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Abstract
This paper deals with a predator-prey model of Beddington-DeAngelis type
functional response with Lévy jumps. The proposed mathematical model consists of a
system of two stochastic differential equations to stimulate the interactions between
predator population and prey population. The dynamics of the system is discussed
mainly from the point of view of persistence and extinction. To begin with, the global
positivity, stochastically boundedness and other asymptotic properties have been
derived. In addition, sufficient conditions for extinction, nonpersistence in the mean
and weak persistence are obtained. It is proved that the variation of Lévy jumps can
affect the asymptotic property of the system.
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1 Introduction
In mathematical ecology, the relationship between prey and predator is one of the most
intriguing and significant topics due to its universal existence. One significant compo-
nent of the predator-prey relationship is the predator’s functional response. It has long
been and will continue to be a dominant theme in ecosystem theory. The predator-prey
systems with different kinds of functional responses (see Hassell-Varley [], Beddington-
DeAngelis [, ] and Crowley-Martin []) and references therein) have been investigated
by mathematicians and ecologists. However, due to many reasons (such as environmen-
tal pollution, over predation, over exploitation, extensive and unregulated harvesting),
the birth/death rates, carrying capacities, competition coefficients and other parameters
involved in this system perform random fluctuations. Then we need to take the envi-
ronmental noise into account, for example, consider the stochastic perturbation of the
death rate of the predator and birth rate of the prey. In some cases, the scholars prefer
the Beddington-DeAngelis type functional response because predator-prey model with
Beddington-DeAngelis functional response can describe the species and the ecological
systems more reasonably. It has desirable qualitative features of ratio dependent form and
overcomes some unexpected behaviors at low prey population level. Also, it has an extra
term in the denominator modeling mutual interference among predators. There is much
excellent work on the predator-prey system with Beddington-DeAngelis functional re-
sponse, for example, [–]. Liu-Wang [] studied the global asymptotic stability, Qiu et al.
[] investigated some dynamical properties, Liu-Wang [] discussed stochastically asymp-
totic stability, etc. Their work stimulated much of our work. Our consideration in this work
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is a generalization of the model in []. A basic problem concerning predator-prey model
is the existence and uniqueness of global positive solutions. One of the main approaches
in the literature to date is to construct different types of Lyapunov functions to investi-
gate how the solutions behave in R


+. In our work, we proved the system (.) has a unique

global positive solution by the method of variable transformation. Moreover, we obtained
the result that almost all sample paths of any solution starting from a positive state will
never be nonpositive, which can ensure the precise mathematical form and bring about
more definite practical significance.

On the other hand, from the viewpoint of biology, large and sudden environmental dis-
turbance, such as earthquakes, tsunamis, hurricanes, floods, droughts may have impor-
tant consequences on the system. As a result, the systems become very complex and the
sample paths are discontinuous. These phenomena cannot be exactly described by Brow-
nian motion. To explain these phenomena, introducing a jump process into this system
is one of the important methods []. There is a large number of literature on this topic,
for example, [–], and the references therein. Especially, in [] Liu-Wang investigated
stochastic logistic models with Lévy noise and gave sufficient and necessary conditions for
the stochastic permanence and extinction; Liu [] established the sufficient conditions
for the stability in mean and extinction of stochastic predator-prey system with modified
Leslie-Gower and Holling-type II schemes with Lévy jumps. As a result of the mentioned
themes, this paper puts forward a predator-prey model of Beddington-DeAngelis type
functional response with Lévy jumps of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = x(t–)[(a(t) – a(t)x(t–) – a(t)y(t–)
b(t)+b(t)x(t–)+b(t)y(t–) ) dt

+ σ(t)dB(t)] +
∫

Y
h(t, u)x(t–)Ñ(dt, du),

dy(t) = y(t–)[(–a(t) – a(t)y(t–) + a(t)x(t–)
b(t)+b(t)x(t–)+b(t)y(t–) ) dt

+ σ(t)dB(t)] +
∫

Y
h(t, u)y(t–)Ñ(dt, du),

(.)

with x() = x >  and y() = y > , where x(t–) and y(t–) denote the left limit of x(t)
and y(t), respectively. (B(t)) and (B(t)) are Brownian motions, N is a Poisson counting
measure with characteristic measure λ on a measurable subset Y of [,∞) with λ(Y) < ∞
and Ñ(dt, du) := N(dt, du) – λ(du) dt, and the functions hi : Y × (,∞) → R (i = , ) are
bounded and continuous with respect to λ and are B(Y) × Ft measurable. Through-
out this paper, the process (B(t)) and (B(t)) are defined on a complete probability space
(�,F , {Ft}t>,P). The parameters aij(·) (i, j = , , ), bk(·) (k = , , ), σm(·) and hm(·)
(m = , ) are all positive bounded function on R+.

Although there is much literature about predator-prey systems with Lévy noise, this
study is mainly involved in estimate to the sample Lyapunov exponents. On one hand, we
prove that the system (.) has a unique global positive solution. Our method is a little sim-
ilar to the one in []. But we do not use comparison theorem to prove the global solution,
instead came out with Lyapunov functions. On the other hand, we study the long-term
behaviors of solution to stochastic nonautonomous system (.). Moreover, we establish
the result lim supt→∞

ln x(t)
t ≤  by an exponential martingale inequality with jumps, which

plays an important role in this work and is different from that of [] and [] in the proof.
In [] and [], they mainly showed the stability in the mean and extinction of the solu-
tions. Different from those results obtained in [] and [], by establishing the estimation
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to the sample Lyapunov exponents, we show more long behaviors such as weakly persis-
tence, nonpersistence in the mean and extinction of solution to system (.). Meanwhile,
it is important to point out that the proof of the properties of the solution is not a direct
generalization for systems without Lévy noise and some new techniques are devised to
deal with the difficulties due to Lévy noise.

We need the following technical result from Bao [] for the jump-diffusion coefficient.

Assumption A For any t ≥ , u ∈Y and i = , ,

hi(t, u) > –, (.)

when – < hi(t, u) < , the disturbance denotes decreasing of the community, while
hi(t, u) > , it respects increasing.

