
PHYSICAL REVIEW C 73, 044908 (2006)

Fitted Hanbury-Brown–Twiss radii versus space-time variances in flow-dominated models
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The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown–Twiss (HBT) radii
extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as
the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian
sources the HBT radii agree with certain combinations of the space-time widths of the source that can be
directly computed from the emission function without having to evaluate, at significant expense, the two-particle
correlation function. We here study the validity of this approach for realistic emission function models, some
of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission
function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the
procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit
analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree
better with the data than the values previously extracted from the space-time widths of the emission function.
Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a
more apples-to-apples comparison of models with data can play an important role in any eventually successful
theoretical description of RHIC HBT data.
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I. INTRODUCTION

Two-particle intensity interferometry is widely used to
characterize the space-time aspects of the freeze-out config-
uration in relativistic heavy-ion collisions [1]. It is common
to condense this information in terms of characteristic length
scales of the homogeneity regions [2] from which particles of
a given momentum originate.

In this paper we discuss the degree to which homogeneity
lengths extracted in quite different ways may be validly
compared. Throughout our study, we restrict ourselves to
interference effects between identical, noninteracting bosons,
resulting from Bose-Einstein statistics. Since final state in-
teractions (e.g., Coulomb effects) affect most interferometry
studies, our study may be regarded (1) as a proof-of-principle
example that care must be taken to perform apples-to-apples
comparisons and (2) as an estimate of the magnitude of the
differences for two popular theoretical models.

The homogeneity length scales are extracted in experiments
by assuming that the homogeneity region can be approximated
by a Gaussian-profile ellipsoid in configuration space, result-
ing in a Gaussian two-particle momentum correlation function,
and performing a semianalytic Gaussian fit to the relative
momentum dependence of the measured correlation function
(see, e.g., Ref. [1] for details). Following common practice,
we will refer in the following to the size parameters obtained
from Gaussian fits to the correlation function as “HBT radii.”

Fitting experimental data to functional forms other than
Gaussian is common in studies of elementary particle col-
lisions, for which Gaussian fits clearly fail. In heavy-ion
collisions, the Gaussian ansatz works relatively well, but,
especially with the high-quality and high-statistics data sets
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now available at RHIC, finer, non-Gaussian structures may
be physically interesting. Instead of inventing ad hoc func-
tional forms with which to fit the correlation functions, or
functionally expanding about a Gaussian fitting form [3,4],
imaging [5–7] the homogeneity region is perhaps the most
promising route to explore these structures. In this paper we do
not take up this issue. Instead, we note that most experimental
studies in heavy-ion physics to date have used the Gaussian
ansatz [1], and we explore some ways in which HBT radii
obtained in this way from data may be compared with model
calculations.

If the homogeneity region is indeed Gaussian in profile, then
the HBT radii agree exactly with appropriate combinations
of the root-mean-squared (RMS) variances of its spatial
distribution [8]. Given a theoretical model for the freeze-out
configuration, calculating these space-time variances is much
easier than computing and fitting the correlation function.
Many comparisons between models and data therefore use
this shortcut, comparing the space-time variances directly with
the experimental HBT radii. However, since the homogeneity
region is seldom perfectly Gaussian, such direct comparisons
are questionable.

This raises the question to what extent some of the
persistently observed discrepancies between model predic-
tions and measurements of the HBT radii [1] (the so-called
RHIC HBT Puzzle) might be due to such an apples-with-
oranges comparison. Indeed, HBT radii calculated with
Boltzmann/cascade models that are based on Gaussian fits
to the simulated correlation functions agree somewhat better
with measurements than do radii based on an extraction of
space-time variances from hydrodynamic calculations [1].
Whether this is due to a more realistic modeling of the collision
in the Boltzmann/cascade approach or the shortcomings of the
comparison of variances with HBT radii in the hydrodynamic
case is unclear. Similarly, differences between hydrodynamic
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calculations of space-time variances [9,10] and Gaussian HBT
radii fitted to three-dimensional [11–13] and one-dimensional
[14,15] correlations have been observed. However, since
these calculations were performed by using different initial
conditions and other parameters, it is unclear whether this,
or the different extraction methods, were responsible for the
observed differences.

Isolating the effect of the method itself is best done
by using the same hydrodynamic model and parameters
and comparing radii calculated in different ways. One such
study [16] compared space-time variances with Gaussian radii
extracted from moments of the calculated correlation function.
For identical kaon correlations, the radii extracted were almost
independent of the method used. In the present study, we use a
more sophisticated technique to emulate the three-dimensional
Gaussian fits used by experimentalists, and we focus on pion
correlations, for which the HBT Puzzle has been studied in
detail. In our study, we find that the method used to extract the
radii does, indeed, matter.

One cascade model (MPC [17]) that reports RMS vari-
ances shows discrepancies with data similar to the hydrody-
namic models. Studies [18–20] performed within the Boltz-
mann/cascade framework show that space-time variances of
the freeze-out configuration and Gaussian fits to the correlator
can yield quite different radius parameters, due mostly to
long tails in the spatial freeze-out distribution from resonance
decays that strongly affect the space-time variances but are not
reflected in Gaussian fits to the correlation function, according
to hydrodynamic calculations [21]. (See, however, the recent
study by Kisiel et al. [22], which addresses this issue in detail
in the context of a blast-wave parametrization.) Hydrodynamic
calculations of the space-time variances therefore usually do
not include resonance decay contributions in the emission
function [9]. Still, the comparison in Ref. [9] involves two
differently determined quantities, and in the present paper we
eliminate this shortcoming.

