253 research outputs found

    Transcriptomics of Temporal- versus Substrate-Specific Wood Decay in the Brown-Rot Fungus Fibroporia radiculosa

    Get PDF
    Brown-rot fungi lack many enzymes associated with complete wood degradation, such as lignin-attacking peroxidases, and have developed alternative mechanisms for rapid wood breakdown. To identify the effects of culture conditions and wood substrates on gene expression, we grew Fibroporia radiculosa in submerged cultures containing Wiley milled wood (5 days) and solid wood wafers (30 days), using aspen, pine, and spruce as a substrate

    Draft genome sequence of Neurospora crassa strain FGSC 73

    Get PDF
    Citation: Baker, S. E., Schackwitz, W., Lipzen, A., Martin, J., Haridas, S., LaButti, K., . . . McCluskey, K. (2016). Draft genome sequence of Neurospora crassa strain FGSC 73. Genome Announcements, 3(2). doi:10.1128/genomeA.00074-15Citation: Baker, S., Schackwitz, W., Lipzen, A., . . . McCluskey, K. (2015). Draft Genome Sequence of Neurospora crassa Strain FGSC 73. Genome Announcements, 3(2), e00074-15. https://doi.org/10.1128/genomeA.00074-15We report the elucidation of the complete genome of the Neurospora crassa (Shear and Dodge) strain FGSC 73, a mat-a, trp-3 mutant strain. The genome sequence around the idiotypic mating type locus represents the only publicly available sequence for a mat-a strain. 40.42 Megabases are assembled into 358 scaffolds carrying 11,978 gene models. © 2015 Baker et al

    Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes

    Get PDF
    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. We developed a systems-level approach that integrates transcriptomic sequencing, proteomics, phenotype, and biochemical studies of relatively unexplored basal fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, untreated plant biomass and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite-repressed and are further regulated by a rich landscape of noncoding regulatory RNAs. Additionally, we identified several promising sequence-divergent enzyme candidates for lignocellulosic bioprocessing

    101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.

    Get PDF
    Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species

    Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes

    Get PDF
    available in PMC 2016 November 07The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. We developed a systems-level approach that integrates transcriptomic sequencing, proteomics, phenotype, and biochemical studies of relatively unexplored basal fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, untreated plant biomass and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite-repressed and are further regulated by a rich landscape of noncoding regulatory RNAs. Additionally, we identified several promising sequence-divergent enzyme candidates for lignocellulosic bioprocessing.United States. Dept. of Energy. Office of Science (Biological and Environmental Research (BER) program)United States. Department of Energy (DOE Grant DE-SC0010352)United States. Department of Agriculture (Award 2011-67017-20459)Institute for Collaborative Biotechnologies (grant W911NF-09-0001
    • …
    corecore