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ORIGINAL PAPER
Elastic Properties of Fullerites and Diamond-Like Phases
Leysan Kh. Rysaeva, Julia A. Baimova,* Dmitry S. Lisovenko, Valentin A. Gorodtsov,
and Sergey V. Dmitriev
Diamond-like structures, that include sp2 and sp3 hybridized carbon atoms, are
of considerable interest nowadays. In the present work, various carbon auxetic
structures are studied by the combination of molecular dynamics (MD) and
analytical approach. Two fullerites based on the fullerene C60 and fullerene-like
molecule C48 are investigated as well as diamond-like structures based on other
fullerene-like molecules (called fulleranes), carbon nanotubes (called tubulanes)
and graphene sheets. MD is used to find the equilibrium states of the
structures and calculate compliance and stiffness coefficients for stable
configurations. Analytical methods are used to calculate the engineering elastic
coefficients (Young’s modulus, Poisson’s ratio, shear modulus and bulk
modulus), and to study their transformation under rotation of the coordinate
system. All the considered structures are partial auxetics with the negative
value of Poisson’s ratio for properly chosen tensile directions. It is shown that
some of these structures, in a particular tension direction, have a very high
Young’s modulus, that is, 1852GPa for tubulane TA6.
1. Introduction

The hardest material currently known is diamond, but for many
years extensive efforts have been devoted to finding new
materials with the hardness exceeding that of diamond. Various
cubic phases, for example, lonsdaleite, C20-T, C3N4, BC12, and
diamond-like phases (DLP) have been predicted to have
outstanding physical and mechanical properties.[1–12]

Diamond-like structures have sp3-hybridized carbon atoms or
they can include a small portion of sp2-hybridized atoms. Such
L. Kh. Rysaeva, Dr. J. A. Baimova, Dr. S. V. Dmitriev
Institute for Metals Superplasticity Problems of the Russian Academy
of Sciences
Khalturina st. 39, Ufa 450001, Russia
E-mail: a.baimova@gmail.com

Dr. D. S. Lisovenko, Prof. V. A. Gorodtsov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy
of Sciences
Vernadsky pr. 101-1, Moscow 119526, Russia

Dr. S. V. Dmitriev
National Research Tomsk State University
Lenin Ave 36, Tomsk 634050, Russia

Dr. Julia A. Baimova
Bashkir State University
Zaki Validi St. 32, Ufa 450076, Russia

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/pssb.201800049.

DOI: 10.1002/pssb.201800049

Phys. Status Solidi B 2019, 256, 1800049 © 21800049 (1 of 12)
structures can be produced by various
methods, for example, cold compres-
sion,[13] shock compression of polycrystal-
line graphite,[14,15] heating of carbon
soot,[16] transformation of onion structures
under high pressure[17] to name a few.
Superhard materials are of particular
importance in industrial applications, such
as cutting, polishing, and drilling tools, and
surface-protecting coatings.[18] It has been
already shown that some diamond-like
structures have Vickers hardness close to
diamond (96� 5GPa)[19]: 93.2GPa for
lonsdaleite, 88.8GPa for BC8,

[20] �90GPa
for DLP LA1, LA2,[3] etc. Complete infor-
mation on the structures with the highest
values of Vickers hardness and other
important characteristics can be found in
http://sacada.sctms.ru. Results, obtained
in the field to date, broaden our under-
standing of the mechanical properties of
diamond-like structures including their
auxeticity[7,8] and deformation behavior.[9] Several DLPs have
been found experimentally and many others have been studied
with the help of atomistic modeling methods such as ab-initio
simulations or molecular dynamics (MD).

The other class of bulk carbon nanomaterials is based on sp2

carbon polymorphs bonded by weak van-der-Waals interactions,
which can form an immense variety of structures.[21–32] Among
such nanomaterials, fullerite (a material consisting of fullerene
molecules) is well known. The most studied structures are the
fullerites based onC60 or C70 fullerenes. They have been produced
experimentally[33,34] and they can be transformed to the super-
dense and superhard phases.[35–37] At room temperatures, C60

molecules are arranged in a face-centered-cubic (fcc) lattice, while
at 259K a fcc to simple cubic (sc) transition occurs.[38,39] It should
also be noted that C60 molecules undergo phase transition to
polycrystalline diamond at the pressure higher than 20GPa.[40]

Despite the fact that fullerite is known for a long time, its
mechanical properties and characteristics remain poorly under-
stood. To date, there are studies of the elastic properties of
polycrystalline fullerite samples,[7] measurements of Young’s
modulus on single-crystal samples of small dimensions,[41,42] and
studiesofpolycrystallinefilms.Earliermeasurementsof theelastic
constants of some diamond-like structures and fullerite were also
performed.[43–46] In ref. [43–46] quite large (up to 30mg), well-
faceted solid fcc C60 single-crystal with lattice parameter 14.17 Å,
fabricated by a growth from the gas phase, is considered. The
following elastic moduli of C60 single-crystal were determined
from measurements of ultrasound velocities: c11 �15GPa, c11
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�9GPa, and c44 �6GPa,[43] the effect of relaxation,[44] and the
temperature[45,46] on the elastic moduli were also investigated.

Ithasbeenshownthatcarbonnanostructures suchassingle-wall
nanotubes,[47,48] carbonnanotube sheets,[49] andgraphene[50,51] can
have negative Poisson’s ratio. In ref. [51] auxetic properties were
found for graphene with 5-8-5 defects. It was also shown that
minimal Poisson’s ratio for such structures is equal to �0.3. In
ref. [52] negative Poisson’s ratio was found for hydrostatically
stretchedgraphene in the rangeof strain exx ¼ eyy > 0:12. In ref. [53]

the effect of hydrostatic pressure on the elastic properties of
hexagonal crystals was studied. It was shown that for graphite
negative Poisson’s ratio can be found under negative pressure.

