1,854 research outputs found
Are Proxima and Alpha Centauri Gravitationally Bound?
Using the most recent kinematic and radial velocity data in the literature,
we calculate the binding energy of Proxima Centauri relative to the center of
mass of the Alpha Centauri system. When we adopt the centroids of the observed
data, we find that the three stars constitute a bound system, albeit with a
semi-major axis that is on order the same size as Alpha Centauri AB's Hill
radius in the galactic potential. We carry out a Monte Carlo simulation under
the assumption that the errors in the observed quantities are uncorrelated. In
this simulation, 44% of the trial systems are bound, and systems on the 1-3
sigma tail of the radial velocity distribution can have Proxima currently
located near the apastron position of its orbit. Our analysis shows that a
further, very significant improvement in the characterization of the system can
be gained by obtaining a more accurate measurement of the radial velocity of
Proxima Centauri.Comment: 10 pages total, 4 pages of text, 1 page of references, 3 figures, and
2 tables This article will be published in The Astronomical Journa
Habitable Planet Formation in Binary-Planetary Systems
Recent radial velocity observations have indicated that Jovian-type planets
can exist in moderately close binary star systems. Numerical simulations of the
dynamical stability of terrestrial-class planets in such environments have
shown that, in addition to their giant planets, these systems can also harbor
Earth-like objects. In this paper, we study the late stage of terrestrial
planet formation in such binary-planetary systems, and present the results of
the simulations of the formation of Earth-like bodies in their habitable zones.
We consider a circumprimary disk of Moon- to Mars-sized objects and numerically
integrate the orbits of these bodies at the presence of the Jovian-type planet
of the system and for different values of the mass, semimajor axis, and orbital
eccentricity of the secondary star. Results indicate that, Earth-like objects,
with substantial amounts of water, can form in the habitable zone of the
primary star. Simulations also indicate that, by transferring angular momentum
from the secondary star to protoplanetary objects, the giant planet of the
system plays a key role in the radial mixing of these bodies and the water
contents of the final terrestrial planets. We will discuss the results of our
simulation and show that the formation of habitable planets in binary-planetary
systems is more probable in binaries with moderate to large perihelia.Comment: 27 pages, 11 figures, submitted for publicatio
Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System
It has been suggested that the long-lived residual radial velocity variations
observed in the precision radial velocity measurements of the primary of Gamma
Cephei (HR8974, HD222404, HIP116727) are likely due to a Jupiter-like planet
around this star (Hatzes et al, 2003). In this paper, the orbital dynamics of
this plant is studied and also the possibility of the existence of a
hypothetical Earth-like planet in the habitable zone of its central star is
discussed. Simulations, which have been carried out for different values of the
eccentricity and semimajor axis of the binary, as well as the orbital
inclination of its Jupiter-like planet, expand on previous studies of this
system and indicate that, for the values of the binary eccentricity smaller
than 0.5, and for all values of the orbital inclination of the Jupiter-like
planet ranging from 0 to 40 degrees, the orbit of this planet is stable. For
larger values of the binary eccentricity, the system becomes gradually
unstable. Integrations also indicate that, within this range of orbital
parameters, a hypothetical Earth-like planet can have a long-term stable orbit
only at distances of 0.3 to 0.8 AU from the primary star. The habitable zone of
the primary, at a range of approximately 3.1 to 3.8 AU, is, however, unstable.Comment: 25 pages, 7 figures, 3 tables, submitted for publicatio
Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65
Results on the obliquity of exoplanet host stars -- the angle between the
stellar spin axis and the planetary orbital axis -- provide important
diagnostic information for theories describing planetary formation. Here we
present the first application of asteroseismology to the problem of stellar
obliquity determination in systems with transiting planets and Sun-like host
stars. We consider two systems observed by the NASA Kepler Mission which have
multiple transiting small (super-Earth sized) planets: the previously reported
Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper.