For notational simplicity, we introduce the following symbols:

c(t) = a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du),

c(t) = –a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du),

f (t) =
a(t)y(t)

b(t) + b(t)x(t) + b(t)y(t)
, g(t) =

a(t)x(t)
b(t) + b(t)x(t) + b(t)y(t)

,

ϕ̂ = inf
t∈R+

ϕ(t), ϕ̌ = sup
t∈R+

ϕ(t).

The organization of this paper is as follows. In Section  we study some properties of
the solution of model (.) with noise consisting of Brownian motion and jumps. On this
basis, in Section  we show the long-time behaviors of the model and reveal the effect of
the intensities of the noises on the model by means of theoretical derivation, which is the
core part of this paper. Finally, we introduce a numerical example to verify intuitively the
results in the rest of the paper.

2 Properties of the solution
Since the x(t), y(t) in (.) are the population sizes of the prey and predator at time t, respec-
tively, and they should be nonnegative. By the biological explanation of model, only posi-
tive solutions are meaningful, which will be proved theoretically in mathematics analysis
in Lemma .. In the following, first we should ensure the existence of positive solutions.
Moreover, in order to guarantee that the model has a unique global solution (i.e., no explo-
sion in a finite time) for any given initial value, the coefficients of the model are generally
required to satisfy the linear growth condition and local Lipschitz condition (mentioned
in []). However, the coefficients of (.) neither fulfil the linear growth condition, nor
local Lipschitz continuity. It is therefore necessary to use another method to prove that the
solution of system (.) is not only positive but also will not explode to infinity at any finite
time. The transformations eX(t) = x(t) and eY (t) = y(t) result in the corresponding coeffi-
cients satisfying a local Lipschitz condition, which is motivated by []. In the following,
we shall prove the system (.) has a unique global positive global solution by the method
of variable transformation.
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Theorem . Under Assumption A, for any initial values (x, y) ∈ R

+, there is a unique

global positive solution (x(t), y(t)) for any t ≥  almost surely.

Proof The proof is divided into two steps.
Step : consider the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(t) = (c(t) – a(t)eX(t) – a(t)eY (t)

b(t)+b(t)eX(t)+b(t)eY (t) ) dt
+ σ(t) dB(t) +

∫

Y
ln( + h(t, u))Ñ(dt, du),

dY (t) = (c(t) – a(t)eY (t) + a(t)eX(t)

b(t)+b(t)eX(t)+b(t)eY (t) ) dt
+ σ(t) dB(t) +

∫

Y
ln( + h(t, u))Ñ(dt, du),

(.)

on t ≥  with initial value (X(), Y ()) = (ln x, ln y). It is easy to find that the coeffi-
cients of (.) satisfy the local Lipschitz condition, then there is a unique local solu-
tion (X(t), Y (t)) for t ∈ [, τe), where τe is the explosion time. Therefore, by Itô’s for-
mula, (x(t), y(t)) = (eX(t), eY (t)) is the unique positive local solution of (.) with initial value
(x, y) ∈ R


+.

Step : we shall show this solution is global, i.e. τe = +∞ a.s. Let k >  be sufficiently
large for x ∈ ( 

k
, k), y ∈ ( 

k
, k). For each integer k ≥ k, define the stopping time

τk = inf

{

t ∈ [, τe) : xt /∈
(


k

, k
)

or yt /∈
(


k

, k
)}

.

Obviously, τk is increasing as k ↑ +∞ a.s. Set τ+∞ := limk→+∞ τk , therefore τ+∞ ≤ τe a.s.
If we can show that τ+∞ = +∞ is true, then τe = +∞ and (x(t), y(t)) ∈ R


+ for all t ≥ ,

a.s. Consequently, we only need to show τ+∞ = +∞ a.s. To illustrate this statement, let us
define a C-function by

V (x, y) = (x –  – ln x) + (y –  – ln y).

The nonnegativity of this function can be seen from the fact that f (u) = u – v – ln u
v ≥ ,

for all u, v > . Using Itô’s formula, we obtain

dV (x, y) = LV
(
x(t), y(t)

)
dt +

(
x(t) – 

)
σ(t) dB(t) +

(
y(t) – 

)
σ(t) dB(t)

+
∫

Y

[
h(t, u)x(t) – ln

(
 + h(t, u)

)
+ h(t, u)y(t) – ln

(
 + h(t, u)

)]
Ñ(dt, du),

where

LV
(
x(t), y(t)

) ≤ –a(t)
(

x(t) –
a(t) + a(t)

a(t)

)

+
(a(t) + a(t))

a(t)

+
a(t)
b(t)

– a(t)
(

y(t) –
a(t) + b(t)a(t) – b(t)a(t)

b(t)a(t)

)

+
(a(t) + b(t)a(t) – b(t)a(t))

b
(t)a(t)

+ a(t) – a(t)

+


σ 

 (t) +


σ 

 (t)
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+
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)
+ h(t, u) – ln

(
 + h(t, u)

)]
λ(du)

≤ (a(t) + a(t))

a(t)
+

(a(t) + b(t)a(t) – b(t)a(t))

b
(t)a(t)

+ a(t) +
a(t)
b(t)

– a(t) +


σ 

 (t) +


σ 

 (t)

+
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)
+ h(t, u) – ln

(
 + h(t, u)

)]
λ(du)

≤ (ǎ + ǎ)

â
+

ǎ

b̂
+

(ǎ + b̌ǎ – b̂â)

b̂
â

+ ǎ +


σ̌ 

 +


σ̌ 

 – â

+
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)
+ h(t, u) – ln

(
 + h(t, u)

)]
λ(du).

Here we have used the fact  ≤ f (t) ≤ a(t)
b(t) ,  ≤ g(t) ≤ a(t)

b(t) and the inequality x – ln(x +
) ≥  (x > –). Therefore, we have

LV
(
x(t), y(t)

) ≤ K + K =: K ,

where

K =
(ǎ + ǎ)

â
+

ǎ

b̂
+

(ǎ + b̌ǎ – b̂â)

b̂
â

+ ǎ +


σ̌ 

 +


σ̌ 

 – â,

K = max

{∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du),

∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du)

}

.

