11 research outputs found

    Laser spectroscopic characterization of the nuclear-clock isomer 229m^{229m}Th

    No full text
    The isotope 229^{229}Th is the only nucleus known to possess an excited state 229m^{229m}Th in the energy range of a few electron volts, a transition energy typical for electrons in the valence shell of atoms, but about four orders of magnitude lower than common nuclear excitation energies. A number of applications of this unique nuclear system, which is accessible by optical methods, have been proposed. Most promising among them appears a highly precise nuclear clock that outperforms existing atomic timekeepers. Here we present the laser spectroscopic investigation of the hyperfine structure of 229m^{229m}Th2+^{2+}, yielding values of fundamental nuclear properties, namely the magnetic dipole and electric quadrupole moments as well as the nuclear charge radius. After the recent direct detection of this long-searched-for isomer, our results now provide detailed insight into its nuclear structure and present a method for its non-destructive optical detection.Comment: 18 page

    The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study

    No full text

    The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    Get PDF
    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. (C) 2011 Elsevier B.V. All rights reserved.Peer reviewe

    Eplerenone in patients with systolic heart failure and mild symptoms.

    No full text
    corecore