Structures considered in the present work belong to different
crystal systems. For many anisotropic materials of various crystal
systems (cubic,[54–72] hexagonal,[61,62,73–76] rhombohedral[61,62,77–79],
tetragonal [61,62,80–82], orthorhombic [61,62,78,83–85], mono-
clinic,[61,62,74,86,87] and triclinic[87]) negative Poisson’s ratio was
observed. To date, more than 450 crystals with negative Poisson’s
ratio (auxetic crystals) were found. More than 300 were found
among the crystals with cubic anisotropy.[65,67] Studies of auxetic
structures have been conducted for many decades and some of the
Figure 1. First row gives building elements of the structures considered i
structures. Among them are two fullerites with cubic anisotropy: fcc packing
CA3 and CA7 fulleranes have cubic anisotropy. LA6 DLP based on graphene sh
and tetragonal anisotropy, respectively.
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results are debated till now. For example, in ref. [88] it was shown that
Cd has negative Poisson’s ratio, which was proved to be wrong.[89]

This mistake is connected with the wrong calculation of the
compliance coefficients and it was shown that Poisson’s ratio of Cd
ranges from 0.1 to 0.7.[89,90]

In this study, the results on the investigation of structure and
auxetics properties of carbon nanostructures with sp3 (DLPs) and
sp2 (fullerites) hybridization are presented. The results obtained
by the MD simulations are used to calculate the engineering
elasticity constants from analytical equations. For auxetic
structures of various anisotropy, compliance and stiffness
constants, Poisson’s ratio, bulk modulus, shear modulus, and
Young’s modulus are presented.
2. Simulation Details

Building units of the carbon structures studied hear are shown in
thefirst rowofFigure1. FulleritesofC60orC48 fullerenespacked in
fcc or sc lattices are considered. Diamond-like phases called
fulleranes are based on fullerene-like molecules C6, C8, and C48.
n this study. Second and third rows give the studied three-dimensional
of C60 and sc packing of C48. The CA2 fullerane has hexagonal anisotropy.
eet is of orthorhombic anisotropy. TB and TA6 tubulanes are of hexagonal

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 12)
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DLP called tubulanes are based on (4,0) or (3,3) carbonnanotubes.
LA6 DLP defined in ref. [3–6] is composed of graphene sheets.

Initial structures were generated using a home-made
program, which allows to combine different structural elements
into three-dimensional structures. Initial structures studied here
are presented in the second and third rows of Figure 1 and they
posses cubic, tetragonal, hexagonal, or orthorhombic anisotropy.
Among them are two fullerites with cubic anisotropy composed
of C60 and C48, packed in fcc and sc lattices, respectively. The CA2
fullerane has hexagonal anisotropy. CA3 and CA7 fulleranes
have cubic anisotropy. LA6 DLP based on graphene sheets is of
orthorhombic anisotropy. TB and TA6 tubulanes are of
hexagonal and tetragonal anisotropy, respectively.

Structure relaxation and calculations of the compliance
coefficients are carried out using the LAMMPS package[91] with
theAIREBO interatomicpotential,[92]whichwas successfully used
to study the mechanical and thermal properties of various carbon
systems. It should be noted, that AIREBO potential has some
limitations, for example, cannot be used for simulation of
amorphous ormelted carbon structures,[93,9] nucleation of carbon
nanostructures or their damage,[94,95] investigation of hybrid sp2-
sp3 carbon nanostructures.[96] Despite in real life DLP can have
mixed sp2-sp3-hybridization, in the present work application of
periodic boundary conditions lead to the consideration of only sp3

DLP structures. The methodology proposed in the present work
was previously successfully applied for the investigation of the
auxeticity of variousDLP.[7,8,52] All the structures arefirstly relaxed
until a local or global minimum of potential energy is reached.
After that, all the structural parameters are calculated. All the
calculations are conducted at 1K so that the effect of temperature
on the elastic constants was not analyzed.

Stiffness coefficients for all the considered structures are
calculated from MD calculations. The following scheme is
used: single-component stress is applied to the structure and
the corresponding strain components are calculated. The
applied stress is chosen in such a way that the resulting strains
do not exceed 1%, in order to remain in the Hooke’s law
regime.

Stiffness coefficients for orthorhombic anisotropy are
calculated from the Hooke’s law as follows:
1)
Phy
uniaxial tensile stress σxx is applied, the resulting nonzero
strains exx and eyy are determined to find

s11 ¼ exx
σxx

; s12 ¼
eyy
σxx
2)
 uniaxial tensile stress σzz is applied, nonzero strains ezz, exx,
and eyy are determined to find

s13 ¼ exx
σzz

; s23 ¼
eyy
σzz

; s33 ¼ ezz
σzz
3)
 tensile stress σyy is applied, nonzero strains eyy is determined
to find

s22 ¼
eyy
σyy
4)
 shear stress σyz is applied and eyz is determined to find
σyz is applied and eyz is determined to find
s. Status Solidi B 2019, 256, 1800049 1800049 (3 of
s44 ¼
eyz
σyz
5)
 shear stress σxz is applied and exz is determined to calculate

s55 ¼ exz
σxz
6)
 shear stress σxy is applied and exy is determined to calculate

s66 ¼
exy
σxy

For the calculations of the compliance coefficients for
orthorhombic anisotropy the following equations are used:

c11 ¼ s22s33 � s223
s

; c12 ¼ s13s23 � s12s33
s

c13 ¼ s12s23 � s23s11
s

; c22 ¼ s11s33 � s213
s

c23 ¼ s12s13 � s23s11
s

; c33 ¼ s11s22 � s212
s

c44 ¼ 1
s44

; c55 ¼ 1
s55

; c66 ¼ 1
s66

where

s ¼ s11s22 � s212
� �

s33 þ 2s12s13s23 � s11s
2
23 � s22s

2
13

All these equations can be used for the calculation of the
compliance coefficients of the phases with higher symmetry
under the following simplifications: s11 ¼ s22, s44 ¼ s55, s13 ¼ s23
for tetragonal anisotropy, s11 ¼ s22, s44 ¼ s55, s13 ¼ s23, s66 ¼
2 s11 � s12ð Þ for hexagonal anisotropy, and s11 ¼ s22 ¼ s33,
s44 ¼ s55 ¼ s66, s12 ¼ s13 ¼ s23 for cubic anisotropy.
3. Results and Discussion

3.1. Elastic Properties

The compliance coefficients for all studied structures, obtained
by the MD method, are presented in Table 1.

Based on the compliance coefficients presented in Table 1,
the variability of Young’s modulus, Poisson’s ratio and
shear modulus is analyzed. Young’s modulus for anisotropic
structures depends on the tensile direction with respect to
crystallographic axis. Poisson’s ratio also depends on the
direction of measuring the lateral strain. In the linear elasticity
theory, Young’s modulus E(n) and Poisson’s ratio v(n,m) depend
on the tensor compliance coefficients sijkl, unit vector n oriented
along the tensile direction, and unit vector m normal to the
tensile direction,[97]

E�1 nð Þ ¼ sijklninjnknl ð1Þ
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim12)
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Table 1. Compliance coefficients sij and stiffness coefficients cij of carbon nanostructures (fullerites, fulleranes, tubulanes, and DLP based on
graphene sheet): C48 sc, C60 fcc, CA3 and CA7 with cubic anisotropy; CA2 and TB with hexagonal anisotropy; TA6 with tetragonal anisotropy; LA6
with orthorhombic anisotropy.

