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a b s t r a c t

This paper considers competitive Lotka–Volterra population dynamics with jumps. The
contributions of this paper are as follows. (a) We show that a stochastic differential
equation (SDE)with jumps associatedwith themodel has a unique global positive solution;
(b) we discuss the uniform boundedness of the pth moment with p > 0 and reveal the
sample Lyapunov exponents; (c) using a variation-of-constants formula for a class of
SDEs with jumps, we provide an explicit solution for one-dimensional competitive
Lotka–Volterra population dynamics with jumps, and investigate the sample Lyapunov
exponent for each component and the extinction of our n-dimensional model.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The differential equation
dX(t)
dt

= X(t)[a(t) − b(t)X(t)], t ≥ 0,

X(0) = x,

has been used to model the population growth of a single species whose members usually live in proximity, share the same
basic requirements, and compete for resources, food, habitat, or territory, and is known as the competitive Lotka–Volterra
model or logistic equation. The competitive Lotka–Volterramodel for n interacting species is described by the n-dimensional
differential equation

dXi(t)
dt

= Xi(t)


ai(t) −

n−
j=1

bij(t)Xj(t)


, i = 1, 2, . . . , n, (1.1)

where Xi(t) represents the population size of species i at time t , ai(t) is the rate of growth at time t , bij(t) represents the
effect of interspecies (if i ≠ j) or intraspecies (if i = j) interaction at time t , and ai(t)/bij(t) is the carrying capacity of the ith
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species in the absence of other species at time t . Eq. (1.1) takes the matrix form

dX(t)
dt

= diag(X1(t), . . . , Xn(t)) [a(t) − B(t)X(t)] , (1.2)

where

X = (X1, . . . , Xn)
T , a = (a1, . . . , an)T , B = (bij)n×n.

There is an extensive literature concerned with the dynamics of Eq. (1.2) and here we only mention Gopalsamy [1], Kuang
[2], Li et al. [3], Takeuchi and Adachi [4,5], and Xiao and Li [6]. In particular, the books by Gopalsamy [1] and Kuang [2] are
good references in this area.

On the other hand, the deterministic models assume that parameters in the systems are all deterministic irrespective of
environmental fluctuations,which, from thebiological point of view, imposes some limitations inmathematicalmodelling of
ecological systems; population dynamics in the realworld is inevitably affected by environmental noise—see, e.g., Gard [7,8].
Therefore, competitive Lotka–Volterra models in random environments are becoming more and more popular. In general,
there are two ways considered in the literature for modelling the influence of environmental fluctuations in population
dynamics. One is to consider random perturbations of interspecies or intraspecies interactions by white noise. Recently,
Mao et al. [9] investigated the stochastic n-dimensional Lotka–Volterra system

dX(t) = diag(X1(t), . . . , Xn(t)) [(a + BX(t))dt + σX(t)dW (t)] , (1.3)

where W is a one-dimensional standard Brownian motion, and revealed that the environmental noise can suppress a
potential population explosion (see, e.g., [10,11], among others, in this connection). Another is to consider the stochastic
perturbation of the growth rate a(t) by a white noise with

a(t) → a(t) + σ(t)Ẇ (t),

where Ẇ (t) is a white noise, namely,W (t) is a Brownian motion defined on a complete probability space (Ω, F , P) with a
filtration {F }t≥0 satisfying the usual conditions (i.e., it is right continuous and increasing while F0 contains all P-null sets).
As a result, Eq. (1.2) becomes a competitive Lotka–Volterra model in random environments:

dX(t) = diag(X1(t), . . . , Xn(t)) [(a(t) − B(t)X(t))dt + σ(t)dW (t)] . (1.4)

There is also extensive literature concerning all kinds of properties of model (1.4); see, e.g., Hu and Wang [12], Jiang and
Shi [13], Liu and Wang [14], Zhu and Yin [15,16], and the references therein.

