601 research outputs found
Studies of the quality and cost-effectiveness of a novel concept of open-die forged powerplant main shaft
An innovatory concept of open-die forging of windmill main shaft is described. Comparative study of the new technology based on the concept of cogging hollow shaft on mandrel featuring material savings and higher quality of a finished part versus traditional production chain of this component is presented, indicating benefits and technological setbacks of industrial implementation. Results of industrial sampling aided with numerical simulation form guidelines for technological realization
Charting the main sequence of star-forming galaxies out to redshifts z~7
We present a new determination of the star-forming main sequence (MS),
obtained through stacking 100k K-band-selected galaxies in the far-IR Herschel
and James Clerk Maxwell Telescope (JCMT) imaging. By fitting the dust emission
curve to the stacked far-IR photometry, we derive the IR luminosities (LIR)
and, hence, star formation rates (SFR) out to z~7. The functional form of the
MS is found, with the linear SFR-M* relation that flattens at high stellar
masses and the normalization that increases exponentially with redshift. We
derive the corresponding redshift evolution of the specific star formation rate
(sSFR) and compare our findings with the recent literature. We find our MS to
be exhibiting slightly lower normalization at z<=2 and to flatten at larger
stellar masses at high redshifts. By deriving the relationship between the peak
dust temperature (Td) and redshift, where Td increases linearly from ~20K at
z=0.5 to ~50 K at z=6, we conclude that the apparent inconsistencies in the
shapes of the MS are most likely caused by the different dust temperatures
assumed when deriving SFRs in the absence of far-IR data. Finally, we
investigate the derived shape of the star-forming MS by simulating the time
evolution of the observed galaxy stellar mass function (GSMF). While the
simulated GSMF is in good agreement with the observed one, some inconsistencies
persist. In particular, we find the simulated GSMF to be somewhat
overpredicting the number density of low-mass galaxies at z>2.Comment: 16 pages, 11 figures, 2 tables, submitted to A&
On the state dependency of fast feedback processes in (palaeo) climate sensitivity
Palaeo data have been frequently used to determine the equilibrium (Charney)
climate sensitivity , and - if slow feedback processes (e.g. land
ice-albedo) are adequately taken into account - they indicate a similar range
as estimates based on instrumental data and climate model results. Most studies
implicitly assume the (fast) feedback processes to be independent of the
background climate state, e.g., equally strong during warm and cold periods.
Here we assess the dependency of the fast feedback processes on the background
climate state using data of the last 800 kyr and a conceptual climate model for
interpretation. Applying a new method to account for background state
dependency, we find K(Wm) using the latest LGM
temperature reconstruction and significantly lower climate sensitivity during
glacial climates. Due to uncertainties in reconstructing the LGM temperature
anomaly, is estimated in the range K(Wm).Comment: submitted to Geophysical Research Letter
A persistent Norwegian Atlantic Current through the Pleistocene glacials
Changes in ocean‐circulation regimes in the northern North Atlantic and the Nordic Seas may affect not only the Arctic but potentially hemispheric or even global climate. Therefore, unraveling the long‐term evolution of the North Atlantic Current‐Norwegian Atlantic Current system through the Pleistocene glaciations could yield useful information and climatological context for understanding contemporary changes. In this work, ~50,000 km2 of 3‐D seismic reflection data are used to investigate the Pleistocene stratigraphy for evidence of paleo‐oceanographic regimes on the mid‐Norwegian margin since 2.58 Ma. Across 33 semicontinuous regional paleo‐seafloor surfaces ~17,500 iceberg scours have been mapped. This mapping greatly expands our spatiotemporal understanding of currents and iceberg presence in the eastern Nordic Seas. The scours display a dominant southwest‐northeast trend that complements previous sedimentological and numerical modeling studies that suggest northward‐flowing currents in the Norwegian Sea during the Pleistocene. This paleo‐oceanographic study suggests that through many of the Pleistocene glaciations, the location of surface ocean currents in the Norwegian Sea and, by extension, the eastern North Atlantic, were broadly similar to the present
Expanding Greenland Ice Sheet Enhances Sensitivity of Plio-Pleistocene Climate to Obliquity Forcing in the Kiel Climate Model
Proxy data suggest the onset of Northern Hemisphere glaciation during the Plio-Pleistocene transition from 3.2 to 2.5 Ma resulted in enhanced climate variability at the obliquity (41 kyr) frequency. Here, we investigate the influence of the expanding Greenland ice sheet (GrIS) on the mean climate and obliquity-related variability in a series of climate model simulations. These suggest that an expanding GrIS weakens the Atlantic Meridional Overturning Circulation (AMOC) by ~1 Sv, mainly due to reduced heat loss in the Greenland-Iceland-Norwegian Sea. Moreover, the growing GrIS amplifies the Hadley circulation response to obliquity forcing driving variations in freshwater export from the tropical Atlantic and in turn variations of the AMOC. The stronger AMOC response to obliquity forcing, by about a factor of two, results in a stronger global-mean near-surface temperature response. We conclude that the AMOC response to obliquity forcing is important to understand the enhanced climate variability at the obliquity frequency during the Plio-Pleistocene transition
Melting behavior of ultrathin titanium nanowires
The thermal stability and melting behavior of ultrathin titanium nanowires
with multi-shell cylindrical structures are studied using molecular dynamic
simulation. The melting temperatures of titanium nanowires show remarkable
dependence on wire sizes and structures. For the nanowire thinner than 1.2 nm,
there is no clear characteristic of first-order phase transition during the
melting, implying a coexistence of solid and liquid phases due to finite size
effect. An interesting structural transformation from helical multi-shell
cylindrical to bulk-like rectangular is observed in the melting process of a
thicker hexagonal nanowire with 1.7 nm diameter.Comment: 4 pages, 4 figure
Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent
A facile chemical reduction method has been developed to fabricate ultrafine copper nanoparticles whose sizes can be controlled down to ca. 1 nm by using poly(N-vinylpyrrolidone) (PVP) as the stabilizer and sodium borohyrdride as the reducing agent in an alkaline ethylene glycol (EG) solvent. Transmission electron microscopy (TEM) results and UV–vis absorption spectra demonstrated that the as-prepared particles were well monodispersed, mostly composed of pure metallic Cu nanocrystals and extremely stable over extended period of simply sealed storage
Auxetic foam for snowsport safety devices
Skiing and snowboarding are popular snow-sports with inherent risk of injury. There is potential to reduce the prevalence of injuries by improving and implementing snow-sport safety devices with the application of advanced materials. This paper investigates the application of auxetic foam to snow-sport safety devices. Composite pads - consisting of foam covered with a semi-rigid shell - were investigated as a simple model of body armour and a large 70 x 355 x 355 mm auxetic foam sample was fabricated as an example crash barrier. The thermo-mechanical conversion process was applied to convert open-cell polyurethane foam to auxetic foam. The composite pad with auxetic foam absorbed around three times more energy than the conventional equivalent under quasi-static compression with a concentrated load, indicating potential for body armour applications. An adapted thermo-mechanical process - utilising through-thickness rods to control in-plane compression - was applied to fabricate the large sample with relatively consistent properties throughout, indicating further potential for fabrication of a full size auxetic crash barrier. Further work will create full size prototypes of snow-sport safety devices with comparative testing against current products
- …