Structure s11
[GPa�1]

s22
[GPa�1]

s33
[GPa�1]

s44
[GPa�1]

s55
[GPa�1]

s66
[GPa�1]

s12
[GPa�1]

s13
[GPa�1]

s23
[GPa�1]

Fullerites

C48 sc 10.5 6.61 �4.68

C60 fcc 0.052 0.035 �0.0224

Structure s11
[TPa�1]

s22
[TPa�1]

s33
[TPa�1]

s44
[TPa�1]

s55
[TPa�1]

s66
[TPa�1]

s12
[TPa�1]

s13
[TPa�1]

s23
[TPa�1]

Fulleranes

CA2 2.515 1.92 18.4 0.0906 �0.3625

CA3 1.87 2.496 �0.44

CA7 8.125 3.64 �3.82

Tubulanes

TA6 1.471 0.8194 4.727 2.773 �0.0094 �0.126

TB 1.656 0.999 10.174 �0.1597 �0.29

DLP based on graphene sheet

LA6 2.458 2.238 1.21 2.159 2.363 2.527 �1.408 �0.354 �0.138

Structure c11
[MPa]

c22
[MPa]

c33
[MPa]

c44
[MPa]

c55
[MPa]

c66
[MPa]

c12
[MPa]

c13
[MPa]

c23
[MPa]

Fullerites

C48 sc 331 151 265

Structure c11
[GPa]

c22
[GPa]

c33
[GPa]

c44
[GPa]

c55
[GPa]

c66
[GPa]

c12
[GPa]

c13
[GPa]

c23
[GPa]

Fullerites

C60 fcc 55.3 28.7 41.8

Fulleranes

CA2 413 555 161 �1.63 87.3

CA3 625 400 192

CA7 750 275 667

Tubulanes

TA6 1854 1214 442 221 55.0 �8.59

TB 600 1067 3614 �30.5 155

DLP based on graphene sheet

LA6 709 751 928 418 395 505 462 260 221

www.advancedsciencenews.com www.pss-b.com
ν n;mð Þ ¼ � sijklmimjnknl
sαβλμnαnβnλnμ

ð2Þ

Shear modulus G n;mð Þ is defined by vector n which is unit
vector normal to the slip plane and unit vector m showing the
slip direction[97]

G�1 n;mð Þ ¼ 4sijklnimjnkml: ð3Þ

The variability of Young’s modulus, Poisson’s ratio and shear
modulus are defined by Euler’s angles φ, θ, and ψ instead of unit
Phys. Status Solidi B 2019, 256, 1800049 1800049 (4
vectors. Unit vectors n and m are related to the Euler’s angles as
follows

n ¼
sinφ sin θ

�cosφ sin θ

cos θ

0
B@

1
CA ð4Þ

m ¼
�sinφ cos θ cos ψ � cosφ sin ψ

cosφ cos θ cos ψ � sinφ sin ψ

sin θ cos ψ

0
B@

1
CA ð5Þ
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 12)
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Table 2. Extreme values of Young’s modulus, anisotropy parameter Δ,
and α ¼ Emax=Emin of fullerites and fulleranes with cubic anisotropy.

Structure Δ
[GPa�1]

E[100]
[MPa]

E[110]
[MPa]

E[111]
[MPa]

α

Fullirites

C48 sc 11.9 95.1 219 386 4.06

Structure Δ
[TPa�1]

E[100]
[GPa]

E[110]
[GPa]

E[111]
[GPa]

Fullirites

C60 fcc 0.06 19.2 42.6 71.4 3.72

Fulleranes

CA3 1.06 535 746 860 1.61

CA7 10.1 123 327 728 5.92

Bold values signify the maximum values of Young’s modulus.

www.advancedsciencenews.com www.pss-b.com
3.1.1. Carbon Nanostructures with Cubic Anisotropy

Equations for the calculation of Young’s modulus and Poisson’s
ratio can be written as follows [65,98]

1
s11E

¼ 1� δ

2
M φ; θð Þ ð6Þ

ν

s11E
¼ � δ

2
N φ; θ; ψð Þ � Π½ � ð7Þ

1
s44G

¼ 1þ A� 1ð ÞN φ; θ; ψð Þ ð8Þ

Π � � 2s12
Δ

; δ � Δ

s11

A � 2
s11 � s12

s44
¼ 2

c44
c11 � c12

0 � M � sin2 2θþ sin4 θ sin2 2φ � 4
3

0 � N � 3 sin2 θ cos2 θ cos2 ψ þ cos θ cos 2φ cos ψ � sin ψð Þ2

sin2 θ � 1

Here Δ � s11 � s12 � 0:5s44 is the anisotropy parameter for the
cubic crystals, A is the Zener anisotropy parameter.

For cubic anisotropy, Young’s modulus has three extremal
values[99] corresponding to the tensiledirections [100], [110], and [111]:

E 100½ � ¼ 1
s11

ð9Þ

E 110½ � ¼ 1
s11 � Δ=2

ð10Þ

E 111½ � ¼ 1
s11 � 2Δ=3

ð11Þ
Table 3. Extremal values of Poisson’s ratio (global maxima and minima νm
ν 111ð Þ; 111½ �) and dimensionless parameters Π and δ for fullerites and fulleran

Structure Π δ νmin νmax

Fullirites

C48 sc 0.787 1.13 �0.28 1.02

C60 fcc 0.788 1.10 �0.26 0.96

Fulleranes

CA3 0.830 0.57 �0.07 0.33

CA7 0.755 1.25 �0.40 1.25
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For cubic crystals with positive anisotropy parameter, Δ > 0,
from (9)–(11) it follows E 111½ � > E 110½ � > E 100½ �. For cubic crystals
with negative anisotropy parameter, Δ < 0, the opposite
inequalities take place E 100½ � > E 110½ �> E 111½ �. In Table 2, the
extreme values of Young’s modulus and values of the
anisotropy parameter Δ are given. They are determined from
the values of the elastic constants of equilibrium structures
presented in Table 1. Bold font in Table 2 emphasizes the
maximum values of Young’s modulus. For all the considered
structures maximal Young’s moduli are observed for tension
along [111] direction since all of the considered structures have
positive anisotropy parameter (see Table 2). Highest Young’s
modulus for the structures with cubic anisotropy is found for
CA7 (728GPa). The highest difference between maximal and
minimal values of Young’s modulus is also found for CA7
(Emax=Emin ¼ 5:92).