Both stars show rich spectra of solar-like oscillations. From the asteroseismic
analysis we find that each host has its rotation axis nearly perpendicular to
the line of sight with the sines of the angles constrained at the 1-sigma level
to lie above 0.97 and 0.91, respectively. We use statistical arguments to show
that coplanar orbits are favoured in both systems, and that the orientations of
the planetary orbits and the stellar rotation axis are correlated.Comment: Accepted for publication in ApJ; 46 pages, 11 figure
Search for Small Trans-Neptunian Objects by the TAOS Project
The Taiwan-America Occultation Survey (TAOS) aims to determine the number of
small icy bodies in the outer reach of the Solar System by means of stellar
occultation. An array of 4 robotic small (D=0.5 m), wide-field (f/1.9)
telescopes have been installed at Lulin Observatory in Taiwan to simultaneously
monitor some thousand of stars for such rare occultation events. Because a
typical occultation event by a TNO a few km across will last for only a
fraction of a second, fast photometry is necessary. A special CCD readout
scheme has been devised to allow for stellar photometry taken a few times per
second. Effective analysis pipelines have been developed to process stellar
light curves and to correlate any possible flux changes among all telescopes. A
few billion photometric measurements have been collected since the routine
survey began in early 2005. Our preliminary result of a very low detection rate
suggests a deficit of small TNOs down to a few km size, consistent with the
extrapolation of some recent studies of larger (30--100 km) TNOs.Comment: 4 pages, 3 figures, IAU Symposium 23
A High Eccentricity Component in the Double Planet System Around HD 163607 and a Planet Around HD 164509
We report the detection of three new exoplanets from Keck Observatory. HD
163607 is a metal-rich G5IV star with two planets. The inner planet has an
observed orbital period of 75.29 0.02 days, a semi-amplitude of 51.1
1.4 \ms, an eccentricity of 0.73 0.02 and a derived minimum mass of
\msini = 0.77 0.02 \mjup. This is the largest eccentricity of any known
planet in a multi-planet system. The argument of periastron passage is 78.7
2.0; consequently, the planet's closest approach to its parent
star is very near the line of sight, leading to a relatively high transit
probability of 8%. The outer planet has an orbital period of 3.60 0.02
years, an orbital eccentricity of 0.12 0.06 and a semi-amplitude of 40.4
1.3 \ms. The minimum mass is \msini = 2.29 0.16 \mjup. HD 164509 is
a metal-rich G5V star with a planet in an orbital period of 282.4 3.8
days and an eccentricity of 0.26 0.14. The semi-amplitude of 14.2
2.7 \ms\ implies a minimum mass of 0.48 0.09 \mjup. The radial velocities
of HD 164509 also exhibit a residual linear trend of -5.1 0.7 \ms\ per
year, indicating the presence of an additional longer period companion in the
system. Photometric observations demonstrate that HD 163607 and HD 164509 are
constant in brightness to sub-millimag levels on their radial velocity periods.
This provides strong support for planetary reflex motion as the cause of the
radial velocity variations.Comment: 10 pages, 8 figures, accepted to Ap
Kepler KOI-13.01 - Detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter
KOI-13 was presented by the Kepler team as a candidate for having a giant
planet - KOI-13.01, with orbital period of 1.7 d and transit depth of ~0.8%. We
have analyzed the Kepler Q2 data of KOI-13, which was publicly available at the
time of the submission of this paper, and derived the amplitudes of the
beaming, ellipsoidal and reflection modulations: 8.6 +/- 1.1, 66.8 +/- 1.6 and
72.0 +/- 1.5 ppm (parts per million), respectively. After the paper was
submitted, Q3 data were released, so we repeated the analysis with the newly
available light curve. The results of the two quarters were quite similar. From
the amplitude of the beaming modulation we derived a mass of 10 +/- 2 M_Jup for
the secondary, suggesting that KOI-13.01 was a massive planet, with one of the
largest known radii. We also found in the data a periodicity of unknown origin
with a period of 1.0595 d and a peak-to-peak modulation of ~60 ppm. The light
curve of Q3 revealed a few more small-amplitude periodicities with similar
frequencies. It seemed as if the secondary occultation of KOI-13 was slightly
deeper than the reflection peak-to-peak modulation by 16.8 +/- 4.5 ppm. If
real, this small difference was a measure of the thermal emission from the
night side of KOI-13.01. We estimated the effective temperature to be 2600 +/-
150 K, using a simplistic black-body emissivity approximation. We then derived
the planetary geometrical and Bond albedos as a function of the day-side
temperature. Our analysis suggested that the Bond albedo of KOI-13.01 might be
substantially larger than the geometrical albedo.Comment: 15 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
- …