54 research outputs found

    A Pooled Data Analysis from Three Research Labs

    Get PDF
    Paired associative stimulation (PAS) is a widely used transcranial magnetic stimulation (TMS) paradigm to non-invasively induce synaptic plasticity in the human brain in vivo. Altered PAS-induced plasticity has been demonstrated for several diseases. However, researchers are faced with a high inter- and intra- subject variability of the PAS response. Here, we pooled original data from nine PAS studies from three centers and analyzed the combined dataset of 190 healthy subjects with regard to age dependency, the role of stimulation parameters and the effect of different statistical methods. We observed no main effect of the PAS intervention over all studies (F(2;362) = 0.44; p = 0.644). The rate of subjects showing the expected increase of motor evoked potential (MEP) amplitudes was 53%. The PAS effect differed significantly between studies as shown by a significant interaction effect (F(16;362) = 1.77; p = 0.034) but post-hoc testing did not reveal significant effects after correction for multiple tests. There was a trend toward increased variability of the PAS effect in older subjects. Acquisition parameters differed across studies but without systematically influencing changes in MEP-size. The use of post/baseline quotients systematically indicated stronger PAS effects than post/baseline difference or the logarithm of the post/baseline quotient. The non-significant PAS effects across studies and a wide range of responder rates between studies indicate a high variability of this method. We were thus not able to replicate findings from a previous meta-analysis showing robust effects of PAS. No pattern emerged regarding acquisition parameters that at this point could guide future studies to reduce variability and help increase response rate. For future studies, we propose to report the responder rate and recommend the use of the logarithmized post/baseline quotient for further analyses to better address the possibility that results are driven by few extreme cases

    The Bose-Einstein Condensate and Cold Atom Laboratory

    Get PDF
    © 2020, The Author(s). Microgravity eases several constraints limiting experiments with ultracold and condensed atoms on ground. It enables extended times of flight without suspension and eliminates the gravitational sag for trapped atoms. These advantages motivated numerous initiatives to adapt and operate experimental setups on microgravity platforms. We describe the design of the payload, motivations for design choices, and capabilities of the Bose-Einstein Condensate and Cold Atom Laboratory (BECCAL), a NASA-DLR collaboration. BECCAL builds on the heritage of previous devices operated in microgravity, features rubidium and potassium, multiple options for magnetic and optical trapping, different methods for coherent manipulation, and will offer new perspectives for experiments on quantum optics, atom optics, and atom interferometry in the unique microgravity environment on board the International Space Station

    Perinatal and 2-year neurodevelopmental outcome in late preterm fetal compromise: the TRUFFLE 2 randomised trial protocol

    Get PDF
    Introduction: Following the detection of fetal growth restriction, there is no consensus about the criteria that should trigger delivery in the late preterm period. The consequences of inappropriate early or late delivery are potentially important yet practice varies widely around the world, with abnormal findings from fetal heart rate monitoring invariably leading to delivery. Indices derived from fetal cerebral Doppler examination may guide such decisions although there are few studies in this area. We propose a randomised, controlled trial to establish the optimum method of timing delivery between 32 weeks and 36 weeks 6 days of gestation. We hypothesise that delivery on evidence of cerebral blood flow redistribution reduces a composite of perinatal poor outcome, death and short-term hypoxia-related morbidity, with no worsening of neurodevelopmental outcome at 2 years. Methods and analysis: Women with non-anomalous singleton pregnancies 32+0 to 36+6 weeks of gestation in whom the estimated fetal weight or abdominal circumference is <10th percentile or has decreased by 50 percentiles since 18-32 weeks will be included for observational data collection. Participants will be randomised if cerebral blood flow redistribution is identified, based on umbilical to middle cerebral artery pulsatility index ratio values. Computerised cardiotocography (cCTG) must show normal fetal heart rate short term variation (≥4.5 msec) and absence of decelerations at randomisation. Randomisation will be 1:1 to immediate delivery or delayed delivery (based on cCTG abnormalities or other worsening fetal condition). The primary outcome is poor condition at birth and/or fetal or neonatal death and/or major neonatal morbidity, the secondary non-inferiority outcome is 2-year infant general health and neurodevelopmental outcome based on the Parent Report of Children's Abilities-Revised questionnaire. Ethics and dissemination: The Study Coordination Centre has obtained approval from London-Riverside Research Ethics Committee (REC) and Health Regulatory Authority (HRA). Publication will be in line with NIHR Open Access policy. Trial registration number: Main sponsor: Imperial College London, Reference: 19QC5491. Funders: NIHR HTA, Reference: 127 976. Study coordination centre: Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS with Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University. IRAS Project ID: 266 400. REC reference: 20/LO/0031. ISRCTN registry: 76 016 200