In Table 3, dimensionless parameters Π and δ, maximal νmin

and minimal νmax Poisson’s ratios as well as Poisson’s ratios for
particular crystallographic orientations are presented. Analysis
of the variability of Poisson’s ratio showed that four nano-
structures with the cubic anisotropy have negative Poisson’s
ratio (see Table 3). All of the considered structures are partial
auxetics (0 < Π < 1) in accordance with the classification
proposed in ref. [65]. Lowest Poisson’s ratio is found for CA7
(νmin ¼ �0:40) as well as the highest difference between
maximal and minimal Poisson’s ratios (νmax � νmin ¼ 1:65).
For fullerite C60minimal Poisson’s ratio is equal to�0.26 and for
fullerite C48 it is equal to �0.28. Averaged Poisson’s ratio for all
ax, νmin, for particular orientations ν 100½ �; 001½ �, ν 001½ �; 110½ �, ν 1�10�; 110½ �½ , and
es.

ν 100½ �; 001½ � ν 001½ �; 110½ � ν
1 �10�; 110½ �
� ν 111ð Þ; 111½ �

0.44 1.02 �0.28 0.28

0.43 0.95 �0.26 0.24

0.24 0.33 �0.07 0.07

0.47 1.25 �0.41 0.33

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 12)
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the structures is positive. In Figure 2 the auxeticity surface
(ν ¼ 0) for fcc fullerite C60 is constructed in the space of Euler’s
angles with the periods Tφ ¼ π=2, Tθ ¼ 2π, and Tψ ¼ π. The
auxeticity zone (ν < 0) is inside the presented surface. From
these surfaces, one can determine Euler’s angles, that is, the
directions of stretching for which negative Poisson’s ratio is
observed. The auxeticity surface of sc fullerite C48 is very similar
to that of C60 because they have nearly same parameters Π and δ.
Auxeticity surfaces for CA3 and CA7 were previously presented
in ref. [8]. As it can be seen from Table 3, the biggest auxeticity
zone is observed for CA7, since it has the lowest values of the
dimensionless parameters Π and δ.

Poisson’s ratio for particular orientations are defined as
follows

ν 100½ �; 001½ � ¼ Πδ

2

ν 001½ �; 110½ � ¼ Πδ

2� δ

ν½1�10�; 110½ � ¼
δ Π � 1ð Þ
2� δ

ν 111½ �; 111½ � ¼ δ 1:5Π � 1ð Þ
3� 2δ

The last three indices indicate the directions of stretching, and
the first three indices indicate the direction of the lateral strain
measurement. The analysis of these equations with the use of
thermodynamic limitations of the positivity of the determination
ofelastic energyΠδ > 2δ� 2, 1 > Πδ > �2, and δ < 1:5[65] shows:
1)
Fig

Phy
Π > 0, 0 < δ < 1:5:

ν 001½ �; 110½ � > ν 100½ �; 001½ � > ν 111ð Þ; 111½ � > ν 1�10�; 110½ �½
ure 2. Auxeticity surfaces (ν ¼ 0) of fullerite C60 with cubic anisotropy.

s. Status Solidi B 2019, 256, 1800049 1800049 (6
2)
Tab
par
full

Stru

Full

C

Stru

Full

C

Full

C

C

Bold

of
Π > 0, δ < 0:

ν½1�10�; 110½ � > ν 111ð Þ; 111½ � > ν 001½ �; 110½ � > ν 100½ �; 001½ �
3)
 Π < 0, δ < 0:

ν½1�10�; 110½ � > ν 111ð Þ; 111½ � > ν 100½ �; 001½ � > ν 001½ �; 110½ �
4)
 Π < 0, 0 < δ < 1:5:

ν 100½ �; 001½ � > ν 001½ �; 110½ � > ν 111ð Þ; 111½ � > ν 1�10�; 110½ �½

All the considered structures with cubic anisotropy have Π >
0 and 0 < δ < 1:5, which means that the values of the Poisson’s
ratio for particular orientations satisfy the above conditions.

The analysis of formula (8) for the shear modulus makes it
possible to determine the maximum and minimum
values[98]:

G1 ¼ 1
s44

ð12Þ

G2 ¼ 1
2 s11 � s12ð Þ ð13Þ

Zeneranisotropyparameterwill affect theextremal valuesof the
shear modulus (G1 and G2) and will define which one became
minima or maxima. For the cubic crystals with A > 1 (or positive
anisotropy Δ > 0) from (12) and (13) it is seen that G1> G2. For
crystals with 0 < A < 1 (or negative anisotropyΔ < 0) the reverse
inequality takes place G1< G2. For all the considered cubic
structures the value of Zener anisotropy parameter is greater than
1 (see Table 4), which means that G1 is the maximal value. Zener
anisotropy parameters, extremal values of the shearmodulus, and
values of bulkmodulus are presented in Table 4. The values of the
bulk modulus are calculated as B ¼ c11 þ 2c12ð Þ=3. The greatest
shear anisotropy is found for CA7 (Gmax=Gmin ¼ 6:56). The
le 4. Extremal values of shear modulus, Zener’s anisotropy
ameter A, β ¼ Gmax=Gmin, and bulk modulus B of fullerites and
eranes with cubic anisotropy.

cture A G1

[MPa]
G2

[MPa]
β B

[MPa]

irites

48 sc 4.60 151 32.9 4.59 287

cture A G1

[GPa]
G2

[GPa]
β B

[GPa]

irites

60 fcc 4.28 28.7 6.72 4.27 46.3

eranes

A3 1.85 400 216 1.85 337

A7 6.56 275 41.9 6.56 694

values signify the maximum values of Young’s modulus.

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim12)
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Table 5. Extremal values of Young’s modulus E, shear modulus G,
and bulk modulus B for CA2 fullerane and TB tubulane.

Structure E1 E2 E3 B

www.advancedsciencenews.com www.pss-b.com
highest shearmodulus is found for CA3 (400GPa) and the lowest
is for C48 (G1 min ¼ 32:9MPa). The highest bulk modulus is
observed for CA7 (694GPa) and the lowest is for the fullerite C48

(287MPa).

[GPa] [GPa] [GPa] [GPa]

Fullerane

CA2 518 398 393 192

Tubulane

TB 983 573 1730 314

Structure G1

[GPa]
G2

[GPa]
G3

[GPa]
G4

[GPa]

Fullerane

CA2 54.3 206 194 120

Tubulane

TB 98.3 275 309 193

Bold values signify the maximum values of Young’s modulus.