Furthermore, the population may suffer sudden environmental shocks, e.g., earthquakes, hurricanes, epidemics, etc.
However, stochastic Lotka–Volterra model (1.4) cannot explain such phenomena. To explain these phenomena, introducing
a jump process into the underlying population dynamics provides a feasible and more realistic model. In this paper, we
develop Lotka–Volterra model with jumps:

dX(t) = diag(X1(t−), . . . , Xn(t−))

[
(a(t) − B(t)X(t−))dt + σ(t)dW (t) +

∫
Y

γ (t, u)Ñ(dt, du)
]

. (1.5)

Here X(t−) is the left limit of X(t), a, B are defined as in Eq. (1.2),

σ = (σ1, . . . , σn)
T , γ = (γ1, . . . , γn)

T ,

W is a real-valued standard Brownian motion, N is a Poisson counting measure with characteristic measure λ on a
measurable subset Y of [0, ∞) with λ(Y) < ∞, and Ñ(dt, du) := N(dt, du) − λ(du)dt . Throughout the paper, we assume
thatW and N are independent.

An example is provided by bee colonies in a field [17]. In particular, they compete for food strongly with the colonies
located near to them. Similar phenomena abound in nature; see, e.g., [18]. Hence it is reasonable to assume that the self-
regulating competitions within the same species are strictly positive; see, e.g., [15,16]. Therefore we also assume:

(A) For any t ≥ 0 and i, j = 1, 2, . . . , nwith i ≠ j, ai(t) > 0, bii(t) > 0, bij(t) ≥ 0, σi(t) and γi(t, u) are bounded functions,
b̂ii := inft∈R+

bii(t) > 0 and γi(t, u) > −1, u ∈ Y.

With reference to the existing results in the literature, our contributions are as follows:

• We use jump diffusion to model the evolutions of population dynamics.
• We demonstrate that if the population dynamics with jumps is self-regulating or competitive, then the population will

not explode in a finite time almost surely.
• We discuss the uniform boundedness of the pth moment for any p > 0 and reveal the sample Lyapunov exponents.
• We obtain the explicit expression for the one-dimensional competitive Lotka–Volterra model with jumps, and the

uniqueness of the invariant measure, and further reveal precisely the sample Lyapunov exponents for each component
and investigate its extinction.
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2. Global positive solutions

As the ith state Xi(t) of Eq. (1.5) denotes the size of the ith species in the system, it should be nonnegative. Moreover, in
order to guarantee that SDEs have a unique global (i.e., no explosion in a finite time) solution for any given initial data,
the coefficients of the equation are generally required to satisfy the linear growth and local Lipschitz conditions; see,
e.g., [11]. However, the drift coefficient of Eq. (1.5) does not satisfy the linear growth condition, though it is locally Lipschitz
continuous, so the solution of Eq. (1.5) may explode in a finite time. It is therefore necessary to provide some conditions
under which the solution of Eq. (1.5) not only is positive but also will not explode to infinity in any finite time.

Throughout this paper, K denotes a generic constant whose values may vary at its different appearances. For a bounded
function ν defined on R+, set

ν̂ := inf
t∈R+

ν(t) and ν̌ := sup
t∈R+

ν(t).

For convenience of reference, we recall some fundamental inequalities stated as a lemma.

Lemma 2.1.

xr ≤ 1 + r(x − 1), x ≥ 0, 1 ≥ r ≥ 0, (2.1)

n(1− p
2 )∧0

|x|p ≤

n−
i=1

xpi ≤ n(1− p
2 )∨0

|x|p, ∀p > 0, x ∈ Rn
+
, (2.2)

where Rn
+

:= {x ∈ Rn
: xi > 0, 1 ≤ i ≤ n}, and

ln x ≤ x − 1, x > 0. (2.3)

Theorem 2.1. Under assumption (A), for any initial condition X(0) = x0 ∈ Rn
+
, Eq. (1.5) has a unique global solution X(t) ∈ Rn

+

for any t ≥ 0 almost surely.