Then

dV
(
x(t), y(t)

) ≤ K dt +
(
x(t) – 

)
σ(t) dB(t) +

(
y(t) – 

)
σ(t) dB(t)

+
∫

Y

[
h(t, u)x(t) – ln

(
 + h(t, u)

)
+ h(t, u)y(t)

– ln
(
 + h(t, u)

)]
Ñ(dt, du). (.)

Integrating both sides of (.) from  to τk ∧ T , we deduce

∫ τk∧T


dV

(
x(t), y(t)

)

≤
∫ τk∧T


K dt +

∫ τk∧T



(
x(t) – 

)
σ(t) dB(t) +

∫ τk∧T



(
y(t) – 

)
σ(t) dB(t)

+
∫ τk∧T



∫

Y

[
h(t, u)x(t) – ln

(
 + h(t, u)

)
+ h(t, u)y(t)

– ln
(
 + h(t, u)

)]
Ñ(dt, du). (.)

Taking the expectation of both sides of (.), we obtain

EV
(
x(τk ∧ T), y(τk ∧ T)

) ≤ V (x, y) + KT . (.)
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Define a function, for each v > ,

μ(v) = inf

{

V (x, x) : xi ≥ v or xi ≤ 
v

, i = , 
}

.

Due to the property of the function g(x) = x –  – ln x, x > , we deduce that

lim
x→+∞ g(x) = +∞ and lim

x→+
g(x) = +∞

and hence

lim
v→+∞μ(v) = +∞. (.)

Set �k = {τk ≤ T}. Then we obtain from (.)

μ(k)P(�k) ≤ E
[
I�k V

(
x(τk), y(τk)

)]

≤ EV
(
x(τk ∧ T), y(τk ∧ T)

)

≤ V (x, y) + KT ,

where I�k is the indicator function of �k . Recalling (.) and letting k → +∞ yield
P(τ+∞ ≤ T) = . Since T is arbitrary, we must have P(τ+∞ = +∞) = . The proof is therefore
completed. �

Theorem . Under Assumption A, for any  ≤ p ≤ , there is a constant K such that

sup
t∈R+

E
(
xp(t) + yp(t)

) ≤ K .

And assume further that there is a constant M(p) such that, for some p > , t ≥ , i = , ,

∫

Y

∣
∣hi(t, u)

∣
∣p

λd(u) ≤ M(p), (.)

then there is a K (p) such that

sup
t∈R+

E
(
xp(t) + yp(t)

) ≤ K(p). (.)

Proof The following idea goes to back to that of [].
Applying Itô’s formula for p > , we obtain

detxp(t) ≤ et
[

–pâxp+(t) +
(

 + p
(

ǎ +
p – 


σ̌ 



))

xp(t)
]

dt

+ pxp(t)σ(t) dB(t) +
∫

Y

etxp(t)
[(

 + ȟ(u)
)p – 

– pĥ(u)
]
λ(du) dt +

∫

Y

etxp(t)
[(

 + h(t, u)
)p – 

]
Ñ(dt, du). (.)
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By Assumption A and the condition (.), we deduce that there exists a constant K(p)
such that

–pâxp+(t) +
(

 + p
(

ǎ +
p – 


σ̌ 



))

xp(t)

+
∫

Y

[(
 + ȟ(u)

)p –  – pĥ(u)
]
λ(du)xp(t)

≤ K(p).

Taking the expectation on both sides of the (.) and rearranging yield

E
(
etxp(t)

) ≤ xp
 +

∫ t


K(p)es ds = xp

 + K(p)
(
et – 

)
.

From the above inequality, we deduce that there exists a constant K̄(p) >  such that

sup
t∈R+

E
(
xp(t)

) ≤ K̄(p).

In the same way, we can deduce that there exists a constant K̄(p) >  such that

sup
t∈R+

E
(
yp(t)

) ≤ K̄(p).

Hence supt∈R+ E(xp(t) + yp(t)) ≤ K̄(p) + K̄(p) =: K(p), which yields the desired assertion
(.). For  ≤ p ≤ , utilizing the Young inequality yields

∫

Y

[(
 + hi(t, u)

)p –  – phi(t, u)
]
λ(du) ≤ , i = , .

Consequently,

–pâxp+(t) +
(

 + p
(

ǎ +
p – 


σ̌ 



))

xp(t)

+
∫

Y

[(
 + hi(t, u)

)p –  – phi(t, u)
]
λ(du)xp(t)

≤ –pâxp+(t) +
(

 + p
(

ǎ +
p – 


σ̌ 



))

xp(t),

which has an upper bound. Then the conclusion follows immediately. �

As an application of Theorem ., together with Chebyshev’s inequality, we establish
the following result.

Theorem . Let the conditions of Theorem . hold. Then the solution z(t) = (x(t), y(t)) of
(.) is stochastically bounded, that is to say, for any ε ∈ (, ), there is a constant H := H(ε)
such that, for any z = (x, y) ∈R


+,

lim sup
t→+∞

P
{∣
∣z(t)

∣
∣ ≤ H

} ≥  – ε.
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The next results are instrumental for obtaining the long-time behaviors of the sys-
tem (.).

Lemma . Let Assumption A hold. Then, for all initial values (x, y) ∈R

+,

P
{

x(t) > ,∀t > 
}

=  and P
{

y(t) > ,∀t > 
}

= . (.)

Proof We shall only prove the result for (x(t)) since the result for (y(t)) can be done in the
same way. Denote

τK := inf
{

t > ; x(t) ≥ K
}

, K ≥  and ρU :=
{

t > ; x(t) ≤ U
}

, U > .

By Theorem ., (x(t)) is nonexplosive, that is, limK→∞ τK = ∞ with probability . By Itô’s
formula, for p >  such that –â + ǎ

b̂
+ p+

 σ̌ 
 > , we deduce

x–p(t ∧ ρU ∧ τK ) ≤ x–p
 +

∫ t∧ρU∧τK



{

p
(

–â + ǎK +
ǎ

b̂

)

+
p(p + )


σ̌ 



+
∫

Y

[
( + ĥ)–p –  + pȟ

]
λ(du)

}

x–p(s) ds

+
∫ t∧ρU∧τK


–px–p(s)σ(s) dB(t)

+
∫ t∧ρU∧τK



∫

Y

x–p(s)
[(

 + h(s, u)
)–p – 

]
Ñ(ds, du).

