9 research outputs found
Radio precursors to neutron star binary mergings
We discuss a possible generation of radio bursts preceding final stages of
binary neutron star mergings which can be accompanied by short gamma-ray
bursts. Detection of such bursts appear to be advantageous in the low-frequency
radio band due to a time delay of ten to several hundred seconds required for
radio signal to propagate in the ionized intergalactic medium. This delay makes
it possible to use short gamma-ray burst alerts to promptly monitor specific
regions on the sky by low-frequency radio facilities, especially by LOFAR. To
estimate the strength of the radio signal, we assume a power-law dependence of
the radio luminosity on the total energy release in a magnetically dominated
outflow, as found in millisecond pulsars. Based on the planned LOFAR
sensitivity at 120 MHz, we estimate that the LOFAR detection rate of such radio
transients could be about several events per month from redshifts up to
in the most optimistic scenario. The LOFAR ability to detect such
events would crucially depend on exact efficiency of low-frequency radio
emission mechanism.Comment: 6 pages, 2 figures, Accepted for publication in Astrophysics & Space
Science. Largely extended version of ArXiv:0912.521
Magnetic fileds of coalescing neutron stars and the luminosity function of short gamma-ray burst
Coalescing neutron star binaries are believed to be the most reliable sources
for ground-based detectors of gravitational waves and likely progenitors of
short gamma-ray bursts. In the process of coalescence, magnetic fields of
neutron stars can induce interesting observational manifestations and affect
the form of gravitational wave signal. In this papaer we use the population
synthesis method to model the expected distribution of neutron star magnetic
fields during the coalescence under different assumptions on the initial
parameters of neutron stars and their magnetic field evolution. We discuss
possible elecotrmagnetic phenomena preceding the coalescence of magnetized
neutron star binaries and the effect of magnetic field on the gravitational
wave signal. We find that a log-normal (Gaussian in logarithms) distribution of
the initial magnetic fields of neutron stars, which agrees with observed
properties of radio pulsars, produces the distribution of the magnetic field
energy during the coalescence that adequately describes the observed luminosity
function of short gamma-ray bursts under different assumptions on the field
evolution and initial parameters of neutron stars. This agreement lends further
support to the model of coalescing neutron star binaries as progenitors of
gamma-ray bursts.Comment: v.2, LATEX, 25 pages, inc. 7 ps figures, Astron. Lett., in press.
Typos corrected, reference adde
Change in the Orbital Period of a Binary System Due to an Outburst in a Windy Accretion Disk
Abstract: We consider a new mechanism for the removal of angular momentum from an X-ray binary system and the change in its orbital periodâthe mass loss in the form of a wind from an accretion disk. A powerful wind from a disk is observed in X-ray transients and is predicted by models. We have obtained an analytical estimate for the increase in the orbital period of a binary system with a wind from the disk during an outburst; quantitative estimates are given for the systems XTE J1118+480, A0620-00, and GRS 1124-68. The rates of increase in the period are comparable in absolute value to the observed rates of secular decrease in the period. We also compare the predicted rates of change in the period of a binary system due to the mass transfer into the disk and the outflow from the second Lagrange point with the observed ones. We conclude that the above-mentioned mechanisms cannot explain the observed secular decrease in the period, and it is necessary to consider a circumbinary disk that removes the binaryâs angular momentum
Search for directional associations between Baikal Gigaton Volume Detector neutrino-induced cascades and high-energy astrophysical sources
International audienceBaikal-GVD has recently published its first measurement of the diffuse astrophysical neutrino flux, performed using high-energy cascade-like events. We further explore the Baikal-GVD cascade dataset collected in 2018-2022, with the aim to identify possible associations between the Baikal-GVD neutrinos and known astrophysical sources. We leverage the relatively high angular resolution of the Baikal-GVD neutrino telescope (2-3 deg.), made possible by the use of liquid water as the detection medium, enabling the study of astrophysical point sources even with cascade events. We estimate the telescope's sensitivity in the cascade channel for high-energy astrophysical sources and refine our analysis prescriptions using Monte-Carlo simulations. We primarily focus on cascades with energies exceeding 100 TeV, which we employ to search for correlation with radio-bright blazars. Although the currently limited neutrino sample size provides no statistically significant effects, our analysis suggests a number of possible associations with both extragalactic and Galactic sources. Specifically, we present an analysis of an observed triplet of neutrino candidate events in the Galactic plane, focusing on its potential connection with certain Galactic sources, and discuss the coincidence of cascades with several bright and flaring blazars