Proof. Since the drift coefficient does not fulfil the linear growth condition, the general theorems of existence and
uniqueness cannot be implemented for this equation. However, it is locally Lipschitz continuous; therefore for any given
initial condition X(0) ∈ Rn

+
there is a unique local solution X(t) for t ∈ [0, τe), where τe is the explosion time. By Eq. (1.5)

the ith component Xi(t) of X(t) admits the form for i = 1, . . . , n

dXi(t) = Xi(t−)


ai(t) −

n−
j=1

bij(t)Xj(t−)


dt + σi(t)dW (t) +

∫
Y

γi(t, u)Ñ(dt, du)


.

Noting that for any t ∈ [0, τe)

Xi(t) = Xi(0) exp

∫ t

0


ai(s) −

n−
j=1

bij(s)Xj(s) −
1
2
σ 2
i (s) +

∫
Y
(ln(1 + γi(s, u)) − γi(s, u))λ(du)


ds

+

∫ t

0
σi(s)dW (s) +

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


,

together with Xi(0) > 0, we can conclude that Xi(t) ≥ 0 for any t ∈ [0, τe). Now consider the following two auxiliary SDEs
with jumps:

dYi(t) = Yi(t−)

[
ai(t) − bii(t)Yi(t−)


dt + σi(t)dW (t) +

∫
Y

γi(t, u)Ñ(dt, du)
]

,

Yi(0) = Xi(0),
(2.4)

and

dZi(t) = Zi(t−)


ai(t) −

−
i≠j

bij(t)Yj(t) − bii(t)Zi(t−)


dt + σi(t)dW (t) +

∫
Y

γi(t, u)Ñ(dt, du)


,

Zi(0) = Xi(0).

(2.5)

Due to 1 + γi(t, u) > 0 by (A), it follows that for any x2 ≥ x1,

(1 + γi(t, u))x2 ≥ (1 + γi(t, u))x1.

Then by the comparison theorem [19, Theorem 3.1] we can conclude that

Zi(t) ≤ Xi(t) ≤ Yi(t), t ∈ [0, τe). (2.6)
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By Lemma 4.2 below, for Yi(0) (= Xi(0)) > 0, we know that Yi(t) will not explode in any finite time. Moreover, like for
Lemma 4.2 below for Zi(0) (= Xi(0)) > 0, we can show that

P(Zi(t) > 0 on t ∈ [0, τe)) = 1.

Hence τe = ∞ and Xi(t) > 0 almost surely for any t ∈ [0, ∞). The proof is therefore complete. �

3. Boundedness, tightness, and Lyapunov-type exponents

In the previous section, we saw that Eq. (1.5) has a unique global solution X(t) ∈ Rn
+

for any t ≥ 0 almost surely. In
this part we shall show for any p > 0 the solution X(t) of Eq. (1.5) admits a uniformly finite pth moment, and discuss the
long-term behaviours.

Theorem 3.1. Let assumption (A) hold.

(1) For any p ∈ [0, 1, ] there is a constant K such that

sup
t∈R+

E|X(t)|p ≤ K . (3.1)

(2) Assume further that there exists a constant K̄(p) > 0 such that for some p > 1, t ≥ 0, i = 1, . . . , n,∫
Y

|γi(t, u)|pλ(du) ≤ K̄(p). (3.2)

Then there exists a constant K(p) > 0 such that

sup
t∈R+

E|X(t)|p ≤ K(p). (3.3)

Proof. We shall prove (3.3) first. Define a Lyapunov function for p > 1:

V (x) :=

n−
i=1

xpi , x ∈ Rn
+
. (3.4)

Applying the Itô formula, we obtain

E(etV (X(t))) = V (x0) + E
∫ t

0
es[V (X(s)) + LV (X(s), s)]ds,

where, for x ∈ Rn
+
and t ≥ 0,

LV (x, t) := p
n−

i=1


ai(t) −

n−
j=1

bij(t)xj −
(1 − p)σ 2

i (t)
2


xpi +

n−
i=1

∫
Y


(1 + γi(t, u))p − 1 − pγi(t, u)


λ(du)xpi . (3.5)

By assumption (A) and (3.2), we can deduce that there exists a constant K > 0 such that

V (x) + LV (x, t) ≤

n−
i=1

[
−pbii(t)x

p+1
i +


1 + pai(t) +

p(p − 1)σ 2
i (t)

2


xpi

]

+

n−
i=1

∫
Y


(1 + γi(t, u))p − 1 − pγi(t, u)


λ(du)xpi

≤ K .

