1,298 research outputs found
Recommended from our members
Multi-omic analysis elucidates the genetic basis of hydrocephalus.
We conducted PrediXcan analysis of hydrocephalus risk in ten neurological tissues and whole blood. Decreased expression of MAEL in the brain was significantly associated (Bonferroni-adjusted p < 0.05) with hydrocephalus. PrediXcan analysis of brain imaging and genomics data in the independent UK Biobank (N = 8,428) revealed that MAEL expression in the frontal cortex is associated with white matter and total brain volumes. Among the top differentially expressed genes in brain, we observed a significant enrichment for gene-level associations with these structural phenotypes, suggesting an effect on disease risk through regulation of brain structure and integrity. We found additional support for these genes through analysis of the choroid plexus transcriptome of a murine model of hydrocephalus. Finally, differential protein expression analysis in patient cerebrospinal fluid recapitulated disease-associated expression changes in neurological tissues, but not in whole blood. Our findings provide convergent evidence highlighting the importance of tissue-specific pathways and mechanisms in the pathophysiology of hydrocephalus
Multi-omic analysis elucidates the genetic basis of hydrocephalus
We conducted PrediXcan analysis of hydrocephalus risk in ten neurological tissues and whole blood. Decreased expression of MAEL in the brain was significantly associated (Bonferroni-adjusted p \u3c 0.05) with hydrocephalus. PrediXcan analysis of brain imaging and genomics data in the independent UK Biobank (N = 8,428) revealed that MAEL expression in the frontal cortex is associated with white matter and total brain volumes. Among the top differentially expressed genes in brain, we observed a significant enrichment for gene-level associations with these structural phenotypes, suggesting an effect on disease risk through regulation of brain structure and integrity. We found additional support for these genes through analysis of the choroid plexus transcriptome of a murine model of hydrocephalus. Finally, differential protein expression analysis in patient cerebrospinal fluid recapitulated disease-associated expression changes in neurological tissues, but not in whole blood. Our findings provide convergent evidence highlighting the importance of tissue-specific pathways and mechanisms in the pathophysiology of hydrocephalus
Creating research-ready partnerships: The initial development of seven implementation laboratories to advance cancer control
BACKGROUND: In 2019-2020, with National Cancer Institute funding, seven implementation laboratory (I-Lab) partnerships between scientists and stakeholders in \u27real-world\u27 settings working to implement evidence-based interventions were developed within the Implementation Science Centers in Cancer Control (ISC3) consortium. This paper describes and compares approaches to the initial development of seven I-Labs in order to gain an understanding of the development of research partnerships representing various implementation science designs.
METHODS: In April-June 2021, members of the ISC3 Implementation Laboratories workgroup interviewed research teams involved in I-Lab development in each center. This cross-sectional study used semi-structured interviews and case-study-based methods to collect and analyze data about I-Lab designs and activities. Interview notes were analyzed to identify a set of comparable domains across sites. These domains served as the framework for seven case descriptions summarizing design decisions and partnership elements across sites.
RESULTS: Domains identified from interviews as comparable across sites included engagement of community and clinical I-Lab members in research activities, data sources, engagement methods, dissemination strategies, and health equity. The I-Labs use a variety of research partnership designs to support engagement including participatory research, community-engaged research, and learning health systems of embedded research. Regarding data, I-Labs in which members use common electronic health records (EHRs) leverage these both as a data source and a digital implementation strategy. I-Labs without a shared EHR among partners also leverage other sources for research or surveillance, most commonly qualitative data, surveys, and public health data systems. All seven I-Labs use advisory boards or partnership meetings to engage with members; six use stakeholder interviews and regular communications. Most (70%) tools or methods used to engage I-Lab members such as advisory groups, coalitions, or regular communications, were pre-existing. Think tanks, which two I-Labs developed, represented novel engagement approaches. To disseminate research results, all centers developed web-based products, and most (n = 6) use publications, learning collaboratives, and community forums. Important variations emerged in approaches to health equity, ranging from partnering with members serving historically marginalized populations to the development of novel methods.
