58 research outputs found

    Production, Purification, and X-Ray Crystallography of the POTRA Domains of PsToc75

    Get PDF
    Plastids arose via endosymbiosis when a cyanobacterium was engulfed by a primitive eukaryote. The cyanobacterium was enslaved by the eukaryote, eventually giving rise to a new organelle, termed the plastid. The transition from a free-living cyanobacterium to a cell-dependent organelle demonstrates how the chloroplast ancestor underwent many changes in its physiology and biological processes. The majority of the DNA belonging to the cyanobacterium was scavenged by the nucleus of the host cell. This led to higher fidelity of genetic duplication, due to the proofreading abilities of the DNA polymerase of the host cell. This left the cell with the problem of how to get the now cytosolically transcribed proteins back into the proto-plastid. Eukaryotic photosynthetic cells use the Translocon(s) of the Outer/Inner envelope of the Chloroplast (TOC/TIC) to import proteins necessary for the survival of the plastid. Although much has been uncovered about the machinery necessary for protein import, the mechanism(s) used to accomplish this import remains unclear. Each translocon comprises a pore, through which precursor proteins are translocated along with accessory proteins that assist in translocation. Toc75 forms the pore in the outer envelope of chloroplasts. Toc75 is a member of the Outer Membrane Protein of 85-kilodalton/Two Partner Secretion (OMP85/TPS) superfamily, which all share an architecture composed of a central membrane channel and cytosolic POTRA (Polypeptide Transport Associated) domains. Structures of POTRA domains from other members of OMP85/TPS have been solved, but the structure of the POTRA domains of Toc75 have not. These POTRA domains are of particular interest because Toc75 interacts with thousands of proteins, far more than other members of the OMP85/TPS. In our project, we have recombinantly expressed the N-terminal POTRA domains of Toc75 insolubly. The POTRA domains were purified via IMAC and have been refolded. Their purity has been accessed by SDS-PAGE. Their secondary structure has been confirmed with circular dichroism, and the peptides are ready to be shipped to our collaborator Dr. Susan Buchanan. (Supported by National Science Foundation

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    Prophylactic evaluation of verubecestat on disease- and symptom-modifying effects in 5XFAD mice.

    Get PDF
    Introduction: Alzheimer\u27s disease (AD) is the most common form of dementia. Beta-secretase (BACE) inhibitors have been proposed as potential therapeutic interventions; however, initiating treatment once disease has significantly progressed has failed to effectively stop or treat disease. Whether BACE inhibition may have efficacy when administered prophylactically in the early stages of AD has been under-investigated. The present studies aimed to evaluate prophylactic treatment of the BACE inhibitor verubecestat in an AD mouse model using the National Institute on Aging (NIA) resources of the Model Organism Development for Late-Onset Alzheimer\u27s Disease (MODEL-AD) Preclinical Testing Core (PTC) Drug Screening Pipeline. Methods: 5XFAD mice were administered verubecestat ad libitum in chow from 3 to 6 months of age, prior to the onset of significant disease pathology. Following treatment (6 months of age), in vivo imaging was conducted with 18F-florbetapir (AV-45/Amyvid) (18F-AV45) and 18-FDG (fluorodeoxyglucose)-PET (positron emission tomography)/MRI (magnetic resonance imaging), brain and plasma amyloid beta (Aβ) were measured, and the clinical and behavioral characteristics of the mice were assessed and correlated with the pharmacokinetic data. Results: Prophylactic verubecestat treatment resulted in dose- and region-dependent attenuations of 18F-AV45 uptake in male and female 5XFAD mice. Plasma Aβ40 and Aβ42 were also dose-dependently attenuated with treatment. Across the dose range evaluated, side effects including coat color changes and motor alterations were reported, in the absence of cognitive improvement or changes in 18F-FDG uptake. Discussion: Prophylactic treatment with verubecestat resulted in attenuated amyloid plaque deposition when treatment was initiated prior to significant pathology in 5XFAD mice. At the same dose range effective at attenuating Aβ levels, verubecestat produced side effects in the absence of improvements in cognitive function. Taken together these data demonstrate the rigorous translational approaches of the MODEL-AD PTC for interrogating potential therapeutics and provide insight into the limitations of verubecestat as a prophylactic intervention for early-stage AD

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    Acute retroviral syndrome and high baseline viral load are predictors of rapid HIV progression among untreated Argentinean seroconverters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of primary HIV infection (PHI) has important clinical and public health implications. HAART initiation at this stage remains controversial.</p> <p>Methods</p> <p>Our objective was to identify predictors of disease progression among Argentinean seroconverters during the first year of infection, within a multicentre registry of PHI-patients diagnosed between 1997 and 2008. Cox regression was used to analyze predictors of progression (LT-CD4 < 350 cells/mm<sup>3</sup>, B, C events or death) at 12 months among untreated patients.</p> <p>Results</p> <p>Among 134 subjects, 74% presented with acute retroviral syndrome (ARS). Seven opportunistic infections (one death), nine B events, and 10 non-AIDS defining serious events were observed. Among the 92 untreated patients, 24 (26%) progressed at 12 months versus three (7%) in the treated group (p = 0.01). The 12-month progression rate among untreated patients with ARS was 34% (95% CI 22.5-46.3) versus 13% (95% CI 1.1-24.7) in asymptomatic patients (p = 0.04). In univariate analysis, ARS, baseline LT-CD4 < 350 cells/mm<sup>3</sup>, and baseline and six-month viral load (VL) > 100,000 copies/mL were associated with progression. In multivariate analysis, only ARS and baseline VL > 100,000 copies/mL remained independently associated; HR: 8.44 (95% CI 0.97-73.42) and 9.44 (95% CI 1.38-64.68), respectively.</p> <p>Conclusions</p> <p>In Argentina, PHI is associated with significant morbidity. HAART should be considered in PHI patients with ARS and high baseline VL to prevent disease progression.</p

    Prostaglandin E2 Signals Through PTGER2 to Regulate Sclerostin Expression

    Get PDF
    The Wnt signaling pathway is a robust regulator of skeletal homeostasis. Gain-of-function mutations promote high bone mass, whereas loss of Lrp5 or Lrp6 co-receptors decrease bone mass. Similarly, mutations in antagonists of Wnt signaling influence skeletal integrity, in an inverse relation to Lrp receptor mutations. Loss of the Wnt antagonist Sclerostin (Sost) produces the generalized skeletal hyperostotic condition of sclerosteosis, which is characterized by increased bone mass and density due to hyperactive osteoblast function. Here we demonstrate that prostaglandin E2 (PGE2), a paracrine factor with pleiotropic effects on osteoblasts and osteoclasts, decreases Sclerostin expression in osteoblastic UMR106.01 cells. Decreased Sost expression correlates with increased expression of Wnt/TCF target genes Axin2 and Tcf3. We also show that the suppressive effect of PGE2 is mediated through a cyclic AMP/PKA pathway. Furthermore, selective agonists for the PGE2 receptor EP2 mimic the effect of PGE2 upon Sost, and siRNA reduction in Ptger2 prevents PGE2-induced Sost repression. These results indicate a functional relationship between prostaglandins and the Wnt/β-catenin signaling pathway in bone

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer’s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer’s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal
    corecore