Figure 3. Variability of Young’s modulus of diamond-like structure CA2
(black curve) and tubulane TB (blue curve) with hexagonal anisotropy.
Dots mark extreme values of Young’s modulus.
3.1.2. Carbon Nanostructures with Hexagonal Anisotropy

For the structures with hexagonal anisotropy Young’s modulus
and Poisson’s ratio are defined as[75,89]:

1
s11E

¼ 1þ Π1 � Π01 sin
2 θ

� �
cos2 θ ð14Þ

� ν

s13E
¼ 1þ Π2 sin

2 ψ þ Π02 cos2 θ cos2 ψ
� �

sin2 θ ð15Þ

1
s44G

¼ 1þ Π3 sin
2 ψ þ 4Π03 cos2 θ cos2 ψ

� �
sin2 θ ð16Þ

Π01 � δ

s11
; Π02 � δ

s13
; Π03 � δ

s44

Π1 � s33 � s11
s11

; Π2 � s12 � s13
s13

Π3 � 2s11 � 2s12 � s44
s44

δ � s11 þ s33 � 2s13 � s44

The analysis of Young’smodulus presented in ref. [75] showed
that three extreme values can be calculated:

E1 ¼ E 0001½ � ¼ 1
s33

E2 ¼ E½2�1�10� ¼
1
s11

and

E3 ¼ 4Π01

4Π01 � Π1 � Π01ð Þ2
1
s11

> 0

at

cos2 θ ¼ Π01 � Π

2Π01

Structures CA2 and TB have hexagonal anisotropy and three
extremal values for Young’s modulus for these structures are
presented in Table 5, while Young’s modulus are illustrated as the
function of θ in Figure 3. The highest value among hexagonal
structures is found for tubulaneTB (Emax ¼ 1730GPaat θ¼ 38:10),
which is three times higher than maximal Young’s modulus for
Phys. Status Solidi B 2019, 256, 1800049 1800049 (7
fullerane CA2 (E1 max¼ E 0001½ � ¼ 518GPa). The minimal value of
Young’s modulus for TB (Emin ¼ 573GPa) is found at tension
along 2�1�10�½ . Bulk modulus B for hexagonal structures is also
presented in Table 5. To calculate bulk modulus the following
equation is used B ¼ 2c11 þ c33 þ 2c12 þ 4c13ð Þ=9. Bulk modulus
of tubulane TB is 1.6 times higher than for fullerane CA2.

The analysis of variability of shear modulus presented in
ref. [89] showed that for hexagonal structures four stationary
values can be found:

G1 ¼ 1
s44

for θ ¼ 0 and any ψ angles, and also at θ ¼ π=2, ψ ¼ 0;

G2 ¼ 1
s44 1þ Π3ð Þ ¼

1
s66
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 12)
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Table 6. Stationary values of Poisson’s ratio for CA2 fullerane and TB
tubulane.

Structure ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

Fullerane

CA2 0.21 0.16 �0.04 0.27 – – – –

Tubulane

TB 0.27 0.16 �0.09 – –0.80 0.29 – �0.08

www.advancedsciencenews.com www.pss-b.com
is obtained at θ ¼ ψ ¼ π=2;

G3 ¼ 1
s44 1þ Π03ð Þ ¼

1
s11 þ s33 � 2s13

is achieved at θ ¼ π=4, ψ ¼ 0, and θ ¼ 3π=4, ψ ¼ 0;

G�1
4 ¼ s44 1þ Π3 � Π2

3

4Π03

� �

possible for θ0, ψ0 at 0 � cos2θ0 ¼ 0:25Π3=Π03 � 1,
0 � cos2ψ0 ¼ Π3= 4Π03 � Π3ð Þ � 1. The first three stationary
values can be extremal. Extremal values of shear modulus for TB
and CA2 are presented in Table 5. The maximal values are
G2 max ¼ 206 GPa for CA2 and G3 max ¼ 309 GPa for tubulane
TB.

Poisson’s ratio for hexagonal crystals have eight stationary
values.[53] The first three values are simply calculated as
follows:

ν1 ¼ ν 0001ð Þ; 0001½ � ¼ � s13
s33

ν2 ¼ ν½2�1�10�;½01�10� ¼ � s13
s11
Figure 4. The surfaces of Poisson’s ratio for diamond-like structure CA2 (a) an
CA2 (c) and tubulane TB (d). The auxeticity zone (ν ¼ 0) is shown in gray.

Phys. Status Solidi B 2019, 256, 1800049 1800049 (8
ν3 ¼ ν½000�1�;½01�10� ¼ � s12
s11

The equations for the other five stationary values are
presented in ref. [53] Poisson’s ratio for CA2 and TB is presented
in Table 6. Both structures have negative Poisson’s ratio. For
tubulane TB, four negative values are observed. The most
negative Poisson’s ratio among hexagonal structures is found for
TB (νmin ¼ �0:80). Minimal Poisson’s ratio for CA2 is found for
tension along 01�10�½ and equal to νmin ¼ ν 000�1�; 01�10�½½ ¼ –0.04.
Auxeticity surfaces for CA2 and TB are presented in
Figure 4a and b. In Figure 4c and d auxeticity curve (ν ¼ 0)
calculated as

Bold values signify the maximum values of Young’s modulus.
d tubulane TB (b) and auxeticity curves (ν ¼ 0) for diamond-like structure

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 12)

http://www.advancedsciencenews.com
http://www.pss-b.com


Figure 5. Orientational dependences of Young’s moduli in the (100) (a), (010) (b), (001) (c) planes for TA6 tubulane (black solid lines) and LA6 DLP
based on graphene (red dashed lines).
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s13 þ s12 � s13ð Þsin2ψ þ δcos2θcos2ψ
� �

sin2θ ¼ 0

is presented. Auxeticity zone is shown by gray. As it can be seen
from Figure 4 the bigger auxeticity zone is found for tubulane TB.
Table 7. Values of Young’s modulus E and bulk modulus B for TA6
tubulane and LA6 DLP based on graphene.

Structure E[100] [GPa] E[010] [GPa] E[001] [GPa] B [GPa]

TA6 1852 1852 1214 555

LA6 407 447 826 475
3.1.3. Carbon Nanostructures with Orthorhombic and
Tetragonal Anisotropy

For investigation of these structures, (100), (010), (001) planes
are taken. Under tension along these planes and from
Equations (1), (3–5), Young’s modulus E as the function of
orientation angle (angle between tensile direction and crystallo-
graphic axis) can be found as

E�1
100ð Þ θð Þ ¼ s22 sin

4 θþ s33 cos4 θ

þ 2s23 þ s44ð Þsin2 θ cos2 θ ð17Þ

E�1
010ð Þ θð Þ ¼ s11 sin

4 θþ s33 cos4 θ

þ 2s13 þ s55ð Þsin2 θ cos2 θ ð18Þ

E�1
001ð Þ φð Þ ¼ s11 sin

4 φþ s22 cos
4 φ

þ 2s12 þ s66ð Þsin2 φ cos2 φ ð19Þ

where angle θ is calculated in (100) (at φ ¼ 0), (010) (at φ ¼ π=2)
planes from [001] direction and angle φ in (001) plane (at
θ ¼ π=2) from 0�10�½ direction. Shear modulus are calculated in
these planes as follows

G�1
100ð Þ ¼ s55 sin2 ψ þ s66 cos2 ψ ð20Þ

G�1
010ð Þ ¼ s44 sin

2 ψ þ s66 cos
2 ψ ð21Þ

G�1
001ð Þ ¼ s44 sin

2 ψ þ s55 cos2 ψ ð22Þ

where angle ψ is calculated in (100) and (001) planes from [010]
direction and in (010) plane from �100�½ direction. Equations
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(17–22) for (100), (010), (001) planes are used for structures with
tetragonal anisotropy at s11 ¼ s22, s44¼ s55, s13 ¼ s23.