CONCLUSIONS: The development of the ISC3 implementation laboratories, which represented a variety of research partnership designs, offers the opportunity to advance understanding of how researchers developed and built partnerships to effectively engage stakeholders throughout the cancer control research lifecycle. In future years, we will be able to share lessons learned for the development and sustainment of implementation laboratories
Solution structure of the SGTA dimerisation domain and investigation of its interactions with the ubiquitin-like domains of BAG6 and UBL4A
BACKGROUND: The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. METHODOLOGY AND PRINCIPAL FINDINGS: SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes. SIGNIFICANCE: This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex
Shifts in the Fecal Microbiota Associated with Adenomatous Polyps
BACKGROUND:
Adenomatous polyps are the most common precursor to colorectal cancer, the second leading cause of cancer-related death in the United States. We sought to learn more about early events of carcinogenesis by investigating shifts in the gut microbiota of patients with adenomas.
METHODS:
We analyzed 16S rRNA gene sequences from the fecal microbiota of patients with adenomas (n = 233) and without (n = 547).
RESULTS:
Multiple taxa were significantly more abundant in patients with adenomas, including Bilophila, Desulfovibrio, proinflammatory bacteria in the genus Mogibacterium, and multiple Bacteroidetes species. Patients without adenomas had greater abundances of Veillonella, Firmicutes (Order Clostridia), and Actinobacteria (family Bifidobacteriales). Our findings were consistent with previously reported shifts in the gut microbiota of colorectal cancer patients. Importantly, the altered adenoma profile is predicted to increase primary and secondary bile acid production, as well as starch, sucrose, lipid, and phenylpropanoid metabolism.
CONCLUSIONS:
These data hint that increased sugar, protein, and lipid metabolism along with increased bile acid production could promote a colonic environment that supports the growth of bile-tolerant microbes such as Bilophilia and Desulfovibrio In turn, these microbes may produce genotoxic or inflammatory metabolites such as H2S and secondary bile acids, which could play a role in catalyzing adenoma development and eventually colorectal cancer.
IMPACT:
This study suggests a plausible biological mechanism to explain the links between shifts in the microbiota and colorectal cancer. This represents a first step toward resolving the complex interactions that shape the adenoma-carcinoma sequence of colorectal cancer and may facilitate personalized therapeutics focused on the microbiota
MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis
ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants
Co-formulation of the rF1V plague vaccine with depot-formulated cytokines enhances immunogenicity and efficacy to elicit protective responses against aerosol challenge in mice
This study evaluated a depot-formulated cytokine-based adjuvant to improve the efficacy of the recombinant F1V (rF1V) plague vaccine and examined the protective response following aerosol challenge in a murine model. The results of this study showed that co-formulation of the Alhydrogel-adsorbed rF1V plague fusion vaccine with the depot-formulated cytokines recombinant human interleukin 2 (rhuIL-2) and/or recombinant murine granulocyte macrophage colony-stimulating factor (rmGM-CSF) significantly enhances immunogenicity and significant protection at lower antigen doses against a lethal aerosol challenge. These results provide additional support for the co-application of the depot-formulated IL-2 and/or GM-CSF cytokines to enhance vaccine efficacy
Authoritarian Regime Learning: Comparative Insights from the Arab Uprisings
This paper examines the learning of authoritarian regimes in the early phase of the Arab uprisings. Differentiating conceptually between learning and policy change, we analyze and compare the authoritarian regimes of Algeria, Bahrain, Jordan, and Syria and their reactions to the challenge of "late riser" oppositional protests. We first show that the four regimes initiated very diverse measures in the domains of repression, material co-optation, and legal reforms. With regard to the sources of learning, we find that proximity is a determining factor, in terms of both geography and political similarity. Using the case of Bahrain, we then demonstrate that structural factors such as internal power structures, regional and international pressures, or state capacity can decisively constrain the implementation of learning-induced policy change. Overall, the paper aims to contribute to the emerging research on the international dimension of authoritarian regimes in the Middle East and beyond
- …