Taking the expectations of both sides and utilizing Gronwall’s inequality yield

Ex–p(t ∧ ρU ∧ τK ) ≤ x–p
 exp

{[

p
(

–â + ǎK +
ǎ

b̂
+

p + 


σ̌ 


)

+
∫

Y

[
( + ĥ)–p –  + pȟ

]
λ(du)

]

t
}

.

Let ρ = inf{t > ; x(t) = }, then ρU ↑ ρ as U ↓ . If the statement (.) is false, that is,
P(ρ < ∞) > , we can choose a pair of constants t and K large enough such that P(ρ <
t ∧ τK ) > . Then, for any U > ,

 < P(ρ < t ∧ τK ) ≤ P(ρU < t ∧ τK )

≤ Up
E

[
x–p(t ∧ ρU ∧ τK )I{ρU <t∧τK }

]

≤ Up
E

[
x–p(t ∧ ρU ∧ τK )

]

≤ Upx–p
 exp

{[

p
(

–â + ǎK +
ǎ

b̂
+

p + 


σ̌ 


)

+
∫

Y

[
( + ĥ)–p –  + pȟ

]
λ(du)

]

t
}

.

Letting U ↓ , we get a contradiction. Therefore, it implies P(ρ < ∞) = . We complete
the proof. �
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Lemma . Let Assumption A hold. Assume in addition that there exists a constant c > 
such that

∫

Y

[
ln

(
 + hi(t, u)

)]
λ(du) ≤ c. (.)

Then, for any initial value (x, y) ∈R

+, the solution of (x(t), y(t)) of (.) has the property

lim sup
t→∞

ln x(t)
t

≤  and lim sup
t→∞

ln y(t)
t

≤  a.s.

Proof In this section we use the transform ln x(t). By Lemma ., this transform make
sense for all t ≥ . Then, for any t ≥ , applying Itô’s formula we deduce

et ln x(t) = ln x +
∫ t


es[ln x(s) + c(s) – a(s)x(s) – f (s)

]
ds

+
∫ t


esσ(s) dB(s) +

∫ t



∫

Y

es ln
(
 + h(s, u)

)
Ñ(ds, du).

It follows from the inequality ln x ≤ x –  that

et ln x(t) ≤ ln x +
∫ t


es

[

ln x(s) + a(t) –
σ 

 (t)


– a(s)x(s) – f (s)
]

ds

+
∫ t


esσ(s) dB(s) +

∫ t



∫

Y

es ln
(
 + h(s, u)

)
Ñ(ds, du).

Due to the property of the function ln x – cx (c, x > ) that it has maximum value – – ln c
on x = 

c , we deduce that

et ln x(t) ≤ ln x +
∫ t


es

[

– – ln a(s) + a(s) –
σ 

 (s)


– f (s)
]

ds

+
∫ t


esσ(s) dB(s) +

∫ t



∫

Y

es ln
(
 + h(s, u)

)
Ñ(ds, du). (.)

Let M(t) =
∫ t

 esσ(s) dB(s), M(t) =
∫ t


∫

Y
es ln( + h(s, u))Ñ(ds, du), then the quadratic

variation of M(t) and M(t) are

〈
M(t)

〉
(t) =

∫ t


esσ 

 (s) ds ≤ σ̌ 



(
et – 

)
< ∞ a.s.

and

〈
M(t)

〉
(t) =

∫ t



∫

Y

es∣∣ln
(
 + h(s, u)

)∣
∣

λ(du) ds ≤ c(et – )


< ∞ a.s.

In view of Lemma . in [], for any positive number α, β , T ,

P

{

sup
≤t≤T

[

M(t) –
α


〈
M(t)

〉
(t) + M(t) –


α

∫ t



∫

Y

[
eαes ln(+h(u,�(s))) – 

– αes ln
(
 + h(s, u)

)]
λ(du)ds

]

≥ β

}

≤ e–αβ .
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Choose T = nγ , α = εe–nγ , and β = θenγ ln n

ε
, where n ∈ N,  < ε < , γ > , and θ > . By the

Borel-Cantelli lemma, we see that there exists an �i ⊆ � with P(�i) =  such that, for any
ω ∈ �i, there is an integer n = n(ω) such that

M(t) + M(t) ≤ θenγ ln n
ε

+
εe–nγ



∫ t


esσ 

 (s) ds +
enγ

ε

∫ t



∫

Y

[(
 + h(s, u)

)εes–nγ

–  – εes–nγ ln
(
 + h(s, u)

)]
λ(du) ds,

where n > n,  ≤ t ≤ nγ . Furthermore, from the inequality xp ≤  + p(x – ) (x ≥ ,  ≤
p ≤ ), we get

enγ

ε

∫ t



∫

Y

[(
 + h(s, u)

)εes–nγ

–  – εes–nγ ln
(
 + h(s, u)

)]
λ(du) ds

≤
∫ t



∫

Y

es(h(s, u) – ln
(
 + h(s, u)

))
λ(du) ds.

Substituting the above inequality into (.) yields

et ln x(t) ≤ ln x +
∫ t


es

[

– – ln a(s) + a(s) –
σ 

 (s)


– f (s)
]

ds +
θenγ ln n

ε

+
εe–nγ



∫ t


esσ 

 (s) ds +
∫ t



∫

Y

es(h(s, u) – ln
(
 + h(s, u)

))
λ(du) ds

≤ ln x +
θenγ ln n

ε
+

∫ t


es

(

– – ln â + ǎ –
σ 

 (s)


)

ds

+
εe–nγ



∫ t


esσ 

 (s) ds +
∫ t



∫

Y

es(∣∣ȟ(u)
∣
∣ +

∣
∣ln

(
 + ȟ(u)

)∣
∣
)
λ(du) ds

≤ ln x +
θenγ ln n

ε
+

∫ t


es

(

– – ln â + ǎ –
( – εes–nγ )σ̂ 




)

ds

+
∫ t



∫

Y

es(∣∣ȟ(u)
∣
∣ +

∣
∣ln

(
 + ȟ(u)

)∣
∣
)
λ(du) ds.