    The Bose-Einstein Condensate and Cold Atom Laboratory

    Get PDF
    Microgravity eases several constraints limiting experiments with ultracold andcondensed atoms on ground. It enables extended times of flight withoutsuspension and eliminates the gravitational sag for trapped atoms. Theseadvantages motivated numerous initiatives to adapt and operate experimentalsetups on microgravity platforms. We describe the design of the payload,motivations for design choices, and capabilities of the Bose-Einstein Condensateand Cold Atom Laboratory (BECCAL), a NASA-DLR collaboration. BECCALbuilds on the heritage of previous devices operated in microgravity, featuresrubidium and potassium, multiple options for magnetic and optical trapping,different methods for coherent manipulation, and will offer new perspectives forexperiments on quantum optics, atom optics, and atom interferometry in theunique microgravity environment on board the International Space Station

    Einstein auf dem Prüfstand - Neue Präzisionstests bestätigen erneut die Allgemeine Relativitätstheorie

    No full text
    Immer bessere Messverfahren ermöglichen es, die Allgemeine Relativitätstheorie immer genaueren Tests zu unterziehen: Präzisionsinstrumente kommen für praktische Messungen zum Einsatz, die nur im Rahmen einer gesicherten Theorie korrekt und konsis­tent interpretierbar sind. Daher gehen präzisere praktische Anwendungen oft mit besseren Grund­lagentests Hand in Hand. Dieser Artikel beleuchtet verbesserte Tests der Grundlagen wie auch der Vorhersagen der Allgemeinen Relativitätstheorie. Hochgenaue Messungen von Ort, Zeit und Gravita­tion finden in Geodäsie, Metrologie, Positionierungssystemen wie Galileo und in der Astronomie statt. Zum Einsatz kommen dabei etwa Gravimeter, Gradio­meter, Uhren, Laserinterferometer, Lunar Laser Ranging oder Very Long Baseline Interferometry. Diese präzisen Messverfahren setzen nicht nur auf ausgefeilte Technologien, sondern basieren auf den Grundprinzipien der Speziellen und Allgemeinen Relativitätstheorie (SRT, ART) sowie der Quantenmechanik. Die Gültigkeit dieser Theorien bildet die Basis für unser Verständnis der physikalischen Welt. Eine winzige Änderung dieser fundamentalen Gesetzmäßigkeiten würde die Physik dramatisch beeinflussen und sämtliche Messverfahren und Definitionen, einschließlich des neuen Internationalen Einheitensystems (SI), infrage stellen. Daher ist es von größter Bedeutung, dass Teilchen, Uhren, Lichtstrahlen und andere Objekte sich im Gravitationsfeld genau so verhalten, wie es die SRT, ART und die Quantenmechanik vorhersagen. Diese Notwendigkeit treibt uns dazu an, die Gesetze dieser Theorien immer wieder aufs Neue zu überprüfen. In letzter Zeit sind einige bemerkenswerte Fortschritte bei Tests der ART gelungen, um die es in diesem Artikel gehen soll (siehe auch [1]). Diese Fortschritte basieren auf immer präziseren Instrumenten, neuen logistischen Möglichkeiten, aber auch auf der Nutzung der Weltraumumgebung. (...
    • …
    corecore