To do so requires two additional steps beyond the cal-
culation of the model emission function: (i) The correla-
tion function must be computed via Fourier transformation
(for noninteracting identical particles) or by folding with a
relative wave function that includes final state interaction
effects (for with long-range final state interactions). This is
straightforward, albeit numerically expensive since it involves
multiple space-time integrals. (ii) A Gaussian fit to the three-
dimensional correlation function must be performed, including
a correlation strength parameter λ as in the experiment.

We here concentrate on noninteracting pairs of identical
particles as the most important case in practice and also in
order to simplify as much as possible the computation of
the correlator. For the second step we develop an analytical
Gaussian fit algorithm that reduces the multidimensional fit
problem to a simple set of linear equations for diagonalizing a
four-dimensional matrix. This should help theoretical model-
ers to overcome the barrier of unfamiliarity when faced with a
multiparameter fitting problem.

We apply our procedure to emission functions from hydro-
dynamic calculations [9] and from the blast-wave parametriza-
tion [23]. Both generate non-Gaussian freeze-out distributions,
due in large measure to finite-size effects coupled with strong

collective flow, which is known to be important at RHIC. On
the way, we also discuss and analyze Gaussian fits to one-
dimensional projections of the three-dimensional correlator.
This allows for comparison with earlier work along these
lines [14,21] and first introduces our new analytic Gaussian
fit algorithm in an easy and transparent simpler setting.

II. VARIANCES VERSUS HBT RADII

Experimentally, the correlation function between two
identical particles, as a function of their relative mo-
mentum q ≡ pa− pb and their average (pair) momentum
K ≡ ( pa+ pb)/2, is given by

C(q, K ) = A(q, K )

B(q, K )
, (1)

where A(q, K ) is the signal distribution and B(q, K ) is the
reference or background distribution, which is ideally similar
to A in all respects except for the presence of femtoscopic
correlations (see, e.g., Ref. [1] for details). C(q, K ) is the
modification of the conditional probability for measuring
particle b with momentum pb = K− 1

2 q if particle a has been
measured with momentum pa = K+ 1

2 q, due to two-particle
effects sensitive to space-time separation, too. The explicit K
dependence reflects the fact that the separation distribution
may depend on the average momentum of the pair [2] and in
general does so for exploding sources [24].

Theoretically, the correlation function can be calculated
from the emission function S( p, x) describing the probability
to emit a particle from space-time point x with momentum p,
by convoluting it with the two-particle relative wave function
[1]. For pairs of noninteracting identical particles one has
simply [1,3]

C(q, K ) ≈ 1 +
∣∣∣∣
∫

d4xS(K , x) eiq·x∫
d4xS(K , x)

∣∣∣∣
2

. (2)

Here q · x = q0t − q · x, with q0 = Ea−Eb = β · q, where
β = K/K0 = 2K/(Ea+Eb) is the average velocity of the pair.
The ≈ sign in Eq. (2) indicates the smoothness approximation,
which replaces both pa and pb by K inside the emission func-
tions in the denominator [3]. Equation (2) can be decomposed
as

C(q, K ) = 1 + 〈cos(q · x)〉2 + 〈sin(q · x)〉2, (3)

where 〈. . .〉 indicates the (K -dependent) space-time average
with the emission function:

〈f 〉 ≡
∫

d4xf (x) S(K , x)∫
d4xS(K , x)

. (4)

If S(K , x) is a four-dimensional Gaussian distribution of
freeze-out points, the correlation function will likewise be
Gaussian in the relative momentum q. It takes a particularly
simple form for midrapidity pairs (with vanishing longitudinal
pair momentum, KL = 0) from central collisions between
equal-mass spherical nuclei [1,8]:

C(q) = 1 + λe−(q2
oR2

o+q2
s R2

s +q2
l R2

l ). (5)
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Here qo, qs, ql are the relative momentum components in
the Bertsch-Pratt (out-side-long) coordinate system [1,8].
The pair momentum dependence of the correlation function
C(q, K ) leads to K dependencies of the HBT radii Ro,Rs ,
and Rl (which characterize the relative momentum widths of
the correlation function) and of the correlation strength λ.
For fully chaotic theoretical Gaussian sources λ ≡ 1, but for
experimental correlation functions usually λ < 1. Even though
we here perform a theoretical model analysis, we keep λ as a
parameter because Gaussian fits to non-Gaussian correlation
functions generally also yield λ �= 1, and experimentally such
non-Gaussian effects on the extracted λ cannot be separated
from other origins of reduced correlation strength (such as
contamination from misidentified particles and contributions
from resonance decays [1]). The HBT radii defined by Eq. (5)
convey all available geometric information about the source
S(K , x).

For Gaussian sources the radius parameters Ro,Rs , and
Rl can be calculated directly from the source distribution S
as RMS variances. For midrapidity pairs with KL = 0 one
finds [8]

R2
o = 〈

x̃2
o

〉 − 2β〈x̃ot̃〉 + β2〈t̃2〉,
(6)

R2
s = 〈

x̃2
s

〉
, R2

l = 〈
x̃2

l

〉
,

where β = KT /K0 is the magnitude of the (transverse) pair
velocity (which points in the xo direction), and

x̃µ ≡ xµ − 〈xµ〉 (7)

denotes the distance from the (K -dependent) center of the
homogeneity region for particles with momentum K .

Experimentalists commonly extract HBT radii by fitting
their experimental correlation functions (1) with the functional
form (5). In contrast, most (but not all) theoretical model
predictions for HBT radii are based on a calculation of the
space-time variances of the emission function and assuming
the validity of Eqs. (6), which holds for Gaussian sources. Of
course, there is no a priori reason to expect a source with a
perfectly Gaussian profile. Even the simplest flow-dominated
freeze-out parametrizations produce clear non-Gaussian tails
and edges [23]. On the experimental side, high-statistics mea-
surements show non-Gaussian behavior, which is, however
rarely treated quantitatively [4]. In the presence of such
non-Gaussian features, the issues are (1) whether the two
approaches yield significantly different results and (2) whether
either method characterizes the physically interesting length
scales of the source sufficiently well. Here, we address the first
issue in the context of blast-wave and hydrodynamic models.

