217 research outputs found

    Investigating Crayfish (\u3cem\u3eOrconectes rusticus\u3c/em\u3e) Aggression and How it Varies with Resource Availability

    Get PDF
    Animals that express agonistic behavior toward one another are prone to recognizing hierarchical status among individuals. Recognizing status has proven to be evolutionarily advantageous for crayfish (Orconectes rusticus) because it allows dominant individuals to maximize resources and permits subordinate individuals to steer clear of potentially costly battles. More specifically, two crayfish experiencing aggression can generally determine who the dominant and subordinate individuals are in a fight. A higher social status within a social hierarchy can allow for increased access to differing resources, such as food, mates, and shelter. In this experiment, we want to see if limiting resources will affect aggression levels in crayfish. To do this, we limited food availability and shelter availability and measured crayfish aggression over several rounds of interaction. While we did not find that resource availability affected crayfish aggression we did find that status does affect crayfish aggression

    Enstrophy dissipation in two-dimensional turbulence

    Full text link
    Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduction network. It allows the identification of an entropy function associated to the enstrophy dissipation and that fluctuates around a positive (mean) value. While the corresponding enstrophy network is highly nonlocal, the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential parameter is the ratio Tk=γk/(νk2)T_k = \gamma_k /(\nu k^2) of the intensity of driving γk>0\gamma_k>0 as a function of wavenumber kk, to the dissipation strength νk2\nu k^2, where ν\nu is the viscosity. The enstrophy current flows from higher to lower values of TkT_k, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total entropy production which relates the probabilities of direct and inverse enstrophy cascades.Comment: 8 pages, revtex

    Stochastic porous media equations and self-organized criticality: convergence to the critical state in all dimensions

    Full text link
    If X=X(t,ξ)X=X(t,\xi) is the solution to the stochastic porous media equation in ORd\cal O\subset\mathbb{R}^d, 1d3,1\le d\le 3, modelling the self-organized criticaity and XcX_c is the critical state, then it is proved that \int^\9_0m(\cal O\setminus\cal O^t_0)dt<\9, Pa.s.\mathbb{P}{-a.s.} and \lim_{t\to\9}\int_{\cal O}|X(t)-X_c|d\xi=\ell<\9,\ \mathbb{P}{-a.s.} Here, mm is the Lebesgue measure and Oct\cal O^t_c is the critical region {ξO;\{\xi\in\cal O; X(t,ξ)=Xc(ξ)} X(t,\xi)=X_c(\xi)\} and Xc(ξ)X(0,ξ)X_c(\xi)\le X(0,\xi) a.e. ξO\xi\in\cal O. If the stochastic Gaussian perturbation has only finitely many modes (but is still function-valued), \lim_{t\to\9}\int_K|X(t)-X_c|d\xi=0 exponentially fast for all compact KOK\subset\cal O with probability one, if the noise is sufficiently strong. We also recover that in the deterministic case =0\ell=0

    Competitive Lotka-Volterra Population Dynamics with Jumps

    Get PDF
    This paper considers competitive Lotka-Volterra population dynamics with jumps. The contributions of this paper are as follows. (a) We show stochastic differential equation (SDE) with jumps associated with the model has a unique global positive solution; (b) We discuss the uniform boundedness of ppth moment with p>0p>0 and reveal the sample Lyapunov exponents; (c) Using a variation-of-constants formula for a class of SDEs with jumps, we provide explicit solution for 1-dimensional competitive Lotka-Volterra population dynamics with jumps, and investigate the sample Lyapunov exponent for each component and the extinction of our nn-dimensional model.Comment: 25 page

    Steady state statistics of driven diffusions

    Full text link
    We consider overdamped diffusion processes driven out of thermal equilibrium and we analyze their dynamical steady fluctuations. We discuss the thermodynamic interpretation of the joint fluctuations of occupation times and currents; they incorporate respectively the time-symmetric and the time-antisymmetric sector of the fluctuations. We highlight the canonical structure of the joint fluctuations. The novel concept of traffic complements the entropy production for the study of the occupation statistics. We explain how the occupation and current fluctuations get mutually coupled out of equilibrium. Their decoupling close-to-equilibrium explains the validity of entropy production principles.Comment: rewritten versio

    Magnetometry via a double-pass continuous quantum measurement of atomic spin

    Full text link
    We argue that it is possible in principle to reduce the uncertainty of an atomic magnetometer by double-passing a far-detuned laser field through the atomic sample as it undergoes Larmor precession. Numerical simulations of the quantum Fisher information suggest that, despite the lack of explicit multi-body coupling terms in the system's magnetic Hamiltonian, the parameter estimation uncertainty in such a physical setup scales better than the conventional Heisenberg uncertainty limit over a specified but arbitrary range of particle number N. Using the methods of quantum stochastic calculus and filtering theory, we demonstrate numerically an explicit parameter estimator (called a quantum particle filter) whose observed scaling follows that of our calculated quantum Fisher information. Moreover, the quantum particle filter quantitatively surpasses the uncertainty limit calculated from the quantum Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only single-body operators. We also show that a quantum Kalman filter is insufficient to obtain super-Heisenberg scaling, and present evidence that such scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio

    Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching

    Get PDF
    The main aim of this paper is to discuss the almost surely asymptotic stability of the neutral stochastic differential delay equations (NSDDEs) with Markovian switching. Linear NSDDEs with Markovian switching and nonlinear examples will be discussed to illustrate the theory

    Maximum likelihood drift estimation for a threshold diffusion

    Get PDF
    We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called drifted Oscillating Brownian motion.For this continuously observed diffusion, the maximum likelihood estimator coincide with a quasi-likelihood estimator with constant diffusion term. We show that this estimator is the limit, as observations become dense in time, of the (quasi)-maximum likelihood estimator based on discrete observations. In long time, the asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations

    Quantum noise and stochastic reduction

    Full text link
    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schrodinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this article, two such models are investigated: one that achieves state reduction in infinite time, and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions--algebraic in character and involving no integration--are obtained for both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system, and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems.Comment: 50 page

    Dependent coordinates in path integral measure factorization

    Full text link
    The transformation of the path integral measure under the reduction procedure in the dynamical systems with a symmetry is considered. The investigation is carried out in the case of the Wiener--type path integrals that are used for description of the diffusion on a smooth compact Riemannian manifold with the given free isometric action of the compact semisimple unimodular Lie group. The transformation of the path integral, which factorizes the path integral measure, is based on the application of the optimal nonlinear filtering equation from the stochastic theory. The integral relation between the kernels of the original and reduced semigroup are obtained.Comment: LaTeX2e, 28 page
    corecore