The orientation dependences of Young’s modulus for TA6
and LA6 in (100), (010), and (001) planes are presented in
Figure 5. As it can be seen, Young’s modulus for TA6
tubulane is higher than that for LA6 in planes (100) and
(010). Maximal values of Young’s modulus for TA6 in these
planes is equal to 1852 GPa for tension directions [100] and
[010] (see also Table 7). This value is higher than maximal
Young’s modulus for graphite (1.02 TPa)[100] It should be
mentioned that Young’s modulus for tubulanes is highest
among the carbon nanostructures under consideration.
Minimal Young’s modulus for TA6 for tension in (100)
and (010) planes is equal to 1075 GPa and observed for angles
close to 45�. For LA6 structure for tension in (100) plane
maximal Young’s modulus is Emax ¼ 838GPa and observed
for angle of 21.2�. For (010) plane maximal value of Young’s
modulus is 861 GPa at θ ¼ 22:90. For tension in (001) plane
the significant difference between maximal and minimal
Young’s modulus for TA6 and LA6 is found
(Emax=Emin ¼ 2:58, Emin ¼ 717 GPa at φ ¼ 450 for TA6 and
Emax=Emin ¼ 2:55, Emin ¼ 1039GPa at φ � 450 for LA6). Bulk
moduli for TA6 and LA6 are also presented in Table 7. Bulk
modulus is calculated as B ¼ c11 þ c22 þ c33 þ 2c12 þ 2c13þð
2c23Þ=9. Bulk moduli are 555 GPa for TA6 and 475 GPa for
LA6 and they are higher than that for the other structures
under consideration. Only CA7 fullerane has higher bulk
modulus B ¼ 694GPa.

The orientation dependences of shear modulus of carbon
structures TA6 and LA6 for slip planes (100), (010), (001) are
illustrated in Figure 6. The shear modulus for TA6 slightly
changes in the slip planes (100), (010), (001). The shear modulus
is constant in the slip plane (001) for LA6 and is equal to 442GPa.
In the case of slip planes (100) and (010), the maximum and
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimof 12)
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Figure 6. Orientational dependences of shear moduli in the (100) (a), (010) (b), (001) (c) planes for TA6 tubulane (black solid lines) and LA6 DLP based
on graphene (red dashed lines).

Table 8. Extreme values of Poisson’s ratio and values of Poisson’s ratio in particular orientations for TA6 tubulane and LA6 DLP based on
graphene.

Structure νmin νmax ν 010½ �; 100½ � ν 001½ �; 100½ � ν �100�; 010½ �
� ν 001½ �; 010½ � ν 100½ �; 001½ � ν 010½ �; 001½ �

TA6 �0.007 0.62 0.03 �0.007 0.03 �0.007 �0.005 �0.005

LA6 �0.14 0.66 0.57 0.14 0.63 0.06 0.29 0.11

www.advancedsciencenews.com www.pss-b.com
minimum values of the shear modulus for the carbon structure
LA6 differ by a factor of 1.53.

Analysis of the variability of Poisson’s ratio for TA6 and LA6
structures shows that both structures are partial auxetics (see
Table 8 and Figure 7). The carbon structure of LA6 has a lower
negative value of Poisson’s ratio (νmin ¼ �0:14) as compared to
the tubulane TA6 (νmin ¼ �0:007). It should be noted that the
lower values of Poisson’s ratio have structures CA7, TB and
Figure 7. Auxeticity surface (ν ¼ 0) for LA6 tubulane.

Phys. Status Solidi B 2019, 256, 1800049 1800049 (1
fullerite is based on the C60 fullerene and the fullerene-like
molecule C48. Table 8 also shows Poisson’s ratio for particular
orientations. In these particular orientations, the negative
Poisson’s ratio is detected only in the tubulane TA6. Negative
Poisson’s ratio for LA6 is found when stretching in the
direction n ¼ 0;� ffiffiffi

2
p

=2;
ffiffiffi
2

p
=2

� �T
(i.e., at φ ¼ 0 and θ ¼ π=4).

The surface of auxeticity (ν ¼ 0) for tubulane TA6 is presented.
The zone of auxitycity (ν < 0) is located inside the closed
surfaces.
4. Conclusion

The compliance and stiffness moduli for fullerites based on
C60 and C48 fullerenes and for diamond-like phases based on
fullerene-like molecules (CA2, CA3, and CA7), nanotubes
(TA6, TB), and graphene (LA6) are obtained by MD
simulation. All the structures are shown to be stable and
can be elastically deformed until at least 1% strain. The
results presented here show a qualitative agreement with the
stiffness moduli of fullerite C60, which have been found
experimentally in ref. [44,45]. However, the calculated values
are several times larger than the experimental. This
difference can be explained by the fact that the experimen-
tally obtained single crystals of fullerite can contain various
defects, whereas calculations are performed for an ideal
crystal at zero temperature.

From the stiffness and compliance coefficients the engineer-
ing elastic characteristics such as Young’s modulus, Poisson’s
ratio and shear modulus are calculated by analytical methods. All
the studied structures are partial auxetic, that is, they have
negative Poisson’s ratio for particular directions of uniaxial
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim0 of 12)
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strain. Minimal negative Poisson’s ratio has TB tubulane
(�0.80). Young’s modulus of TA7 tubulane is highest among the
carbon nanostructures under consideration.

The study of the physical properties of this material is of great
interest, since fullerite, and diamond-like phases can be used to
create new composite materials, protective coatings, they can
find applications in power engineering, biochemistry, and
medicine.
Acknowledgements
Calculation of the elastic coefficients for fullerite was done by R.L.Kh. and
supported by the Russian Science Foundation, grant no. 14-13-00982. The
calculation of the elastic constants for fulleranes was done by B.J.A. and
supported by the Grant of the President of the Russian Federation for
state support of young Russian scientists - doctors of sciences MD-
1651.2018.2. The work of S.V.D. (discussion of the results) was supported
by the Tomsk State University Competitiveness Improvement Pro-
gramme. Calculation of the engineering elastic constants done by D.S.L.
and V.A.G. was supported by the Russian Foundation for Basic Research,
grant no. 16-01-00325 and the Federal Agency for Scientific Organizations
(Project AAAA-A17-117021310373-3).
Keywords
auxetics, carbon diamond-like phases, elastic properties, fullerites,
molecular dynamics

Received: February 5, 2018
Revised: October 8, 2018

Published online: December 7, 2018

[1] J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, Y. Jia, J. Phys.: Condens
Matter 2016, 28, 475402.

