6 research outputs found
Elastic properties of fullerites and diamond-like phases
Diamond‐like structures, that include sp2 and sp3 hybridized carbon atoms, are of considerable interest nowadays. In the present work, various carbon auxetic structures are studied by the combination of molecular dynamics (MD) and analytical approach. Two fullerites based on the fullerene C60 and fullerene‐like molecule C48 are investigated as well as diamond‐like structures based on other fullerene‐like molecules (called fulleranes), carbon nanotubes (called tubulanes) and graphene sheets. MD is used to find the equilibrium states of the structures and calculate compliance and stiffness coefficients for stable configurations. Analytical methods are used to calculate the engineering elastic coefficients (Young's modulus, Poisson's ratio, shear modulus and bulk modulus), and to study their transformation under rotation of the coordinate system. All the considered structures are partial auxetics with the negative value of Poisson's ratio for properly chosen tensile directions. It is shown that some of these structures, in a particular tension direction, have a very high Young's modulus, that is, 1852 GPa for tubulane TA6
ELASTIC DAMPER BASED ON THE CARBON NANOTUBE BUNDLE
Mechanical response of the carbon nanotube bundle to uniaxial and biaxial lateral compression followed by unloading is modeled under plane strain conditions. The chain model with a reduced number of degrees of freedom is employed with high efficiency. During loading, two critical values of strain are detected. Firstly, period doubling is observed as a result of the second order phase transition, and at higher compressive strain, the first order phase transition takes place when carbon nanotubes start to collapse. The loading-unloading stress-strain curves exhibit a hysteresis loop and, upon unloading, the structure returns to its initial form with no residual strain. This behavior of the nanotube bundle can be employed for the design of an elastic damper