50 research outputs found

    Comparative Effectiveness of Adalimumab vs Tofacitinib in Patients With Rheumatoid Arthritis in Australia

    Get PDF
    Importance: There is a need for observational studies to supplement evidence from clinical trials, and the target trial emulation (TTE) framework can help avoid biases that can be introduced when treatments are compared crudely using observational data by applying design principles for randomized clinical trials. Adalimumab (ADA) and tofacitinib (TOF) were shown to be equivalent in patients with rheumatoid arthritis (RA) in a randomized clinical trial, but to our knowledge, these drugs have not been compared head-to-head using routinely collected clinical data and the TTE framework. Objective: To emulate a randomized clinical trial comparing ADA vs TOF in patients with RA who were new users of a biologic or targeted synthetic disease-modifying antirheumatic drug (b/tsDMARD). Design, Setting, and Participants: This comparative effectiveness study emulating a randomized clinical trial of ADA vs TOF included Australian adults aged 18 years or older with RA in the Optimising Patient Outcomes in Australian Rheumatology (OPAL) data set. Patients were included if they initiated ADA or TOF between October 1, 2015, and April 1, 2021; were new b/tsDMARD users; and had at least 1 component of the disease activity score in 28 joints using C-reactive protein (DAS28-CRP) recorded at baseline or during follow-up. Intervention: Treatment with either ADA (40 mg every 14 days) or TOF (10 mg daily). Main Outcomes and Measures: The main outcome was the estimated average treatment effect, defined as the difference in mean DAS28-CRP among patients receiving TOF compared with those receiving ADA at 3 and 9 months after initiating treatment. Missing DAS28-CRP data were multiply imputed. Stable balancing weights were used to account for nonrandomized treatment assignment. Results: A total of 842 patients were identified, including 569 treated with ADA (387 [68.0%] female; median age, 56 years [IQR, 47-66 years]) and 273 treated with TOF (201 [73.6%] female; median age, 59 years [IQR, 51-68 years]). After applying stable balancing weights, mean DAS28-CRP in the ADA group was 5.3 (95% CI, 5.2-5.4) at baseline, 2.6 (95% CI, 2.5-2.7) at 3 months, and 2.3 (95% CI, 2.2-2.4) at 9 months; in the TOF group, it was 5.3 (95% CI, 5.2-5.4) at baseline, 2.4 (95% CI, 2.2-2.5) at 3 months, and 2.3 (95% CI, 2.1-2.4) at 9 months. The estimated average treatment effect was -0.2 (95% CI, -0.4 to -0.03; P = .02) at 3 months and -0.03 (95% CI, -0.2 to 0.1; P = .60) at 9 months. Conclusions and Relevance: In this study, there was a modest but statistically significant reduction in DAS28-CRP at 3 months for patients receiving TOF compared with those receiving ADA and no difference between treatment groups at 9 months. Three months of treatment with either drug led to clinically relevant average reductions in mean DAS28-CRP, consistent with remission

    Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle

    Get PDF
    International audienceAbstractBackgroundWhite spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein–Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein–Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date.ResultsUsing imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region.ConclusionsOur findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics

    Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.

    Get PDF
    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV

    Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

    Get PDF
    published_or_final_versio

    Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    Get PDF
    published_or_final_versio

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio

    Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin
    corecore