Then, for any ω ∈ �i and (n – )γ ≤ t ≤ nγ with n ≥ n + , we have

ln x(t) ≤ ln x

et +
θeγ ln n

ε
+

∫ t


es–t

(

– – ln â + ǎ –
( – εes–nγ )σ̂ 




)

ds

+
∫ t



∫

Y

es–t(∣∣ȟ(u)
∣
∣ +

∣
∣ln

(
 + ȟ(u)

)∣
∣
)
λ(du) ds.

By Assumption A, it is readily seen that, for any  ≤ s ≤ nγ , there exists a constant K
which is independent of n such that

ln x(t)
t

≤ ln x

tet +
θeγ ln n

tε
+ K

(

t

–


tet

)

.

Setting n ↑ ∞, ε ↑ , γ ↓  and θ ↓  leads to

lim sup
t→∞

ln x(t)
t

≤ .
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On the other hand, the result for (y(t)) can be proved in the same way and so we omit
it. �

3 Persistence and extinction
In the previous section, we have discussed some properties of the solution to the system
(.). In this section we will investigate how jump process affects the persistence and ex-
tinction of the system (.).

Theorem . Let Assumption A and (.) hold, for any initial value (x, y) ∈ R

+, the

solution of (x(t), y(t)) of (.) has the property

lim sup
t→∞

ln x(t)
t

≤ lim sup
t→∞


t

∫ t


c(s) ds and

lim sup
t→∞

ln y(t)
t

≤ lim sup
t→∞


t

∫ t



(

c(s) +
a(s)
b(s)

)

ds.

Proof According to Lemma ., it suffices to show that x(t) >  for all t ≥  almost every-
where. Then using Itô’s formula we have

ln x(t) ≤ ln x +
∫ t


c(s) ds +

∫ t


σ(s) dB(s) +

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du).

This further shows

ln x(t)
t

≤ ln x

t
+


t

∫ t


c(s) ds +


t

∫ t


σ(s) dB(s)

+

t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du). (.)

Let M(t) =
∫ t

 σ(s) dB(s), M(t) =
∫ t


∫

Y
ln( + h(s, u))Ñ(ds, du), then the quadratic varia-

tions of M(t) and M(t) are

〈
M(t)

〉
(t) =

∫ t


σ 

 (s) ds ≤ σ̌ 
 t

and

〈
M(t)

〉
(t) =

∫ t



∫

Y

∣
∣ln

(
 + h(s, u)

)∣
∣

λ(du) ds ≤ ct.

We have

∫ t




( + s) ds =

t
 + t

< ∞,

and utilizing the strong law of large numbers for local martingales (see []), we get

lim
t→∞

Mi(t)
t

=  a.s. , i = , . (.)
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Combining the above equalities with (.), we obtain

lim sup
t→∞

ln x(t)
t

≤ lim sup
t→∞

ln x

t
+ lim sup

t→∞

t

∫ t


c(s) ds.

Hence the result for (y(t)) can be proved in the same way and so we omit it. �

If the jump noise intensities are sufficiently large, all the species will become extinct with
probability one. The following conclusion illustrates this point.

Theorem . Assume the conditions of Theorem .. If

lim sup
t→∞


t

∫ t


c(s) ds < 

and

lim sup
t→∞


t

∫ t



∫

Y

[
h(s, u) – ln

(
 + h(s, u)

)]
λ(du) ds

> lim sup
t→∞


t

∫ t



(

a(s) –
σ 

 (s)


)

ds,

then all the species go to extinction, namely, limt→∞ x(t) =  and limt→∞ y(t) = .

Proof In the light of Theorem ., we have lim supt→∞
ln x(t)

t <  a.s. This further implies
that limt→∞ x(t) =  a.s.

From the view point of biological significance, when the prey dies out, the predator must
die out too. Using Itô’s formula we have

lim sup
t→∞

ln y(t)
t

≤ lim sup
t→∞

[
ln y

t
+


t

∫ t



(

c(s) – a(s)y(s) +
a(s)x(s)

b(s)

)

ds

+

t

∫ t


σ(s) dB(s) +


t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du)

]

≤ lim sup
t→∞


t

∫ t


c(s) ds <  a.s.

This also implies that limt→∞ y(t) =  a.s. �

Theorem . Let Assumption A and (.) hold.
() If lim supt→∞


t
∫ t

 c(s) ds = , then the prey (x(t)) is nonpersistent in the mean,
namely, lim supt→∞


t
∫ t

 x(s) ds = .
() If lim supt→∞


t
∫ t

 [c(s) + a(s)
b(s) ] ds = , then the predator (y(t)) is nonpersistent in the

mean, namely, lim supt→∞

t
∫ t

 y(s) ds = .

Proof Our proof is motivated by the work of Liu and Wang []. In view of the fact that
limt→∞ 

t
∫ t

 c(s) ds ≤ lim supt→∞

t
∫ t

 c(s) ds and (.), for ∀ε > , there exists a constant
T such that 

t
∫ t

 c(s) ds ≤ lim supt→∞

t
∫ t

 c(s) ds + ε
 = ε

 , M(t)
t ≤ ε

 , M(t)
t ≤ ε

 , t ≥ T .
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Consequently, for any ε >  and sufficiently large t > T we deduce that

ln x(t) ≤ ln x +
∫ t



[
c(s) – a(s)x(s)

]
ds + M(t) + M(t)

≤ ln x + εt – â

∫ t


x(s) ds.

Define, for t ≥ , ϕ(t) =
∫ t

 x(s) ds. Then it is easy to see that, for any t > T ,

ln

(
dϕ

dt

)

≤ ln x + εt – âϕ(t).

This further shows, for any t > T ,

eâϕ(t) dϕ

dt
≤ xeεt .

Integrating the inequality from T to t results in

â–


(
eâϕ(t) – eâϕ(T)) ≤ xε

–(eεt – eεT)
,

which yields immediately

eâϕ(t) ≤ eâϕ(T) + âxε
–(eεt – eεT)

.

Taking the logarithm on both sides yields

ϕ(t) ≤ â–
 ln

[
eâϕ(T) + âxε

–(eεt – eεT)]
.