Our calculations do not include experimental noise, particle
misidentification, or contributions from the decay of long-
lived resonances, which can reduce the fit parameter λ in
Eq. (5) from its theoretical value of unity [1,21]. Instead, this
parameter absorbs (and reflects) some of the effects of fitting a
non-Gaussian function to a Gaussian form. This will, of course,
also happen in experiment whenever the correlation function
deviates from a simple Gaussian. This particular contribution
to the fitted correlation strength λ has so far received little
attention. The model results presented here should help to

assess the possible influence of non-Gaussian features in the
data on the fitted values of λ.

III. DIRECT CALCULATION OF HBT RADII

As explained in the Introduction, we here use model emis-
sion functions to compute the correlation function according
to Eqs. (2) and (3) and then fit the latter with a Gaussian,
using a procedure very similar to the one used in experiment.
The main difference is that the theoretical correlation function
can be calculated with arbitrary precision, so the notion of a
statistical error does not enter. Still, we will see that the fitting
problem can be formulated in a quite analogous way.

In the following subsection we introduce the algorithm for
Gaussian fits through one-dimensional cuts or projections of
the three-dimensional correlation function. The full algorithm
for three-dimensional Gaussian fits is presented in Sec. III B.

A. One-dimensional Gaussian fits

In Sec. VI of their paper, Wiedemann and Heinz [21]
calculated correlators for various model emission functions
and extracted parameters from fits to one-dimensional slices
of the three-dimensional correlation function. Although those
authors called them HBT radii, we will call them 1D radii
to distinguish them from radii extracted from full three-
dimensional fits of the type performed by experimentalists.

In a given direction i (i = o, s, l) they calculate the
correlator along one of the axes i: C(qi ; qj �=i = 0). They
then find the 1D radius R2

1D,i and the “directional lambda
parameter” λi that best approximates the correlator according
to

C(qi ; qj �=i = 0) ≈ 1 + λie
−q2

i R2
1D,i . (8)

In particular, they calculated the correlator for a set of N values
q

(k)
i (similar to experimentally binning the correlation function

into N q bins) and minimized numerically the quantity

N∑
k=1

{
ln

[
C

(
q

(k)
i ; q(k)

j �=i = 0
) − 1

] − ln λi + R2
1D,i

(
q

(k)
i

)2
}2

. (9)

This is reminiscent of the quantity typically minimized by
experimenters, although in this case one also takes into account
the experimental uncertainty of the measured correlator by
weighting each term in the sum (bin) with the inverse
experimental error:

χ2
1D,i

≡
N∑

k=1

{
ln

[
C

(
q

(k)
i ; q(k)

j �=i = 0
)−1

] − ln λi + R2
1D,i

(
q

(k)
i

)2

σ ′ (k)
1D,i

}2

.

(10)

Here, σ ′ (k)
1D,i represents the uncertainty in bin k in the quantity to

be fitted, namely, ln[C(q(k)
i ; q(k)

j �=i = 0) − 1]. It is related to the

uncertainty σ
(k)
1D,i in the measured correlator C(q(k)

i ; q(k)
j �=i = 0)
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itself by

σ ′ (k)
1D,i = d ln

[
C

(
q

(k)
i ; q(k)

j �=i = 0
) − 1

]
dC

(
q

(k)
i ; q(k)

j �=i = 0
) σ

(k)
1D,i

= σ
(k)
1D,i

C
(
q

(k)
i ; q(k)

j �=i = 0
) − 1

. (11)

Minimization of quantity (9) as in Ref. [21] is equivalent to
setting all uncertainties σ ′ (k)

1D,i to the same constant value,
independent of k. However, uncertainties in experimental
correlation functions typically have approximately constant (k-
independent) uncertainties in the bin contents C(q(k)

i ; q(k)
j �=i =

0) themselves [25]. Although statistical uncertainties in cal-
culated correlators may in principle be vanishingly small, the
weighting factor [C(q(k)

i ;q(k)
j �=i = 0)−1]2 that appears in Eq. (10)

as a result of Eq. (11) will in general affect the resulting fit
parameters. We choose to mimic the experimental situation by
minimizing Eq. (10), assuming constant (i.e., k-independent)
and infinitesimally small errors on C, σ

(k)
1D,i = σ1D,i → 0.

Minimizing χ2
1D,i in Eq. (10) with respect to the fit

parameters ln λi and R2
1D,i by setting

∂χ2
1D,i

∂ ln λi

= 0,
∂χ2

1D,i

∂R2
1D,i

= 0, (12)

we find after minimal algebra

ln λi = X2,iY2,i − X0,iY4,i

Y 2
2,i − Y0,iY4,i

, (13)

R2
1D,i = X2,iY0,i − X0,iY2,i

Y 2
2,i − Y0,iY4,i

, (14)

where the quantities

Xn,i =
N∑

k=1

(
q

(k)
i

)n(
σ ′ (k)

1D,i

)2 ln
[
C

(
q

(k)
i ; q(k)

j �=i = 0
) − 1

]
, (15)

Yn,i =
N∑

k=1

(
q

(k)
i

)n(
σ ′ (k)

1D,i

)2 (16)

are directly calculable from the calculated correlator. Note that
the constant error σ1D,i of the correlator drops out from the
ratios in Eqs. (13) and (14), so the limit σ1D,i → 0 mentioned
above is well defined.

