1,280 research outputs found

    Fitted HBT radii versus space-time variances in flow-dominated models

    Get PDF
    The inability of otherwise successful dynamical models to reproduce the ``HBT radii'' extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the ``RHIC HBT Puzzle.'' Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source which can be directly computed from the emission function, without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models some of which exhibit significant deviations from simple Gaussian behaviour. By Fourier transforming the emission function we compute the 2-particle correlation function and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and measured HBT radii remain, we show that a more ``apples-to-apples'' comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.Comment: 12 pages, 16 color figure

    Tilted Pion Sources from Azimuthally Sensitive HBT Interferometry

    Get PDF
    Intensity interferometry in noncentral heavy ion collisions provides access to novel information on the geometry of the effective pion-emitting source. We demonstrate analytically that, even for vanishing pair momentum, the cross terms Rol2R_{ol}^2 and Rsl2R_{sl}^2 of the HBT correlation function in general show a strong first harmonic in their azimuthal dependence. The strength of this oscillation characterizes the tilt of the major axis of the spatial emission ellipsoid away from the direction of the beam. Event generator studies indicate that this tilt can be large (>20 degrees) at AGS energies which makes it by far the most significant azimuthally sensitive HBT signal at these energies. Moreover, transport models suggest that for pions this spatial tilt is directed opposite to the tilt of the directed flow ellipsoid in momentum space. A measurement of the azimuthal dependence of the HBT cross terms Rol2R_{ol}^2 and Rsl2R_{sl}^2 thus probes directly the physical origin of directed pion flow.Comment: submitted to Phys. Rev. Lett; revised version has some wording changes/clarification, finer binning in q leads to tiny changes in Fig. 2, one new referenc

    Symmetry constraints for the emission angle dependence of Hanbury Brown--Twiss radii

    Full text link
    We discuss symmetry constraints on the azimuthal oscillations of two-particle correlation (Hanbury Brown--Twiss interferometry) radii for non-central collisions between equal spherical nuclei. We also propose a new method for correcting in a model-independent way the emission angle dependent correlation function for finite event plane resolution and angular binning effects.Comment: 8 pages revtex4, 2 tables, no figures. Short Section VI added and correction algorithm in Section VII made more explicit. Submitted to Physical Review

    Photon HBT interferometry for non-central heavy-ion collisions

    Get PDF
    Currently, the only known way to obtain experimental information about the space-time structure of a heavy-ion collision is through 2-particle momentum correlations. Azimuthally sensitive HBT interferometry (Hanbury Brown-Twiss intensity interferometry) can complement elliptic flow measurements by constraining the spatial deformation of the source and its time evolution. Performing these measurements on photons allows us to access the fireball evolution at earlier times than with hadrons. Using ideal hydrodynamics to model the space-time evolution of the collision fireball, we explore theoretically various aspects of 2-photon intensity interferometry with transverse momenta up to 2 GeV, in particular the azimuthal angle dependence of the HBT radii in non-central collisions. We highlight the dual nature of thermal photon emission, in both central and non-central collisions, resulting from the superposition of QGP and hadron resonance gas photon production. This signature is present in both the thermal photon source function and the HBT radii extracted from Gaussian fits of the 2-photon correlation function.Comment: 18 pages, 12 figure

    Beam Energy Evolution of HBT Systematics at the AGS

    Full text link
    We present preliminary results of the first pion interferometry (HBT) excitation function at intermediate AGS energies. The beam energy evolution of the correlations' dependence on mT, centrality, and emission angle with respect to the reaction plane are discussed. Comparisons with predictions of the RQMD cascade model are made.Comment: to appear in proceedings of Quark Matter '9

    Describing transverse dynamics and space-time evolution at RHIC in a hydrodynamic model with statistical hadronization

    Full text link
    A hydrodynamic model coupled to the statistical hadronization code Therminator is used to study a set of observables in the soft sector at RHIC. A satisfactory description of the pT-spectra and elliptic flow is obtained, similarly to other hydrodynamic models. With the Gaussian initial conditions the transverse femtoscopic radii are also reproduced, providing a possible solution of the RHIC HBT puzzle.Comment: to appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    The use of ultrasonic measurements assessed with two probes in live lambs for predicting the carcass composition

    Get PDF
    The accuracy of the use of two probes (UST-586-5 MHz and UST-556 tu-7.5 MHz) for predicting the carcass composition were used in 36 lambs of Churra Bragançana breed ranging in body weight from 26 to 47kg. Comparison between the ultrasonic measurements assessed in live lambs with the same measurements taken on carcass were established. The best relationship obtained were between the ultrasonic measurements assessed with 7.5 MHz probe on last rib and the same fat thickness measurements taken on carcass. Between 41 and 86tm of the variation in the weight of carcass components were accounted for by variation in body weight and the ultrasonic measurements

    Hydrodynamic emission of strange and non-strange particles at RHIC and LHC

    Full text link
    The hydrodynamic model is used to describe the single-particle spectra and elliptic flow of hadrons at RHIC and to predict the emission angle dependence of HBT correlations at RHIC and LHC energies.Comment: 6 pages LaTeX, 3 postscript figures. Proceedings for the conference "Strange Quark Matter 2003", Atlantic Beach, NC, March 12-17, 2003, to appear in J. Phys.

    Emission angle dependent pion interferometry at RHIC and beyond

    Get PDF
    We use hydrodynamics to generate freeze-out configurations for non-central heavy-ion collisions at present and future collider energies. Such collisions are known to produce strong elliptic flow. The accompanying space-time structure of the source at freeze-out is analyzed using pion interferometry. Between RHIC and LHC energies the source deformation in the transverse plane changes sign. This leaves characteristic signatures in the emission angle dependence of the HBT radii.Comment: Minor changes (some references and discussion added), accepted by Physics Letters

    Intracellular localization of Crimean-Congo Hemorrhagic Fever (CCHF) virus glycoproteins

    Get PDF
    BACKGROUND: Crimean-Congo Hemorrhagic Fever virus (CCHFV), a member of the genus Nairovirus, family Bunyaviridae, is a tick-borne pathogen causing severe disease in humans. To better understand the CCHFV life cycle and explore potential intervention strategies, we studied the biosynthesis and intracellular targeting of the glycoproteins, which are encoded by the M genome segment. RESULTS: Following determination of the complete genome sequence of the CCHFV reference strain IbAr10200, we generated expression plasmids for the individual expression of the glycoproteins G(N )and G(C), using CMV- and chicken β-actin-driven promoters. The cellular localization of recombinantly expressed CCHFV glycoproteins was compared to authentic glycoproteins expressed during virus infection using indirect immunofluorescence assays, subcellular fractionation/western blot assays and confocal microscopy. To further elucidate potential intracellular targeting/retention signals of the two glycoproteins, GFP-fusion proteins containing different parts of the CCHFV glycoprotein were analyzed for their intracellular targeting. The N-terminal glycoprotein G(N )localized to the Golgi complex, a process mediated by retention/targeting signal(s) in the cytoplasmic domain and ectodomain of this protein. In contrast, the C-terminal glycoprotein G(C )remained in the endoplasmic reticulum but could be rescued into the Golgi complex by co-expression of G(N). CONCLUSION: The data are consistent with the intracellular targeting of most bunyavirus glycoproteins and support the general model for assembly and budding of bunyavirus particles in the Golgi compartment
    • …
    corecore