1,854 research outputs found

    Are Proxima and Alpha Centauri Gravitationally Bound?

    Get PDF
    Using the most recent kinematic and radial velocity data in the literature, we calculate the binding energy of Proxima Centauri relative to the center of mass of the Alpha Centauri system. When we adopt the centroids of the observed data, we find that the three stars constitute a bound system, albeit with a semi-major axis that is on order the same size as Alpha Centauri AB's Hill radius in the galactic potential. We carry out a Monte Carlo simulation under the assumption that the errors in the observed quantities are uncorrelated. In this simulation, 44% of the trial systems are bound, and systems on the 1-3 sigma tail of the radial velocity distribution can have Proxima currently located near the apastron position of its orbit. Our analysis shows that a further, very significant improvement in the characterization of the system can be gained by obtaining a more accurate measurement of the radial velocity of Proxima Centauri.Comment: 10 pages total, 4 pages of text, 1 page of references, 3 figures, and 2 tables This article will be published in The Astronomical Journa

    Habitable Planet Formation in Binary-Planetary Systems

    Get PDF
    Recent radial velocity observations have indicated that Jovian-type planets can exist in moderately close binary star systems. Numerical simulations of the dynamical stability of terrestrial-class planets in such environments have shown that, in addition to their giant planets, these systems can also harbor Earth-like objects. In this paper, we study the late stage of terrestrial planet formation in such binary-planetary systems, and present the results of the simulations of the formation of Earth-like bodies in their habitable zones. We consider a circumprimary disk of Moon- to Mars-sized objects and numerically integrate the orbits of these bodies at the presence of the Jovian-type planet of the system and for different values of the mass, semimajor axis, and orbital eccentricity of the secondary star. Results indicate that, Earth-like objects, with substantial amounts of water, can form in the habitable zone of the primary star. Simulations also indicate that, by transferring angular momentum from the secondary star to protoplanetary objects, the giant planet of the system plays a key role in the radial mixing of these bodies and the water contents of the final terrestrial planets. We will discuss the results of our simulation and show that the formation of habitable planets in binary-planetary systems is more probable in binaries with moderate to large perihelia.Comment: 27 pages, 11 figures, submitted for publicatio

    Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System

    Full text link
    It has been suggested that the long-lived residual radial velocity variations observed in the precision radial velocity measurements of the primary of Gamma Cephei (HR8974, HD222404, HIP116727) are likely due to a Jupiter-like planet around this star (Hatzes et al, 2003). In this paper, the orbital dynamics of this plant is studied and also the possibility of the existence of a hypothetical Earth-like planet in the habitable zone of its central star is discussed. Simulations, which have been carried out for different values of the eccentricity and semimajor axis of the binary, as well as the orbital inclination of its Jupiter-like planet, expand on previous studies of this system and indicate that, for the values of the binary eccentricity smaller than 0.5, and for all values of the orbital inclination of the Jupiter-like planet ranging from 0 to 40 degrees, the orbit of this planet is stable. For larger values of the binary eccentricity, the system becomes gradually unstable. Integrations also indicate that, within this range of orbital parameters, a hypothetical Earth-like planet can have a long-term stable orbit only at distances of 0.3 to 0.8 AU from the primary star. The habitable zone of the primary, at a range of approximately 3.1 to 3.8 AU, is, however, unstable.Comment: 25 pages, 7 figures, 3 tables, submitted for publicatio

    Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65

    Get PDF
    Results on the obliquity of exoplanet host stars -- the angle between the stellar spin axis and the planetary orbital axis -- provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler Mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1-sigma level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favoured in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.Comment: Accepted for publication in ApJ; 46 pages, 11 figure

    Search for Small Trans-Neptunian Objects by the TAOS Project

    Get PDF
    The Taiwan-America Occultation Survey (TAOS) aims to determine the number of small icy bodies in the outer reach of the Solar System by means of stellar occultation. An array of 4 robotic small (D=0.5 m), wide-field (f/1.9) telescopes have been installed at Lulin Observatory in Taiwan to simultaneously monitor some thousand of stars for such rare occultation events. Because a typical occultation event by a TNO a few km across will last for only a fraction of a second, fast photometry is necessary. A special CCD readout scheme has been devised to allow for stellar photometry taken a few times per second. Effective analysis pipelines have been developed to process stellar light curves and to correlate any possible flux changes among all telescopes. A few billion photometric measurements have been collected since the routine survey began in early 2005. Our preliminary result of a very low detection rate suggests a deficit of small TNOs down to a few km size, consistent with the extrapolation of some recent studies of larger (30--100 km) TNOs.Comment: 4 pages, 3 figures, IAU Symposium 23

    A High Eccentricity Component in the Double Planet System Around HD 163607 and a Planet Around HD 164509

    Get PDF
    We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 ±\pm 0.02 days, a semi-amplitude of 51.1 ±\pm 1.4 \ms, an eccentricity of 0.73 ±\pm 0.02 and a derived minimum mass of \msini = 0.77 ±\pm 0.02 \mjup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 ±\pm 2.0^{\circ}; consequently, the planet's closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 ±\pm 0.02 years, an orbital eccentricity of 0.12 ±\pm 0.06 and a semi-amplitude of 40.4 ±\pm 1.3 \ms. The minimum mass is \msini = 2.29 ±\pm 0.16 \mjup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 ±\pm 3.8 days and an eccentricity of 0.26 ±\pm 0.14. The semi-amplitude of 14.2 ±\pm 2.7 \ms\ implies a minimum mass of 0.48 ±\pm 0.09 \mjup. The radial velocities of HD 164509 also exhibit a residual linear trend of -5.1 ±\pm 0.7 \ms\ per year, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to sub-millimag levels on their radial velocity periods. This provides strong support for planetary reflex motion as the cause of the radial velocity variations.Comment: 10 pages, 8 figures, accepted to Ap

    Kepler KOI-13.01 - Detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter

    Full text link
    KOI-13 was presented by the Kepler team as a candidate for having a giant planet - KOI-13.01, with orbital period of 1.7 d and transit depth of ~0.8%. We have analyzed the Kepler Q2 data of KOI-13, which was publicly available at the time of the submission of this paper, and derived the amplitudes of the beaming, ellipsoidal and reflection modulations: 8.6 +/- 1.1, 66.8 +/- 1.6 and 72.0 +/- 1.5 ppm (parts per million), respectively. After the paper was submitted, Q3 data were released, so we repeated the analysis with the newly available light curve. The results of the two quarters were quite similar. From the amplitude of the beaming modulation we derived a mass of 10 +/- 2 M_Jup for the secondary, suggesting that KOI-13.01 was a massive planet, with one of the largest known radii. We also found in the data a periodicity of unknown origin with a period of 1.0595 d and a peak-to-peak modulation of ~60 ppm. The light curve of Q3 revealed a few more small-amplitude periodicities with similar frequencies. It seemed as if the secondary occultation of KOI-13 was slightly deeper than the reflection peak-to-peak modulation by 16.8 +/- 4.5 ppm. If real, this small difference was a measure of the thermal emission from the night side of KOI-13.01. We estimated the effective temperature to be 2600 +/- 150 K, using a simplistic black-body emissivity approximation. We then derived the planetary geometrical and Bond albedos as a function of the day-side temperature. Our analysis suggested that the Bond albedo of KOI-13.01 might be substantially larger than the geometrical albedo.Comment: 15 pages, 8 figures, accepted for publication in Astronomy and Astrophysic
    corecore