Minimization of χ2
1D,i differs significantly from the exper-

imentalists’ three-dimensional fits. In particular, it assumes
complete factorization of the correlation function in the o, s, l

directions. For at least two reasons, this need not be so in
reality:

(i) In a full three-dimensional fit, the three directions
are coupled by requiring a single λ parameter, in-
dependent of direction i. After all, according to
Eq. (8) lim|q|→0 C(q) = limqi→0 C(qi ; qj �=i=0) = 1 + λi

should be independent of direction i. Thus, allowing
directional lambda parameters may cause the 1D fits to
differ significantly from 3D fits.

(ii) Perhaps more important, fitting separately along the qi

axes accounts for only a set of zero measure of the full

three-dimensional correlation function. In particular, the
correlation function may contain in the exponent terms
such as q2

oq
2
s or q4

oq
2
l . (For symmetry reasons [26] odd

powers of qi vanish at midrapidity for central collisions
between equal nuclei.) Such higher-order terms will affect
the 3D fits of the experimentalist but have no effect on
Eq. (10).

We therefore now turn to full three-dimensional Gaussian
fits. We will see that the above analytic expressions are easily
generalized for this case.

B. Three-dimensional Gaussian fit algorithm

Proceeding as in the previous subsection, we start from the
general three-dimensional Gaussian ansatz (5), which can be
written as

ln[C(q)−1] = ln λ − (
q2

oR
2
o + q2

s R
2
s + q2

l R
2
l

)
. (17)

If the correlation function C(q(k)) in bin k has error σk , the
error on ln(C−1) is given as in Eq. (11) by

σ ′
k = σk

C(q(k)) − 1
. (18)

We minimize

χ2 =
N∑

k=1




ln
[
C(q(k)) − 1

] − ln λ +
∑
i=osl

(
q

(k)
i

)2
R2

i

σ ′
k




2

(19)

by setting

∂χ2

∂ ln λ
= 0,

∂χ2

∂R2
i

= 0 (i = o, s, l) . (20)

This leads to a set of four coupled linear equations,∑
β

TαβPβ = Vα, (21)

where α and β take the values ø, o, s, l. The vectors appearing
here are

P = (
ln λ,R2

o, R
2
s , R

2
l

)
, (22)

Vø = −
N∑

k=1

ln [C(q(k)) − 1]

(σ ′
k)2

, (23)

Vi = +
N∑

k=1

(
q

(k)
i

)2

(σ ′
k)2

ln [C(q(k)) − 1], (24)

while the symmetric 4 × 4 matrix T has components

Tøø = −
N∑

k=1

1

(σ ′
k)2

,

Tøi = +
N∑

k=1

(
q

(k)
i

)2

(σ ′
k)2

, (25)

Tij = −
N∑

k=1

(
q

(k)
i

)2 (
q

(k)
j

)2

(σ ′
k)2

.

044908-4



FITTED HANBURY-BROWN–TWISS RADII VERSUS . . . PHYSICAL REVIEW C 73, 044908 (2006)

In Equations (24) and (25) i, j = o, s, l as usual. Note the
correspondences Vα ↔ Xn,i and Tαβ ↔ Yn,i between the 3D
and 1D cases.

The set of linear equations (21) is easily solved algebraically
by diagonalizing the matrix Tαβ .

IV. APPLICATION TO BLAST-WAVE MODEL

Many variants of hydrodynamically-inspired models of
freeze-out have recently been used to calculate spatial RMS
variances that then were compared with experimental HBT
radii. A recent example is reported in Ref. [23]. The model
itself is very simplistic and ignores, for example, resonance
decay contributions that may be important [21]. We ignore
such issues with the model itself and simply use it here to
discuss differences between RMS variances and Gaussian
HBT radii.

We use realistic model parameters that best describe
the data [4]. Specifically, we take R = 13.3 fm for the
source radius, T = 97 MeV for the temperature, ρ0 = 1.03 for
the maximum transverse flow rapidity, τ = 9 fm/c for the
average freeze-out time, and 	τ = 2.83 fm/c for the emission
duration (see Ref. [23] for details).

A. Correlation functions and analytic fits: results

Equation (12) of Ref. [23] gives the functional form for
the single-pion emission function in the blast-wave model.
Using this for S(K , x), we calculate the correlation function
for pion pairs with longitudinal pair momentum KL = 0, using
a Monte Carlo technique to numerically perform the integrals
in Eq. (3).

As with experimental data, the correlation function is
evaluated in finite-sized three-dimensional bins in (qo, qs, ql)
of width 2.5 MeV/c in each direction. One-dimensional slices
of the correlation function in the out, side, and long directions
are shown in Figs. 1 and 2, for midrapidity pion pairs with
KT = 0 and KT = 0.3 GeV/c, respectively.

The slices of the correlation functions appear quite Gaus-
sian, and they are tracked well by the three-dimensional
Gaussian fit; the fitted correlation strength λ is very close to 1.
The radius parameters calculated from the RMS variances (6)
agree quite well with the HBT radii extracted from the
three-dimensional Gaussian fit by solving Eqs. (21); both sets
are given in the figures. Upon closer inspection one notices,
however, that the fitted outward and longitudinal radii, Ro and
especially Rl , tend to be systematically smaller than those
extracted from the spatial RMS variances; the opposite is
true for the sideward radii Rs for which the RMS variances
give slightly smaller values than the Gaussian fit. While these
differences are small for the blast-wave model parametrization
(at least with the realistic parameters studied here), they will be
significantly larger (with the same basic tendencies as found
here) for the hydrodynamic model source studied in Sec. V.

