70 research outputs found

    Enstrophy dissipation in two-dimensional turbulence

    Full text link
    Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduction network. It allows the identification of an entropy function associated to the enstrophy dissipation and that fluctuates around a positive (mean) value. While the corresponding enstrophy network is highly nonlocal, the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential parameter is the ratio Tk=γk/(νk2)T_k = \gamma_k /(\nu k^2) of the intensity of driving γk>0\gamma_k>0 as a function of wavenumber kk, to the dissipation strength νk2\nu k^2, where ν\nu is the viscosity. The enstrophy current flows from higher to lower values of TkT_k, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total entropy production which relates the probabilities of direct and inverse enstrophy cascades.Comment: 8 pages, revtex

    Maximum likelihood drift estimation for a threshold diffusion

    Get PDF
    We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called drifted Oscillating Brownian motion.For this continuously observed diffusion, the maximum likelihood estimator coincide with a quasi-likelihood estimator with constant diffusion term. We show that this estimator is the limit, as observations become dense in time, of the (quasi)-maximum likelihood estimator based on discrete observations. In long time, the asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations

    Quantum noise and stochastic reduction

    Full text link
    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schrodinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this article, two such models are investigated: one that achieves state reduction in infinite time, and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions--algebraic in character and involving no integration--are obtained for both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system, and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems.Comment: 50 page

    Dependent coordinates in path integral measure factorization

    Full text link
    The transformation of the path integral measure under the reduction procedure in the dynamical systems with a symmetry is considered. The investigation is carried out in the case of the Wiener--type path integrals that are used for description of the diffusion on a smooth compact Riemannian manifold with the given free isometric action of the compact semisimple unimodular Lie group. The transformation of the path integral, which factorizes the path integral measure, is based on the application of the optimal nonlinear filtering equation from the stochastic theory. The integral relation between the kernels of the original and reduced semigroup are obtained.Comment: LaTeX2e, 28 page

    Stochastic Differential Systems with Memory: Theory, Examples and Applications

    Get PDF
    The purpose of this article is to introduce the reader to certain aspects of stochastic differential systems, whose evolution depends on the past history of the state. Chapter I begins with simple motivating examples. These include the noisy feedback loop, the logistic time-lag model with Gaussian noise , and the classical ``heat-bath model of R. Kubo , modeling the motion of a ``large molecule in a viscous fluid. These examples are embedded in a general class of stochastic functional differential equations (sfde\u27s). We then establish pathwise existence and uniqueness of solutions to these classes of sfde\u27s under local Lipschitz and linear growth hypotheses on the coefficients. It is interesting to note that the above class of sfde\u27s is not covered by classical results of Protter, Metivier and Pellaumail and Doleans-Dade. In Chapter II, we prove that the Markov (Feller) property holds for the trajectory random field of a sfde. The trajectory Markov semigroup is not strongly continuous for positive delays, and its domain of strong continuity does not contain tame (or cylinder) functions with evaluations away from zero. To overcome this difficulty, we introduce a class of quasitame functions. These belong to the domain of the weak infinitesimal generator, are weakly dense in the underlying space of continuous functions and generate the Borel σ\sigma-algebra of the state space. This chapter also contains a derivation of a formula for the weak infinitesimal generator of the semigroup for sufficiently regular functions, and for a large class of quasitame functions. In Chapter III, we study pathwise regularity of the trajectory random field in the time variable and in the initial path. Of note here is the non-existence of the stochastic flow for the singular sdde dx(t)=x(tr)dW(t)dx(t)= x(t-r) dW(t) and a breakdown of linearity and local boundedness. This phenomenon is peculiar to stochastic delay equations. It leads naturally to a classification of sfde\u27s into regular and singular types. Necessary and sufficient conditions for regularity are not known. The rest of Chapter III is devoted to results on sufficient conditions for regularity of linear systems driven by white noise or semimartingales, and Sussman-Doss type nonlinear sfde\u27s. Building on the existence of a compacting stochastic flow, we develop a multiplicative ergodic theory for regular linear sfde\u27s driven by white noise, or general helix semimartingales (Chapter IV). In particular, we prove a Stable Manifold Theorem for such systems. In Chapter V, we seek asymptotic stability for various examples of one-dimensional linear sfde\u27s. Our approach is to obtain upper and lower estimates for the top Lyapunov exponent. Several topics are discussed in Chapter VI. These include the existence of smooth densities for solutions of sfde\u27s using the Malliavin calculus, an approximation technique for multidimensional diffusions using sdde\u27s with small delays, and affine sfde\u27s
    corecore