[2] Z. Z. Li, C. S. Lian, J. Xu, L. F. Xu, J. T. Wang, C. Chen, Phys. Rev. B
2015, 91, 214106.

[3] E. A. Belenkov, V. A. Greshnyakov, Phys. Solid State 2016, 58,
2145.

[4] E. A. Belenkov, V. A. Greshnyakov, Phys. Solid State 2015, 57, 2331.
[5] E. A. Belenkov, M. M. Brzhezinskaya, V. A. Greshnyakov, Diamond

Relat. Mater. 2014, 50, 9.
[6] E. A. Belenkov, V. A. Greshnyakov, Phys. Solid State 2013, 55, 1754.
[7] D. S. Lisovenko, Y. A. Baimova, L. K. Rysaeva, V. A. Gorodtsov,

S. V. Dmitriev, Phys. Solid State 2017, 59, 820.
[8] D. S. Lisovenko, J. A. Baimova, L. K. Rysaeva, V. A. Gorodtsov,

A. I. Rudskoy, S. V. Dmitriev, Phys. Status Solidi B 2016, 253, 1295.
[9] J. A. Baimova, L. K. Rysaeva, A. I. Rudskoy, Diamond Relat. Mater.

2018, 81, 154.
[10] M. M. Maslov, K. P. Katin, Chem. Phys. Lett. 2016, 644, 280.
[11] K. P. Katin, V. S. Prudkovskiy, M. M. Maslov, Physica E 2016, 81, 1.
[12] K. P. Katin, M. M. Maslov, Adv. Condens. Matter Phys. 2015, 2015, 1.
[13] W. L. Mao, Science 2003, 302, 425.
[14] K. Yamada, Carbon 2003, 41, 1309.
[15] K. Yamada, Y. Tanabe, A. B. Sawaoka, Philos. Mag. A 2000, 80, 1811.
[16] M. Miki-Yoshida, L. Rend�on, M. Jos�e-Yacamán, Carbon 1993, 31,

843.
[17] H. Tang, X. Yuan, P. Yu, Q. Hu, M. Wang, Y. Yao, L. Wu, Q. Zou,

Y. Ke, Y. Zhao, L. Wang, X. Li, W. Yang, H. Gou, H. K. Mao,
W. L. Mao, Carbon 2018, 129, 159.

[18] N. V. Novikov, J. Mater. Proc. Tech. 2005, 161, 169.
Phys. Status Solidi B 2019, 256, 1800049 1800049 (1
[19] R. A. Andrievski, Int. J. Refract. Met. Hard Mater. 2001, 19, 447.
[20] Q. Zhu, A. R. Oganov, M. A. Salvad�o, P. Pertierra, A. O. Lyakhov,

Phys. Rev. B 2011, 83, 193410.
[21] J. A. Baimova, L. K. Rysaeva, B. Liu, S. V. Dmitriev, K. Zhou, Phys.

Status Solidi B 2015, 252, 1502.
[22] J. A. Baimova, B. Liu, S. V. Dmitriev, K. Zhou, J. Phys. D: Appl. Phys.

2015, 48, 095302.
[23] Y. A. Baimova, R. T. Murzaev, S. V. Dmitriev, Phys. Solid State 2014,

56, 2010.
[24] J. A. Baimova, E. A. Korznikova, S. V. Dmitriev, B. Liu, K. Zhou, Rev.

Adv. Mater. Sci. 2014, 39, 69.
[25] A. V. Savin, E. A. Korznikova, S. V. Dmitriev, Phys. Rev. B 2015, 92,

035412.
[26] A. V. Savin, E. A. Korznikova, I. P. Lobzenko, J. A. Baimova,

S. V. Dmitriev, Phys. Solid State 2016, 58, 1278.
[27] A. V. Savin, E. A. Korznikova, S. V. Dmitriev, E. G. Soboleva, Comput.

Mater. Sci. 2017, 135, 99.
[28] Y. A. Kvashnina, A. G. Kvashnin, L. A. Chernozatonskii,

P. B. Sorokin, Carbon 2017, 115, 546.
[29] A. Savin, R. Sakovich, M. Mazo, Phys. Rev. B 2018, 97.
[30] A. Savin, M. Mazo, Phys. Solid State 2018, 60, 826.
[31] A. Savin, S. Dmitriev, E. Korznikova, A. Kistanov,Mater. Phys. Mech.

2018, 35, 155.
[32] A. Savin, M. Mazo, Phys. Solid State 2017, 59, 1260.
[33] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley,

Nature 1985, 318, 162.
[34] Z. G. Liu, H. Ohi, K. Masuyama, K. Tsuchiya, M. Umemoto, J. Phys.

Chem. Solids 2000, 61, 1119.
[35] L. Marques, Y. Skorokhod, R. Soares, Carbon 2015, 82, 599.
[36] M. Popov, V. Mordkovich, S. Perfilov, A. Kirichenko, B. Kulnitskiy,

I. Perezhogin, V. Blank, Carbon 2014, 76, 250.
[37] M. �Alvarez-Murga, J. L. Hodeau, Carbon 2015, 82, 381.
[38] P. A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow,

A. M. Denenstein, Smith, Cox, Phys. Rev. Lett. 1991, 66, 2911.
[39] J. Tse, D. Klug, D. Wilkinson, Y. Handa, Chem. Phys. Lett. 1991, 183,

387.
[40] M. N. Regueiro, P. Monceau, J. L. Hodeau, Nature 1992, 355,

237.
[41] S. Hoen, N. G. Chopra, X. Xiang, R. Mostovoy, J. Hou, W. A. Vareka,

A. Zettl, Phys. Rev. B 1992, 46, 12737.
[42] X. D. Shi, A. R. Kortan, J. M. Williams, A. M. Kini, B. M. Savall,

P. M. Chaikin, Phys. Rev. Lett. 1992, 68, 827.
[43] N. P. Kobelev, R. K. Nikolaev, Y. M. Soifer, S. S. Khasanov, Phys. Solid

State 1998, 40, 154.
[44] N. P. Kobelev, Phys. Solid State 2002, 44, 195.
[45] N. P. Kobelev, R. K. Nikolaev, N. S. Sidorov, Y. M. Soifer, Phys. Solid

State 2002, 44, 429.
[46] N. P. Kobelev, R. K. Nikolaev, N. S. Sidorov, Y. M. Soifer, Phys. Solid

State 2001, 43, 2344.
[47] G. V. Lier, C. V. Alsenoy, V. V. Doren, P. Geerlings, Chem. Phys. Lett.

