362 research outputs found

    Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean

    Get PDF
    The boreoatlantic gonate squid (Gonatus fabricii) represents important prey for top predators—such as marine mammals, seabirds and fish—and is also an efficient predator of crustaceans and fish. Gonatus fabricii is the most abundant cephalopod in the northern Atlantic and Arctic Ocean but the trace element accumulation of this ecologically important species is unknown. In this study, trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were analysed from the mantle muscle and the digestive gland tissue of juveniles, adult females, and adult males that were captured south of Disko Island off West-Greenland. To assess the feeding habitat and trophic position of this species, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were measured in their muscle tissue. Mercury concentrations were positively correlated with size (mantle length) and trophic position. The Hg/Se ratio was assessed because Se has been suggested to play a protective role against Hg toxicity and showed a molar surplus of Se relative to Hg. Cadmium concentrations in the digestive gland were negatively correlated with size and trophic position (δ15N), which suggested a dietary shift from Cd-rich crustaceans towards Cd-poor fish during ontogeny. This study provides trace element concentration data for G. fabricii from Greenlandic waters, which represents baseline data for a northern cephalopod species. Within West-Greenland waters, G. fabricii appears to be an important vector for the transfer of Cd in the Arctic pelagic food web

    Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces

    Get PDF
    Electron accumulation is found to occur at the surface of wurtzite (112¯0), (0001), and (0001¯) and zinc-blende (001) InN using x-ray photoemission spectroscopy. The accumulation is shown to be a universal feature of InN surfaces. This is due to the low Г-point conduction band minimum lying significantly below the charge neutrality level

    Resonances in a two-dimensional electron waveguide with a single delta-function scatterer

    Full text link
    We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single delta-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasi-bound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption and show the influence of the quasi-bound states on these two quantities.Comment: 5 pages, 6 figures, to be published in Physical Review

    From Au-Thiolate Chains to Thioether Sierpiński Triangles: The Versatile Surface Chemistry of 1,3,5-Tris(4-Mercaptophenyl)Benzene on Au(111)

    Get PDF
    Self-assembly of 1,3,5-tris(4-mercaptophenyl)benzene (TMB) – a three-fold symmetric, thiol functionalized aromatic molecule – was studied on Au(111) with the aim to realize extended Au-thiolate linked molecular architectures. The focus lay on resolving thermally activated structural and chemical changes by a combination of microscopy and spectroscopy. Thereby Scanning Tunneling Microscopy provided submolecularly resolved structural information, while the chemical state of sulfur was assessed by X-ray Photoelectron Spectroscopy. Directly after room temperature deposition only less well ordered structures were observed. Mild annealing promoted the first structural transition into ordered molecular chains, partly organized in homochiral molecular braids. Further annealing led to self-similar Sierpiński triangles, while annealing at even higher temperatures again resulted in mostly disordered structures. Both the irregular aggregates observed at room temperature and the chains were identified as metal-organic assemblies, whereby two out of the three intermolecular binding motifs are energetically equivalent according to Density Functional Theory simulations. The emergence of Sierpiński triangles is driven by a chemical transformation, i.e. the conversion of coordinative Au-thiolate to covalent thioether linkages, and can be further understood by Monte Carlo simulations. The great structural variance of TMB on Au(111) can on one hand be explained by the energetic equivalence of two binding motifs. On the other hand, the unexpected chemical transition even enhances the structural variance and results in thiol-derived covalent molecular architectures

    Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh

    Get PDF
    Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide

    Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming

    Get PDF
    Interpreting the vulnerability of pelagic calcifiers to ocean acidification (OA) is enhanced by an understanding of their critical thresholds and how these thresholds are modified by other climate change stressors (e.g., warming). To address this need, we undertook a three-part data synthesis for pteropods, one of the calcifying zooplankton group. We conducted the first meta-analysis and threshold analysis of literature characterizing pteropod responses to OA and warming by synthetizing dataset comprising of 2,097 datapoints. Meta-analysis revealed the extent to which responses among studies conducted on differing life stages and disparate geographies could be integrated into a common analysis. The results demonstrated reduced calcification, growth, development, and survival to OA with increased magnitude of sensitivity in the early life stages, under prolonged duration, and with the concurrent exposure of OA and warming, but not species-specific sensitivity. Second, breakpoint analyses identified OA thresholds for several endpoints: dissolution (mild and severe), calcification, egg development, shell growth, and survival. Finally, consensus by a panel of pteropod experts was used to verify thresholds and assign confidence scores for five endpoints with a sufficient signal: noise ratio to develop life-stage specific, duration-dependent thresholds. The range of aragonite saturation state from 1.5–0.9 provides a risk range from early warning to lethal impacts, thus providing a rigorous basis for vulnerability assessments to guide climate change management responses, including an evaluation of the efficacy of local pollution management. In addition, meta-analyses with OA, and warming shows increased vulnerability in two pteropod processes, i.e., shell dissolution and survival, and thus pointing toward increased threshold sensitivity under combined stressor effect

    Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    Get PDF
    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.Peer reviewe
    • …
    corecore