dynamical evolution and asymptotic energy of the charged particles accelerated by the photons and the radiation-induced electric double layer in the full relativistic, Klein-Nishina regime. For fluxes in excess of 102710^{27} ergcm−2s−1{\rm erg} {\rm cm}^{-2} {\rm s}^{-1}, the radiative force on a diluted plasma (n\la 10^{11} cm−3^{-3}) is so strong that electrons are accelerated rapidly to relativistic speeds while ions lag behind owing to their larger inertia. The ions are later effectively accelerated by the strong radiation-induced double layer electric field up to Lorentz factors ≈100\approx 100, attainable in the case of negligible Compton drag. The asymptotic energies achieved by both ions and electrons are larger by a factor 2--4 with respect to what one could naively expect assuming that the electron-ion assembly is a rigidly coupled system. The regime we investigate may be relevant within the framework of giant flares from soft gamma-repeaters.Comment: 14 pages, 7 figures, ApJ, in press (tentatively scheduled for the v. 592, 2003 issue

    Microwave Electronics

    Get PDF
    Contains reports on three research projects.U.S Navy (Office of Naval Research) under Contract Nonr-1841(49)U.S. Air Force under Air Force Contract AF19(604)-5200Lincoln Laboratory, Purchase Order DDL-B22

    Microwave Electronics

    Get PDF
    Contains research objectives and reports on three research projects.Department of the ArmyDepartment of the NavyDepartment of the Air Force under Contract AF19(122)-458U. S. Navy (Office of Naval Research) under Contract Nonr-1841(49)Lincoln Laboratory, Purchase Order DDL-B22

    Force-Free Models of Magnetically Linked Star-Disk Systems

    Full text link
    Disk accretion onto a magnetized star occurs in a variety of astrophysical contexts, from young stars to X-ray pulsars. The magnetohydrodynamic interaction between the stellar field and the accreting matter can have a strong effect on the disk structure, the transfer of mass and angular momentum between the disk and the star, and the production of bipolar outflows, e.g., plasma jets. We study a key element of this interaction - the time evolution of the magnetic field configuration brought about by the relative rotation between the disk and the star - using simplified, largely semianalytic, models. We first discuss the rapid inflation and opening up of the magnetic field lines in the corona above the accretion disk, which is caused by the differential rotation twisting. Then we consider additional physical effects that tend to limit this expansion, such as the effect of plasma inertia and the possibility of reconnection in the disk's corona, the latter possibly leading to repeated cycles in the evolution. We also derive the condition for the existence of a steady state for a resistive disk and conclude that a steady state configuration is not realistically possible. Finally, we generalize our analysis of the opening of magnetic field lines by using a non-self-similar numerical model that applies to an arbitrarily rotating (e.g. keplerian) disk.Comment: 75 pages, 22 figures, 2 tables. Submitted to Astrophysical Journa

    The Mechanistic Basis of Myxococcus xanthus Rippling Behavior and Its Physiological Role during Predation

    Get PDF
    Myxococcus xanthus cells self-organize into periodic bands of traveling waves, termed ripples, during multicellular fruiting body development and predation on other bacteria. To investigate the mechanistic basis of rippling behavior and its physiological role during predation by this Gram-negative soil bacterium, we have used an approach that combines mathematical modeling with experimental observations. Specifically, we developed an agent-based model (ABM) to simulate rippling behavior that employs a new signaling mechanism to trigger cellular reversals. The ABM has demonstrated that three ingredients are sufficient to generate rippling behavior: (i) side-to-side signaling between two cells that causes one of the cells to reverse, (ii) a minimal refractory time period after each reversal during which cells cannot reverse again, and (iii) physical interactions that cause the cells to locally align. To explain why rippling behavior appears as a consequence of the presence of prey, we postulate that prey-associated macromolecules indirectly induce ripples by stimulating side-toside contact-mediated signaling. In parallel to the simulations, M. xanthus predatory rippling behavior was experimentally observed and analyzed using time-lapse microscopy. A formalized relationship between the wavelength, reversal time, and cell velocity has been predicted by the simulations and confirmed by the experimental data. Furthermore, the results suggest that the physiological role of rippling behavior during M. xanthus predation is to increase the rate of spreading over prey cells due to increased side-to-side contact-mediated signaling and to allow predatory cells to remain on the prey longer as a result of more periodic cell motility
    • …
    corecore