2000, 326, 181.
[48] F. Scarpa, S. Adhikari, C. Y. Wang, J. Phys. D 2009, 42, 142002.
[49] V. R. Coluci, L. J. Hall, M. E. Kozlov, M. Zhang, S. O. Dantas,

D. S. Galv~ao, R. H. Baughman, Phys. Rev. B 2008, 78, 115408.
[50] F. Scarpa, S. Adhikari, A. S. Phani, Int. J. Novel Mater. 2010,

1, 39.
[51] J. N. Grima, S. Winczewski, L. Mizzi, M. C. Grech, R. Cauchi,

R. Gatt, D. A. K. W. Wojciechowski, J. Rybicki, Adv. Mater. 2015, 27,
1455.

[52] J. A. Baimova, L. K. Rysaeva, S. V. Dmitriev, D. S. Lisovenko,
V. A. Gorodtsov, D. A. Indeitsev, Mater. Phys. Mech. 2017, 33, 1.

[53] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Phys. Status Solidi
B 2016, 253, 1261.

[54] F. Milstein, K. Huang, Phys. Rev. B 1979, 19, 2030.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1 of 12)

http://www.advancedsciencenews.com
http://www.pss-b.com


www.advancedsciencenews.com www.pss-b.com
[55] R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, S. Stafström,
Nature 1998, 392, 362.

[56] T. C. T. Ting, D. M. Barnett, J. Appl. Mech. 2005, 72, 929.
[57] K. W. Wojciechowski, Comput. Methods Sci. Techn. 2005, 11, 73.
[58] A. N. Norris, Proc. Roy. Soc. A 2075, 462, 3385.
[59] T. Paszkiewicz, S. Wolski, Phys. Status Solidi B 2007, 244, 966.
[60] A. C. Branka, D. M. Heyes, K. W. Wojciechowski, Phys. Status Solidi

B 2009, 246, 2063.
[61] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko,Mech. Solids 2010,

45, 529.
[62] Z. A. D. Lethbridge, R. I. Walton, A. S. H. Marmier, C. W. Smith,

K. E. Evans, Acta Mater. 2010, 58, 6444.
[63] A. C. Branka, D. M. Heyes, K. W. Wojciechowski, Phys. Status Solidi

B 2011, 248, 96.
[64] A. C. Branka, D. M. Heyes, S. Ma�ckowiak, S. Pieprzyk,

K. W. Wojciechowski, Phys. Status Solidi B 2012, 249, 1373.
[65] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Phys. Status Solidi

B 2013, 250, 2038.
[66] K. V. Tretiakov, K. W. Wojciechowski, Phys. Status Solidi B 2013, 250,

2020.
[67] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov,

Phys. Mesomech. 2014, 17, 97.
[68] V. V. Krasavin, A. V. Krasavin, Phys. Status Solidi B 2014, 251, 2314.
[69] P. M. Piglowski, K. W. Wojciechowski, K. V. Tretiakov, Phys. Status

Solidi RRL 2016, 10, 566.
[70] K. V. Tretiakov, P. M. Piglowski, K. Hyzorek, K. W. Wojciechowski,

Smart Mater. Struct. 2016, 25, 054007.
[71] A. I. Epishin, D. S. Lisovenko, Tech. Phys. 2016, 61, 1516.
[72] P. M. Piglowski, J. W. Narojczyk, K. W. Wojciechowski,

K. V. Tretiakov, Soft Matter 2017, 13, 7916.
[73] V. A. Lubarda, M. A. Meyers, Scripta Mater. 1999, 40, 975.
[74] S. P. Tokmakova, Phys. Status Solidi B 2005, 242, 721.
[75] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Dokl. Phys. 2011,

56, 602.
[76] R.V.Goldstein,V.A.Gorodtsov,D.S.Lisovenko,Dokl.Phys.2012,57,174.
[77] D. Gunton, G. Saunders, J. Mater. Sci. 1972, 7, 1061.
[78] N. Aouni, L. Wheeler, Phys. Status Solidi B 2008, 245, 2454.
Phys. Status Solidi B 2019, 256, 1800049 1800049 (1
[79] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov, Lett.
Mater. 2016, 6, 93.

[80] A. Ballato, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
1996, 43, 56.

[81] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov, Lett.
Mater. 2015, 5, 409.

[82] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Phys. Mesomech.
2015, 18, 213.

[83] M. Rovati, Scripta Mater. 2003, 48, 235.
[84] D. N. Karimov, D. S. Lisovenko, N. L. Sizova, B. P. Sobolev,

Crystallogr. Rep. 2018, 63, 96.
[85] N. E. Novikova, D. S. Lisovenko, N. L. Sizova, Crystallogr. Rep. 2018,

63, 438.
[86] M. Rovati, Scripta Mater. 2004, 51, 1087.
[87] M. A. Volkov, Lett. Mater. 2014, 4, 167.
[88] Y. Li, Phys. Status Solidi A 1976, 38, 171.
[89] R. V. Goldstein, V. A. Gorodtsov, M. A. Komarova, D. S. Lisovenko,

Scripta Mater. 2017, 140, 55.
[90] M. A. Komarova, V. A. Gorodtsov, D. S. Lisovenko, IOP Conf. Ser.

Mater. Sci. Eng. 2018, 347, 012019.
[91] S. Plimpton, J. Comp. Phys. 1995, 117, 1.
[92] S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys. 2000, 112,

6472.
[93] N. D. Orekhov, V. V. Stegailov, J. Phys. Conf. Ser. 2015, 653, 012090.
[94] G. M. Galiullina, N. D. Orekhov, V. V. Stegailov, J. Phys. Conf. Ser.

2016, 774, 012033.
[95] O. A. Shenderova, D. W. Brenner, A. Omeltchenko, X. Su,

L. H. Yang, Phys. Rev. B 2000, 61, 3877.
[96] S. Winczewski, M. Y. Shaheen, J. Rybicki, Carbon 2018, 126, 165.
[97] Y. I. Sirotin, M. P. Shaskolskaya, Fundamentals of Crystal Physics. Mir,

Moscow 1982.
[98] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Lett. Mater. 2012,

2, 21.
[99] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Lett. Mater. 2011,

1, 127.
[100] R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Phys. Mesomech.

2009, 12, 38.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 12)

http://www.advancedsciencenews.com
http://www.pss-b.com