The Gaussian fit parameters given in Figs. 1 and 2
correspond to using the largest possible q range in the sums
over k in Eqs. (24) and (25), discarding only those data points
for which C is so close to 1 that the Monte Carlo integration
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FIG. 1. (Color online) One-dimensional slices of the three-
dimensional correlation function along the out, side, and long
directions, for pion pairs with K = 0, calculated from the blast-wave
parametrization. For a given slice, the unplotted q components equal
1.25 MeV/c (i.e., the center of the first bin). The solid (red) curve
is the calculated correlation function from Eq. (3), the dashed (blue)
curve shows the same slice of the best 3D Gaussian fit (5), with
HBT parameters calculated from the analytic expressions given in
Sec. III B.

sometimes yields negative values for C−1. Due to small but
noticeable deviations of the correlation function from a pure
Gaussian, the Gaussian fit parameters depend on the number
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FIG. 2. (Color online) Solid (red) curves show one-dimensional
slices of the three-dimensional correlation function calculated with
Eq. (3) from the blast-wave parametrization, for midrapidity pions
with KT = 0.3 GeV/c. Dashed (blue) curves show slices of the
three-dimensional Gaussian form of Eq. (5), with HBT parameters
calculated from the analytic expressions given in Sec. III B.
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FIG. 3. (Color online) From the blast-wave parametrization, one-
dimensional HBT fit parameters R1D,i and λ1D,i are calculated with
Eqs. (13) and (14) and plotted as a function of the maximum allowed
value of any q component; see text for details. Each curve corresponds
to one of ten values of KT : 0.0, 0.1, 0.2, . . . , 0.9 GeV/c. Curves
corresponding to high KT are at low (high) values of R1D,i (λ1D,i).

of data points used. We study this sensitivity to the fit range in
the following subsection.

B. Fit-range study

Since no measured correlation function is ever perfectly
Gaussian, experimentalists typically perform so-called fit
range studies. Here, the measured correlation function is fitted
with the Gaussian form (5), using data points in a restricted
range of q. With correlation functions in the one-dimensional
quantity Qinv it is common to study the variation of fit
parameters as the first few (lowest-Qinv) data points are left
out of the fit. This is because statistical fluctuations in these
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FIG. 4. (Color online) One-dimensional HBT fit parameters R1D,i

and λ1D,i as a function of KT , calculated from the blast-wave
parametrization with Eqs. (13) and (14). For a given KT , the vertical
red line represents the variation with fit range (see Fig. 3). Blue stars
represent the corresponding radius parameters calculated from the
RMS variances by using Eqs. (6). Black circles show STAR data [4],
with error bars removed for clarity.
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FIG. 5. (Color online) From the blast-wave parametrization,
three-dimensional HBT fit parameters Ri and λ are calculated with
Eqs. (21) and plotted as a function of the maximum allowed value
of any q component; see text for details. Each curve corresponds
to one of ten values of KT : 0.0, 0.1, 0.2, . . . , 0.9 GeV/c. Curves
corresponding to high KT are at low (high) values of Ri (λ). The Rl

curve for KT = 0 falls above the plotting range.

bins may be quite large and may be due to the visible
non-Gaussian nature of the measured correlation function
there. Three-dimensional correlation functions do not suffer
from these issues, and so usually the experimentalist includes
all data points with |qi | < qmax and studies variations of the fit
parameters as qmax is varied; any such variations are typically
folded into systematic errors on the HBT radii.

Here, we follow the experimentalists’ approach. Using the
correlation function generated from the blast-wave model, we
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FIG. 6. (Color online) Three-dimensional HBT fit parameters
R1D,i and λ1D,i as a function of KT , calculated from the blast-wave
parametrization with Eqs. (21). For a given KT , the vertical red
line represents the variation with fit range (see Fig. 5). Blue stars
represent the corresponding radius parameters calculated from the
RMS variances using Eqs. (6). Black circles show STAR data [4],
with error bars removed for clarity.
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FIG. 7. (Color online) Solid (red) curves show one-dimensional
slices of the three-dimensional correlation function calculated with
Eq. (3) from the hydrodynamic model with the CE Equation of State,
for midrapidity pions with KT = 0.3 GeV/c. Dashed (blue) curves
show slices of the three-dimensional Gaussian form of Eq. (5), with
HBT parameters calculated from the analytic expressions given in
Secs. III B.

calculate HBT parameters from 1D and 3D Gaussian fits as
discussed in Secs. III A and III B, restricting the k sums in
Eqs. (15), (16), (24), and (25) to include only those data points
where all three q components have magnitudes less than qmax

[27]. Thus, we will not calculate unique HBT radii, but a finite
range for each fit parameter.

For various values of KT , Fig. 3 shows the evolution
of the 1D radii with qmax. Except for Rl at low KT , the
parameter variation with fit range is quite mild, corresponding
to a small non-Gaussian systematic error on the radii. In
Fig. 4 the range of this variation, indicated by vertical
lines, is plotted as a function of KT . Consistent with the
theorem [8] that the spatial RMS variances (6) of the
source control the curvature of the correlator C(q) at q = 0,
the blue stars in Fig. 4 coincide with the qmax → 0 limit
of the fitted 1D radii. The largest fit-range variations, indicating
the biggest non-Gaussian effects in the correlator, are seen
at small pair momentum KT . The fit-range sensitivity is
most pronounced for Rl (where at low KT it can exceed
0.5 fm) but almost negligible for Ro and Rs . In short, the 1D
Gaussian fits to the two transverse projections of the correlation
function give length scales consistent with the spatial RMS
variances of the source distribution, but non-Gaussian features
along the longitudinal projection cause the RMS variances
to overestimate the longitudinal 1D HBT radius Rl by up to
0.5 fm at low KT if a reasonable fit range qmax is used to extract
the latter. This discrepancy is significantly larger than the
combined statistical and systematic error on the experimental
value for Rl [4].