Then using L’Hospital’s rule yields

lim sup
t→∞


t

∫ t


x(s) ds ≤ â–

 lim sup
t→∞


t

ln âxε
–eεt = â–

ε a.s.

Letting ε tend to  in the previous inequality, we obtain lim supt→∞

t
∫ t

 x(s) ds ≤ . The
corresponding result for (y(t)) can be proved with the same technique and we omit it. The
proof is completed. �

Theorem . Let Assumption A and (.) hold.
() If lim supt→∞


t
∫ t

 [c(s) – a(t)
b(t) ] ds > , then the prey (x(t)) is weakly persistent,

namely, lim supt→∞ x(t) > .
() If lim supt→∞


t
∫ t

 c(s) ds > ,
lim supt→∞


t
∫ t

 c(s) ds + â
b > â

b lim supt→∞

t
∫ t




φ(s) ds, then the predator (y(t)) is
weakly persistent, namely, lim supt→∞ y(t) > , where b = max{b̌, b̌} and 

φ(t) is
defined by (.).

Proof To complete the proof, we first show that the prey (x(t)) is weakly persistent, that
is to say, lim supt→∞ x(t) > . If P(limt→∞ x(t) = ) > , there exists a measurable subset �′
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of � such that P(�′) >  and limt→∞ x(t,ω) =  for any ω ∈ �′. Then, by Itô’s formula,

ln x(t)
t

=
ln x

t
+


t

∫ t



[
c(s) – a(s)x(s) – f (s)

]
ds +

M(t)
t

+
M(t)

t
.

Combining this with (.), for all ω ∈ �′ we obtain

lim sup
t→∞

ln x(t)
t

= lim sup
t→∞


t

∫ t



[

c(s) –
a(s)y(s)

b(s) + b(s)y(s)

]

ds

≥ lim sup
t→∞


t

∫ t



[

c(s) –
a(s)
b(s)

]

ds > .

This contradicts the fact that lim supt→∞
ln x(t)

t ≤  in Lemma .. So (x(t)) is weakly per-
sistent.

In the following, we need to show that the predator (y(t)) is weakly persistent. Now
consider the following auxiliary process with jumps:

dφ(t) = φ(t–)
[(

a(t) – a(t)φ(t–)
)

dt + σ(t) dB(t)
]

+
∫

Y

h(t, u)φ(t–)Ñ(dt, du),

φ() = x.

Then by the comparison theorem [], φ(t) ≥ x(t) a.s. for all t > , hence φ(t) will never
reach . Then applying Itô’s formula, we have

d


φ(t)
=

[(

–a(t) + σ 
 (t) +

∫

Y

(


 + h(t, u)
–  + h(t, u)

)

λ(du)
)


φ(t)

+ a(t)
]

dt

–


φ(t)
σ(t) dB(t) +

∫

Y


φ(t)

(


 + h(t, u)
– 

)

Ñ(dt, du).

By Lemma . in [], we have


φ(t)

= exp

(∫ t


–c(s) ds –

∫ t


σ(s) dB(s) –

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du)

)

×
[


x

+
∫ t


exp

(∫ s


c(r) dr +

∫ s


σ(r) dB(r)

+
∫ s



∫

Y

ln
(
 + h(r, u)

)
Ñ(dr, du)

)

a(s) ds
]

. (.)

Furthermore, in view of the condition lim supt→∞

t
∫ t

 c(s) ds > , together with Theo-
rem . in [], there exists a constant T such that, for any t ≥ T , 

φ(t) has an upper bound.
On the other hand, applying Itô’s formula, we obtain

d
(
lnφ(t) – ln x(t)

)
=

(

–a(t)
(
φ(t) – x(t)

)
+

a(t)y(t)
b(t) + b(t)x(t) + b(t)y(t)

)

dt.
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This further shows

 ≤ lnφ(t) – ln x(t) ≤ –â

∫ t



(
φ(s) – x(s)

)
ds +

∫ t



ǎ

b̂
y(s) ds,

that is,
∫ t



(
φ(s) – x(s)

)
ds ≤ ǎ

âb̂

∫ t


y(s) ds. (.)

For the process (y(t)), together with (.), we have

ln y(t)
t

=
ln y

t
–


t

∫ t


a(s)y(s) ds +


t

∫ t



(

c(s) +
a(s)φ(s)

b(s) + b(s)φ(s)

)

ds

–

t

∫ t



(
a(s)φ(s)

b(s) + b(s)φ(s)
–

a(s)x(s)
b(s) + b(s)x(s)

)

ds

–

t

∫ t



(
a(s)x(s)

b(s) + b(s)x(s)
– g(s)

)

ds

+

t

∫ t


σ(s) dB(s) +


t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du)

≥ ln y

t
–


t

∫ t



(

a(s) +
a(s)b(s)
b(s)b(s)

)

y(s) ds

+

t

∫ t



(

c(s) +
a(s)φ(s)

b(s) + b(s)φ(s)

)

ds –

t

∫ t



a(s)(φ(s) – x(s))
b(s) + b(s)φ(s)

ds

+

t

∫ t


σ(s) dB(s) +


t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du)

≥ ln y

t
–


t

∫ t



(

ǎ +
ǎb̌

b̂b̂

)

y(s) ds +

t

∫ t


c(s) ds +

â

b

t

∫ t



φ(s)
 + φ(s)

ds

–

t

∫ t



ǎ(φ(s) – x(s))
b̂

ds +

t

∫ t


σ(s) dB(s)

+

t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du)

≥ ln y

t
–


t

∫ t



(

ǎ +
ǎb̌

b̂b̂
+

ǎǎ

âb̂


)

y(s) ds +

t

∫ t


c(s) ds

+
â

b

t

∫ t



φ(s)
 + φ(s)

ds +

t

∫ t


σ(s) dB(s)

+

t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du),

from which it follows that

lim inf
t→∞


t

∫ t



(

ǎ +
ǎb̌

b̂b̂
+

ǎǎ

âb̂


)

y(s) ds

≥ lim sup
t→∞

(

t

∫ t


c(s) ds +

â

b

t

∫ t



φ(s)
 + φ(s)

ds
)

