249 research outputs found
Isotropic Conductivity of Two-Dimensional Three-Component Symmetric Composites
The effective dc-conductivity problem of isotropic, two-dimensional (2D),
three-component, symmetric, regular composites is considered. A simple cubic
equation with one free parameter for
is suggested whose solutions automatically have all the exactly known
properties of that function. Numerical calculations on four different
symmetric, isotropic, 2D, three-component, regular structures show a
non-universal behavior of with an
essential dependence on micro-structural details, in contrast with the
analogous two-component problem. The applicability of the cubic equation to
these structures is discussed. An extension of that equation to the description
of other types of 2D three-component structures is suggested, including the
case of random structures.
Pacs: 72.15.Eb, 72.80.Tm, 61.50.AhComment: 8 pages (two columns), 8 figures. J. Phys. A - submitte
Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli
Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens
On Solving the Coronal Heating Problem
This article assesses the current state of understanding of coronal heating,
outlines the key elements of a comprehensive strategy for solving the problem,
and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic
Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science?
The poultry red mite Dermanyssus gallinae is best known as a threat to the laying-hen industry; adversely affecting production and hen health and welfare throughout the globe, both directly and through its role as a disease vector. Nevertheless, D. gallinae is being increasingly implemented in dermatological complaints in non-avian hosts, suggesting that its significance may extend beyond poultry. The main objective of the current work was to review the potential of D. gallinae as a wider veterinary and medical threat. Results demonstrated that, as an avian mite, D. gallinae is unsurprisingly an occasional pest of pet birds. However, research also supports that these mites will feed from a range of other animals including: cats, dogs, rodents, rabbits, horses and man. We conclude that although reported cases of D. gallinae infesting mammals are relatively rare, when coupled with the reported genetic plasticity of this species and evidence of permanent infestations on non-avian hosts, potential for host-expansion may exist. The impact of, and mechanisms and risk factors for such expansion are discussed, and suggestions for further work made. Given the potential severity of any level of host-expansion in D. gallinae, we conclude that further research should be urgently conducted to confirm the full extent of the threat posed by D. gallinae to (non-avian) veterinary and medical sectors
Therapy Insight: Parenteral Estrogen treatment for Prostate Cancer—a new dawn for an old therapy
Oral estrogens were the treatment of choice for carcinoma of the prostate for over four decades, but were abandoned because of an excess of cardiovascular and thromboembolic toxicity. It is now recognized that most of this toxicity is related to the first pass portal circulation, which upregulates the hepatic metabolism of hormones, lipids and coagulation proteins. Most of this toxicity can be avoided by parenteral (intramuscular or transdermal) estrogen administration, which avoids hepatic enzyme induction. It also seems that a short-term but modest increase in cardiovascular morbidity (but not mortality) is compensated for by a long-term cardioprotective benefit, which accrues progressively as vascular remodeling develops over time. Parenteral estrogen therapy has the advantage of giving protection against the effects of andropause (similar to the female menopause), which are induced by conventional androgen suppression and include osteoporotic fracture, hot flashes, asthenia and cognitive dysfunction. In addition, parenteral estrogen therapy is significantly cheaper than contemporary endocrine therapy, with substantive economic implications for health providers
Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial
Background: The treatment results of external beam radiotherapy for intermediate and high risk prostate cancer patients are insufficient with five-year biochemical relapse rates of approximately 35%. Several randomized trials have shown that dose escalation to the entire prostate improves biochemical disease free survival. However, further dose escalation to the whole gland is limited due to an unacceptable high risk of acute and late toxicity. Moreover, local recurrences often originate at the location of the macroscopic tumor, so boosting the radiation dose at the macroscopic tumor within the prostate might increase local control. A reduction of distant metastases and improved survival can be expected by reducing local failure. The aim of this study is to investigate the benefit of an ablative microboost to the macroscopic tumor within the prostate in patients treated with external beam radiotherapy for prostate cancer.Methods/Design: The FLAME-trial (Focal Lesion Ablative Microboost in prostatE cancer) is a single blind randomized controlled phase III trial. We aim to include 566 patients (283 per treatment arm) with intermediate or high risk adenocarcinoma of the prostate who are scheduled for external beam radiotherapy using fiducial markers for position verification. With this number of patients, the expected increase in five-year freedom from biochemical failure rate of 10% can be detected with a power of 80%. Patients allocated to the standard arm receive a dose of 77 Gy in 35 fractions to the entire prostate and patients in the experimental arm receive 77 Gy to the entire prostate and an additional integrated microboost to the macroscopic tumor of 95 Gy in 35 fractions. The secondary outcome measures include treatment-related toxicity, quality of life and disease-specific survival. Furthermore, by localizing the recurrent tumors within the prostate during follow-up and correlating this with the delivered dose, we can obtain accurate dose-effect information for both the macroscopic tumor and subclinical disease in prostate cancer. The rationale, study design and the first 50 patients included are described.Biological, physical and clinical aspects of cancer treatment with ionising radiatio
- …