Figures 5 and 6 show the same study for the three-
dimensional Gaussian fits. For reasons explained in Sec. III, the
non-Gaussian effects in a unified 3D Gaussian fit are expected
to differ from those in 1D fits. Indeed, in the unified 3D fit
non-Gaussian influences also appear in Ro, and both Ro and
Rl now show fit-range variations that exceed the combined
statistical and systematic errors of the data [4]. The largest
fit-range sensitivity is still seen in the longitudinal direction.
In Ref. [23] the blast-wave model parameters were determined
by comparing RMS variances with the measured HBT radii
(see Figs. 4 and 6), using the experimental errors on the latter
to extract error estimates for the model parameters. The results
presented here suggest that if the authors had instead compared
the measured data with HBT radii extracted from a 3D
Gaussian fit to the calculated correlation function, they would
have found somewhat different model parameters whose mean
values in some cases might even have fallen outside the likely
parameter range quoted in Table II of Ref. [23]. In particular,
such an apples-to-apples comparison may allow for somewhat
larger fireball lifetimes τ and/or emission durations 	τ than
quoted in Ref. [23]. While such an improved blast-wave model
fit is numerically expensive and outside the scope of the present
paper, it may be a worthwhile future project.

V. HBT RADII FROM HYDRODYNAMICS

Nonviscous (ideal) hydrodynamical calculations have suc-
cessfully reproduced differential momentum spectra (at least
perpendicular to the beam direction) at RHIC, including their
anisotropies in noncentral collisions and the dependence of
these anisotropies on the masses of the emitted hadrons [9].
As in the blast-wave model calculations, very strong collective
flow is a critical ingredient to reproduce the data. (Of course,
in the blast-wave parametrization such flow is put in by hand,
while it arises naturally in the hydrodynamical model.)

Most (but not all [11–13,15,16]) hydrodynamic predictions
of HBT radius parameters have been based on calculations
of the spatial RMS variances from the hydrodynamically
generated emission function, using Eqs. (6) [9,10]. In spite of
the hydrodynamic model’s impressive success in describing
hadron spectra, these predictions of HBT radii were a failure:
The calculated longitudinal radii Rl were too large (although
this problem was less severe in Hirano and Tsuda’s work [15]),
while the predicted sideward radius Rs was too small, and both
Rs and Ro showed much less dependence on KT in theory than
seen in the data. This, together with similar failures by other
dynamical models (see [1] for a review), has become known
as the RHIC HBT Puzzle.

Various possibilities to explain and correct this failure have
been suggested. They include a more realistic modeling of
the final freeze-out stage [28], exploration of fluctuations
in the initial state and ambiguities in the hydrodynamic
decoupling criterion [29], viscous effects due to incomplete
thermalization (i.e., inapplicability of ideal fluid dynamics)
[30], different (more Landau-type) initial conditions leading
to strong longitudinal hydrodynamic acceleration [31], and
the use of more realistic or different equations of state (EoS)
for the expanding matter [32]. None of these suggestions,
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FIG. 8. (Color online) From the hydrodynamic model with CE
EoS, one-dimensional HBT fit parameters R1D,i and λ1D,i are
calculated with Eqs. (13) and (14) and plotted as a function of the
maximum allowed value of any q component; see text for details.
Each curve corresponds to one of ten values of KT : 0.0, 0.1, 0.2, . . . ,
0.9 GeV/c. Curves corresponding to high KT are at low (high) values
of R1D,i (λ1D,i). The Rl curves for KT � 0.2 GeV/c fall above the
plotting range.

individually or in combination, has been convincingly shown
to be able to solve the HBT puzzle. Motivated by the blast-wave
study in the preceding section, we therefore explore here
one further possibility: that previous comparisons of the
data with hydrodynamic models might have been misleading,
since the RMS variances from hydrogenerated sources differ
significantly from HBT radii extracted from a Gaussian
parametrization of the correlation function. Indications that
this is indeed the case have already emerged from the work
on 1D projections of Hirano and Tsuda [15] and Kolb [14],
and with our new analytic 3D Gaussian fit algorithm we can
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FIG. 9. (Color online) One-dimensional HBT fit parameters R1D,i

and λ1D,i as a function of KT , calculated from the hydrodynamic
model using CE EoS with Eqs. (13) and (14)). For a given KT , the
vertical red line represents the variation with fit range (see Figure 8).
Blue stars represent the corresponding radius parameters calculated
from the RMS variances using Eq. (6). Black circles show STAR
data [4], with error bars removed for clarity.
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FIG. 10. (Color online) From the hydrodynamic model with CE
EoS, three-dimensional HBT fit parameters Ri and λ are calculated
with Eq. (21) and plotted as a function of the maximum allowed value
of any q component; see text for details. Each curve corresponds
to one of ten values of KT : 0.0, 0.1, 0.2, . . . , 0.9 GeV/c. Curves
corresponding to high KT are at low (high) values of Ri (λ). The Rl

curves for KT � 0.1 GeV/c fall above the plotting range.

improve on their analysis and study this question in more
detail.