– lim sup
t→∞

ln y(t)
t

,

where b = max{b̌, b̌}.
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Here we have used the facts that

lim
t→∞


t

∫ t


σ(s) dB(s) =  a.s. (.)

and

lim
t→∞


t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du) =  a.s., (.)

which are obtained in the same way for (.). By Lemma ., we get

lim inf
t→∞


t

∫ t



(

ǎ +
ǎb̌

b̂b̂
+

ǎǎ

âb̂


)

y(s) ds

≥ lim sup
t→∞

(

t

∫ t


c(s) ds +

â

b

t

∫ t



φ(s)
 + φ(s)

ds
)

≥ lim sup
t→∞

(

t

∫ t


c(s) ds +

â

b
–

â

b

t

∫ t




φ(s)

ds
)

= lim sup
t→∞


t

∫ t


c(s) ds +

â

b
– lim sup

t→∞
â

b

t

∫ t




φ(s)

ds.

And furthermore

lim inf
t→∞


t

∫ t


y(s) ds ≥

(

ǎ +
ǎb̌

b̂b̂
+

ǎǎ

âb̂


)–(

lim sup
t→∞


t

∫ t


c(s) ds +

â

b

– lim sup
t→∞

â

b

t

∫ t




φ(s)

ds
)

> ,

which implies that we must have lim supt→∞ y(t) >  a.s. The proof is completed. �

Theorem . Let Assumption A and (.) hold. If lim supt→∞

t
∫ t

 [c(s)– a(s)
b(s) ] ds >  and

lim supt→∞

t
∫ t

 [c(s) + a(s)
b(s) ] ds < , then limt→∞ y(t) =  and lim supt→∞ x(t) > .

Proof First we show that (y(t)) goes to extinction. By Itô’s formula we have

ln y(t) ≤ ln y +
∫ t



(

c(s) +
a(s)
b(s)

)

ds +
∫ t


σ(s) dB(s)

+
∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du)

and, by (.) and (.),

lim sup
t→∞

ln y(t)
t

≤ lim sup
t→∞


t

∫ t



(

c(s) +
a(s)
b(s)

)

ds < .

Hence limt→∞ y(t) =  a.s.
Next, under the condition that limt→∞ y(t) =  a.s., we shall show that we must have

lim supt→∞ x(t) >  a.s. If this is not true, then P(limt→∞ x(t) = ) >  and there exists a
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measurable subset � of � such that P(�) >  and limt→∞ x(t,ω) =  for any ω ∈ �. On
the flip side, for all ω ∈ �,

lim sup
t→∞

ln x(t)
t

= lim sup
t→∞


t

∫ t



(
c(s) – a(s)x(s) – f (s)

)
ds

= lim sup
t→∞


t

∫ t



(

c(s) –
a(s)
b(s)

)

ds > ,

which implies that we must have lim supt→∞ x(t) >  a.s. The proof is completed. �

Remark . Theorems .-. have some interesting biological interpretations. It is read-
ily to see that the extinction and persistence of the predator and prey have close relations
with the jumps noise. The lim supt→∞


t
∫ t

 c(s) ds is the threshold between extinction and
persistence for the predator-prey models. If lim supt→∞


t
∫ t

 c(s) ds < , i.e. the jump is
relatively large

(∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) > a(t) –

σ 
 (t)


)

,

the prey population goes to extinction, and then the predator population goes to extinc-
tion. That is to say, if the prey population goes to extinction, the predator will also go to
extinction, which is consistent with biological significance. If lim supt→∞


t
∫ t

 c(s) ds = ,
i.e. the jump is relatively small,

(∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) = a(t) –

σ 
 (t)


)

,

the prey population is nonpersistent in the mean. On the other hand, since c(t) < , in
order to see that the predator population is nonpersistent in the mean, the jump noise is
required to satisfy

lim sup
t→∞


t

∫ t



(

c(s) +
a(s)
b(s)

)

ds = .

Remark . When lim supt→∞

t
∫ t

 (c(s) – a(s)
b(s) ) ds > , the prey population is weakly per-

sistent. This shows that when the jump noise is smaller than the above, the prey population
will not go extinct. The weak persistence of predator has close ties to the process (φ(t))
expected for the jump noise. In fact, from a viewpoint of biology, this is reasonable. If
the predator population is weakly persistent, the prey population is weakly persistent. In
Theorem ., note the following facts:

ln y(t)
t

=
ln y

t
+


t

∫ t



[
c(s) – a(s)y(s) + g(s)

]
ds +


t

∫ t


σ(s) dB(s)

+

t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du),

lim
t→∞


t

∫ t


σ(s) dB(s) =  a.s.,
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and

lim sup
t→∞


t

∫ t



∫

Y

ln
(
 + h(s, u)

)
Ñ(ds, du) =  a.s.

If P(limt→∞ x(t) = ) > , then we must have P(lim supt→∞
ln y(t)

t < ) > . Therefore, the
predator (y(t)) is weakly persistent implies that the prey (x(t)) is weakly persistent.

Remark . When

lim sup
t→∞


t

∫ t



(

c(s) –
a(s)
b(s)

)

ds > 

and

lim sup
t→∞


t

∫ t



(

c(s) +
a(s)
b(s)

)

ds < ,

the predator population goes to extinction, and then the prey population will be weakly
persistent. In real life, when one or more predator animals become extinct, there is an
increase of the animals that they use for food.

Remark . There is another definition of persistence for stochastic population mod-
els, which has attracted a lot of authors. Liu-Bai [] proposed the concept of stochasti-
cally persistent in probability: there is a unique invariant probability measure μ such that
μ(�) =  and the distribution of X(t) converges to μ as t → ∞ whenever X() ∈ R

n
+,

where � = {a ∈ R
n
+|ai =  for some i,  ≤ i ≤ n}. We can refer to Tong et al. [] with

regard to the stochastically persistent in probability of (.). For any initial value Z() =
(x, y) ∈ R


+, let p(t, Z(), ·) be the transition probability of X(t). According to Chebyshev’s

inequality, Theorem ., and the Krylov-Bogoliubov theorem [], there exists an invari-
ant probability measure μ for the solution Z(t) = (x(t), Y (t)) of Eq. (.) such that

p
(
t, Z(), ·) → μ(·), as t → ∞.

