Disk accretion onto a magnetized star occurs in a variety of astrophysical
contexts, from young stars to X-ray pulsars. The magnetohydrodynamic
interaction between the stellar field and the accreting matter can have a
strong effect on the disk structure, the transfer of mass and angular momentum
between the disk and the star, and the production of bipolar outflows, e.g.,
plasma jets. We study a key element of this interaction - the time evolution of
the magnetic field configuration brought about by the relative rotation between
the disk and the star - using simplified, largely semianalytic, models. We
first discuss the rapid inflation and opening up of the magnetic field lines in
the corona above the accretion disk, which is caused by the differential
rotation twisting. Then we consider additional physical effects that tend to
limit this expansion, such as the effect of plasma inertia and the possibility
of reconnection in the disk's corona, the latter possibly leading to repeated
cycles in the evolution. We also derive the condition for the existence of a
steady state for a resistive disk and conclude that a steady state
configuration is not realistically possible. Finally, we generalize our
analysis of the opening of magnetic field lines by using a non-self-similar
numerical model that applies to an arbitrarily rotating (e.g. keplerian) disk.Comment: 75 pages, 22 figures, 2 tables. Submitted to Astrophysical Journa