For our study of HBT radii from the hydrodynamic model
we use two different sets of emission functions, obtained from
running the hydrodynamic code with two different equations
of state (EoS). Both EoS describe the quark-gluon plasma
(QGP) as a free gas of massless particles, but they differ in
their treatment of the late hadronic stage when the fireball
has cooled below the critical temperature Tc ≈ 165 MeV
for hadronization. The CE EoS [33,34] assumes that the
hadron resonance gas remains not only in thermal, but also in
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FIG. 11. (Color online) Three-dimensional HBT fit parameters
R1D,i and λ1D,i as a function of KT , calculated from the hydrodynamic
model using CE EoS with Eq. (21). For a given KT , the vertical red
line represents the variation with fit range (see Fig. 10). Blue stars
represent the corresponding radius parameters calculated from the
RMS variances using Eqs. (6). Black circles show STAR data [4],
with error bars removed for clarity.
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FIG. 12. (Color online) Solid (red) curves show one-dimensional
slices of the three-dimensional correlation function calculated with
Eq. (3) from the hydrodynamic model with the NCE EoS, for
midrapidity pions with KT = 0.3 GeV/c. Dashed (blue) curves show
slices of the three-dimensional Gaussian form of Eq. (5), with
HBT parameters calculated from the analytic expressions given in
Sec. III B.

chemical equilibrium until final kinetic freeze-out. This fails
to reproduce the observed hadron yields, which correspond to
chemical equilibrium at a temperature of about 170 MeV [35].
The NCE EoS [15,36,37] takes the immediate decoupling
of hadron abundances at Tc into account by introducing
nonequilibrium chemical potentials for each hadron species,
which ensure that the particle yields are held fixed as the
temperature and density continue to decrease. While the
CE EoS was used for the hydrodynamic model predictions
made for RHIC before the accelerator turned on and the
hadron abundances were measured, the NCE EoS is more
realistic and has been used in most hydrodynamic studies
since 2002. We here explore emission functions obtained with
either EoS.

Figures 7–11 present 1D projections and 1D and 3D fit
results, analogous to those from the previous section, for the
emission function from hydrodynamic calculations using the
CE EoS. Figures 12–16 show the same for the NCE EoS.
Several observations are in order.

As is apparent from Figs. 7 and 12, the best 3D Gaussian
fits do not fully reproduce the correlation function, even
though the correlation function projections themselves appear
rather Gaussian. Clearly, aspects of the correlation function
not apparent in the one-dimensional projections are partially
driving the 3D fit. Further, it is interesting to note that,
while the projections in the side direction appear the worst
reproduced by the fit, the greatest discrepancy between RMS
variances and HBT radii are in fact in the out and long
directions (c.f. Figs. 11 and 16). Both of these points emphasize
that the three-dimensional correlator can contain important
information that does not appear in its one-dimensional

projections and thus in the one-dimensional fits. Particularly
important in this case are strong non-Gaussian features in the
longitudinal direction, which cause a significant suppression
of the correlation strength parameter λ of the 3D Gaussian fit.
This in turn creates the appearance of a bad fit in the sideward
direction even though the 1D sideward projection looks quite
Gaussian itself.

One draws the same conclusion by examining the fit-range
systematics. As mentioned, non-Gaussian effects generate a
variation of the HBT parameters with qmax. As seen in Figs. 8
and 13, fits in the out and side directions produce 1D radii and
directional λi parameters that vary very little with qmax; strong
fit-range sensitivity is only seen in the long direction, where the
1D projection deviates most strongly from a Gaussian form.
In the three-dimensional fits, on the other hand (c.f. Figs. 10
and 15), the strong non-Gaussian features in the ql direction
now affect all four fit parameters, generating strong fit-range
sensitivities for Ro and λ also.

There may (and in general will) be other properties of the
three-dimensional correlation function to which the 1D pro-
jections and their Gaussian fits are not sensitive but that affect
the 3D Gaussian fit. The extracted values for Ro and Rs thus in
general depend significantly on the detailed conditions under
which the Gaussian fit is performed. Hence, a meaningful
and accurate comparison between models and experimental
data requires that the Gaussian fit to the theoretical correlation
functions be done under similar conditions and constraints
(e.g., fit range) as in the experiment.

VI. DISCUSSION AND CONCLUSIONS

Let us close with some general observations and summarize
our conclusions.

Except inasmuch as it couples HBT radii in a 3D fit, we
have not focused here on the λ parameter, since comparison
to measurements of λ is significantly complicated by exper-
imental artifacts [1]. This is also the reason why tests of
consistency between different experiments generally compare
HBT radii, not λ. In all of the idealized calculations presented
in this report, C(|q| = 0) = 2, a purely Gaussian correlation
function (generated by a purely Gaussian source) would yield
λ = 1, with no fit-range systematics. Indeed, we find that
limqmax→0 λ = 1 (see, e.g., Fig. 10) as expected, but that its value
declines as more bins are included in the fit. In experimental
data, several factors cause λ to fall below its nominal value of
unity. Our calculations confirm the generally held folklore that
non-Gaussian effects may be important to understanding λ.

Of more fundamental interest are the characteristic length
scales of the emission region. We have seen that RMS variances
of model-calculated source functions, which are frequently
compared with experimentally extracted HBT radii, may
systematically differ from fitted HBT radii that characterize
the shape of the correlation function from the same model.
Since the latter quantity provides the best apples-to-apples
comparison with published experimental data, this can be an
important observation.

Previous attempts [14,15,21] to estimate the effect in
hydrodynamical calculations have focused on numerical fits

044908-9



EVAN FRODERMANN, ULRICH HEINZ, AND MICHAEL ANNAN LISA PHYSICAL REVIEW C 73, 044908 (2006)

3

4

5

6

7

8

9

0 0.05

out

R
 (

fm
)

0 0.05

side

0 0.05

long

qmax (GeV/c)

0.9

1

λ o

0.9

1

λ s

0.9

1

0 0.05
qmax (GeV/c)

λ l

FIG. 13. (Color online) From the hydro model with NCE EoS,
one-dimensional HBT fit parameters R1D,i and λ1D,i are calculated
with Eqs. (13) and (14) and plotted as a function of the maximum
allowed value of any q component; see text for details. Each curve
corresponds to one of ten values of KT : 0.0, 0.1, 0.2, . . . , 0.9 GeV/c.
Curves corresponding to high KT are at low (high) values of R1D,i

(λ1D,i). The Rl curves for KT � 0.1 GeV/c fall above the plotting
range.

to several one-dimensional projections of the calculated
correlation function. We here presented an analytic method
to extract these 1D HBT radii from the projections and further
generalized it to the full three-dimensional case. The 1D
projections represent a set of zero measures of the full three-
dimensional correlation function and, as we have seen, may
not be sensitive to important three-dimensional information.
This information influences the unified three-dimensional fit to
the correlation function. Since the unified 3D fit most closely
mimics the procedure of experimentalists, these effects are
relevant for comparisons between models and data.