On the other hand, under the conditions of Theorem ., using the truncation technique
as [] and Theorem . in [], the model (.) has the Feller property. Moreover, by the
same discussion as that of Theorem . in Tong et al. [], one can easily infer that μ is
unique. Consequently, the model (.) is also stochastically persistent in probability.

4 Numerical simulations
In this section, in order to testify the validity of the main results, the following example
and simulations are introduced. Let x = ., y = ., a(t) = ., a(t) = a(t) = . +
. sin(t), a(t) = ., b(t) = ., b(t) = ., b(t) = , σ(t) = ., σ(t) = ., a(t) =
., a(t) = ., λ(Y) = , and the step size �t = .. The only difference between
Figures - is that the values of hi (i = , ) are different. In Figure , we choose h(t, u) =
e – , then by a simple calculation, we have

∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) = e – 
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Figure 1 Solutions of system (1.1) for x0 = 2.5, y0 = 2.2, a11(t) = 0.81, a12(t) = a22(t) = 0.45 + 0.2 sin(t),
a13(t) = 0.06, b1(t) = 0.1, b2(t) = 0.2, b3(t) = 1, σ1(t) = 1.2, σ2(t) = 0.8, a21(t) = 0.21, a23(t) = 0.1876,
h1(t, u) = e – 1, λ(Y) = 1, and the step size �t = 0.01.

Figure 2 Solutions of system (1.1) for x0 = 2.5, y0 = 2.2, a11(t) = 0.81, a12(t) = a22(t) = 0.45 + 0.2 sin(t),
a13(t) = 0.06, b1(t) = 0.1, b2(t) = 0.2, b3(t) = 1, σ1(t) = 1.2, σ2(t) = 0.8, a21(t) = 0.21, a23(t) = 0.1876,
λ(Y) = 1, and the step size �t = 0.01, h1(t, u) = 0.4863 and h2(t, u) = 1.1935.
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Figure 3 Solutions of system (1.1) for x0 = 2.5, y0 = 2.2, a11(t) = 0.81, a12(t) = a22(t) = 0.45 + 0.2 sin(t),
a13(t) = 0.06, b1(t) = 0.1, b2(t) = 0.2, b3(t) = 1, σ1(t) = 1.2, σ2(t) = 0.8, a21(t) = 0.21, a23(t) = 0.1876,
λ(Y) = 1, and the step size �t = 0.01, h1(t, u) = h2(t, u) = 0.2406.

Figure 4 Solutions of system (1.1) for x0 = 2.5, y0 = 2.2, a11(t) = 0.81, a12(t) = a22(t) = 0.45 + 0.2 sin(t),
a13(t) = 0.06, b1(t) = 0.1, b2(t) = 0.2, b3(t) = 1, σ1(t) = 1.2, σ2(t) = 0.8, a21(t) = 0.21, a23(t) = 0.1876,
λ(Y) = 1, and the step size �t = 0.01, h1(t, u) = 0.2406, h2(t, u) = e – 1.
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and

c(t) = a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) = –. < .

Then in virtue of Theorem ., all the species go to extinction, and Figure  confirms this.
In Figure , we choose h(t, u) = . and h(t, u) = ., then by a simple calculation,
we have

∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) = .,

∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) = .,

and

c(t) = a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) = ,

c(t) = a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) = .

In view of Theorem ., it is readily seen that the prey (x(t)) and the predator (y(t)) will
be nonpersistent in the mean. In Figure , we choose h(t, u) = h(t, u) = ., then by
a simple calculation, we have

∫

Y

[
hi(t, u) – ln

(
 + hi(t, u)

)]
λ(du) = ., i = , ,

and

c(t) –
a(t)
b(t)

= a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) –

a(t)
b(t)

= . > ,

c(t) +
a(t)

b
= a(t) –

σ 
 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du)

a(t)
b

= .,

â

b
lim sup

t→∞

t

∫ t




φ(s)

ds ≤ . × . = ..

Then it confirms the conditions of Theorem .. And it is easy to see that the prey (x(t))
and the predator (y(t)) will be weakly persistent from Figure . In Figure , we choose
h(t, u) = ., h(t, u) = e – , by a simple calculation, we have

∫

Y

[
hi(t, u) – ln

(
 + hi(t, u)

)]
λ(du) = ., i = , ,

and

c(t) –
a(t)
b(t)

= a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du) –

a(t)
b(t)

= . > ,
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c(t) +
a(t)
b(t)

= a(t) –
σ 

 (t)


–
∫

Y

[
h(t, u) – ln

(
 + h(t, u)

)]
λ(du)

a(t)
b(t)

= . – e < .

Then by Theorem ., it is easy to see that the prey (x(t)) will be weakly persistent and the
predator (y(t)) will be extinctive from Figure .

5 Conclusion
In this work we propose a predator-prey model of a Beddington-DeAngelis type func-
tional response with Lévy jumps. We show that the model admits a unique global positive
solution, and we study the stochastically boundedness and other asymptotic properties of
solutions. Moreover, we provide the sufficient conditions for extinction, nonpersistence
in the mean and weak persistence of this models. The results confirm that the intensity
of jump noise has a grave impact on the properties of this model. In the future, we will
propose some more practical and complex models such as considering the hybrid system
driven by continuous time Markov chains into the system (see e.g. []). More specifically,
consider the following regime-switching predator-prey model of Beddington-DeAngelis
type functional response with Lévy jumps:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = x(t–)[(a(�(t)) – a(�(t))x(t–) – a(�(t))y(t–)
b(�(t))+b(�(t))x(t–)+b(�(t))y(t–) ) dt

+ σ(�(t))dB(t)] +
∫

Y
h(�(t), u)x(t–)Ñ(dt, du),

dy(t) = y(t–)[(–a(�(t)) – a(�(t))y(t–) + a(�(t))x(t–)
b(�(t))+b(�(t))x(t–)+b(�(t))y(t–) ) dt

+ σ(�(t))dB(t)] +
∫

Y
h(�(t), u)y(t–)Ñ(dt, du).
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