The magnitude of these effects are model dependent. The
non-Gaussian nature of emission regions in the blast-wave
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FIG. 14. (Color online) One-dimensional HBT fit parameters
R1D,i and λ1D,i as a function of KT , calculated from the hydrodynamic
model using NCE EoS with Eqs. (13) and (14). For a given KT , the
vertical red line represents the variation with fit range (see Fig. 13).
Blue stars represent the corresponding radius parameters calculated
from the RMS variances using Eqs. (6). Black circles show STAR
data [4], with error bars removed for clarity.
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FIG. 15. (Color online) From the hydrodynamic model with NCE
EoS, three-dimensional HBT fit parameters Ri and λ are calculated
with Eqs. (21) and plotted as a function of the maximum allowed value
of any q component; see text for details. Each curve corresponds
to one of ten values of KT : 0.0, 0.1, 0.2, . . . , 0.9 GeV/c. Curves
corresponding to high KT are at low (high) values of Ri (λ). The Rl

curves for KT � 0.1 GeV/c fall above the plotting range.

parametrization has been noted before [23]. It was shown here
to generate only minor deviations from Gaussian behavior
in the transverse projections of the correlation function, but
the longitudinal projection shows significant non-Gaussian
features. In a unified 3D Gaussian fit, non-Gaussian features
were seen to generate fit-range sensitivities for all four fit-
parameters, leading to significant downward shifts of both Rl

and Ro, especially at low KT , relative to predictions based on
the spatial RMS variances of the blast-wave source.

These tendencies were found to be even more strongly
exhibited by the HBT radii extracted from hydrodynamic
model sources. The differences between HBT radii extracted
from 3D Gaussian fits of the correlator and the values (6)
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FIG. 16. (Color online) Three-dimensional HBT fit parameters
R1D,i and λ1D,i as a function of KT , calculated from the hydrodynamic
model using NCE EoS with Eqs. (21). For a given KT , the vertical
red line represents the variation with fit range (see Figure 15). Blue
stars represent the corresponding radius parameters calculated from
the RMS variances using Eq. (6). Black circles show STAR data [4],
with error bars removed for clarity.
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calculated from the spatial RMS variances are quite significant
and thus relevant in considerations of the RHIC HBT puzzle.
In particular, for both equations of state considered here, the
HBT radii in the out and long directions are significantly
lower (and closer to the data) than the corresponding RMS
variances that have been the basis of many puzzle discussions
(c.f. Figs. 11 and 16). As in the blast-wave model, these
3D Gaussian fit effects seem to be driven mostly by strong
non-Gaussian features in the longitudinal projection of the
correlator. Combining improvements of using the NCE EoS
and the use of HBT radii instead of RMS variances brings
the hydrodynamic calculations for the longitudinal radius Rl

into fair agreement with the data over the entire measured KT

range. A significant improvement is also seen in the outward
direction, but it is concentrated mostly at low KT , and hence
the disagreement between the rather steep KT dependence of
the measured Ro radii and the much flatter KT dependence
of the theoretical results is becoming worse. The fitted
sideward radii Rs show practically no deviation from the cor-
responding RMS variances, and the well-known [10] problem
that the hydrodynamically predicted values are significantly
smaller and show much less KT dependence than the data is
not alleviated by our improved comparison between theory
and data.

While the results presented here cannot offer a resolution
of all aspects of the RHIC HBT Puzzle, they refocus our
perception of where the most severe problems are located.
The strong non-Gaussian effects in the ql direction and
the resulting large downward shift of the fitted longitudinal
radii (as compared with the corresponding RMS variances)
largely eliminate the discrepancies between hydrodynamically
predicted and measured Rl values. A number of authors have
interpreted the smallness of the measured Rl values as evidence
for a short fireball lifetime τf < 10 fm/c, inconsistent with
the O(15 fm/c) lifetimes predicted [9] by the hydrodynamic

model. The analysis presented here resolves this problem.
On the other hand, even when using the properly extracted
Gaussian fit values for Rs and Ro and after taking into account
the resulting decrease of Ro at low KT , the theoretically
predicted ratio Ro/Rs is still significantly larger than 1 over
the entire measured KT interval, in contradiction to the data.
Furthermore, the decline of both Ro and Rs with increasing
pair momentum is still much too weak in the model, in spite
of the large transverse flow generated by the hydrodynamic
expansion. These aspects of the HBT Puzzle remain serious
and must be addressed by other theoretical improvements.

Finally, one should remember that the raw experimental
correlation functions hardly ever appear very Gaussian, due to
additional distortions by the final state Coulomb interactions
between the two charged particles. Modern methods of
extracting the HBT radii from the measured correlator include
these Coulomb effects self-consistently in the fit function [1],
leading to more complicated (numerical) fit algorithms than
the analytical one presented in Sec. III. Nonetheless, the
measured HBT radii extracted from such self-consistent 3D
fits are affected by non-Gaussian structures in the underlying
Bose-Einstein correlations in much the same way as discussed
here for the simpler case of noninteracting particles. Thus,
while Coulomb interactions should be included in future
studies, our analysis should provide a good estimate of
the direction and magnitude of non-Gaussian effects in blast-
wave and hydrodynamical models, and it points out the
importance of such effects in the comparison of theory to
experiment.
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