Hence

E(etV (X(t))) ≤ V (x0) +

∫ t

0
Kesds = V (x0) + K(et − 1),

which yields the desired assertion (3.3) by the inequality (2.2).
For any p ∈ [0, 1], according to the inequality (2.1),∫

Y


(1 + γi(t, u))p − 1 − pγi(t, u)


λ(du) ≤ 0.
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Consequently

V (x) + LV (x, t) ≤

n−
i=1


−pbii(t)x

p+1
i + (1 + pai(t)) x

p
i


,

which has an upper bound by (A). Then (3.1) holds with p ∈ [0, 1] under (A). �

Corollary 3.1. Under assumption (A), there exists an invariant probability measure for the solution X(t) of Eq. (1.5).

Proof. Let P(t, x, A) be the transition probability measure of X(t, x), starting from x at time 0. Define

µT (A) :=
1
T

∫ T

0
P(t, x, A)dt

and Br := {x ∈ Rn
+

: |x| ≤ r} for r ≥ 0. In the light of Chebyshev’s inequality and Theorem 3.1 with p ∈ (0, 1),

µT (Bc
r ) =

1
T

∫ T

0
P(t, x, Bc

r )dt ≤
1

rpT

∫ T

0
E|X(t, x)|pdt ≤

K
rp

,

andwehave, for any ϵ > 0,µT (Br) > 1−ϵ whenever r is large enough. Hence {µT , T > 0} is tight. By the Krylov–Bogoliubov
theorem (see, e.g., [20, Corollary 3.1.2, p. 22]), the conclusion follows immediately. �

Definition 3.1. The solution X(t) of Eq. (1.5) is called stochastically bounded if for any ϵ ∈ (0, 1), there is a constant
H := H(ϵ) such that for any x0 ∈ Rn

+
,

lim sup
t→∞

P{|X(t)| ≤ H} ≥ 1 − ϵ.

As an application of Theorem 3.1, together with the Chebyshev inequality, we can also establish the following corollary.

Corollary 3.2. Under assumption (A), the solution X(t) of Eq. (1.5) is stochastically bounded.

For later applications, let us cite a strong law of large numbers for localmartingales (see, e.g., Lipster [21]) as the following
lemma.

Lemma 3.1. Let M(t), t ≥ 0, be a local martingale vanishing at time 0 and define

ρM(t) :=

∫ t

0

d⟨M⟩(s)
(1 + s)2

, t ≥ 0,

where ⟨M⟩(t) := ⟨M,M⟩(t) is Meyer’s angle bracket process. Then

lim
t→∞

M(t)
t

= 0 a.s. provided that lim
t→∞

ρM(t) < ∞ a.s.

Remark 3.1. Suppose that

Ψ 2
loc :=


Ψ (t, z) predictable

∫ t

0

∫
Y

|Ψ (s, z)|2λ(du)ds < ∞


and for Ψ ∈ Ψ 2

loc,

M(t) :=

∫ t

0

∫
Y

Ψ (s, z)Ñ(ds, du).

Then, by, e.g., Kunita [22, Proposition 2.4],

⟨M⟩(t) =

∫ t

0

∫
Y

|Ψ (s, z)|2λ(du)ds and [M](t) =

∫ t

0

∫
Y

|Ψ (s, z)|2N(ds, du),

where [M](t) := [M,M](t), the square bracket process (or quadratic variation process) ofM(t).

Theorem 3.2. Let assumption (A) hold. Assume further that for some constant δ > −1 and any t ≥ 0,

γi(t, u) ≥ δ, u ∈ Y, i = 1, . . . , n, (3.6)

and there exists a constant K > 0 such that∫ t

0

∫
Y

|γ (s, u)|2λ(du)ds ≤ Kt. (3.7)



Author's personal copy

6606 J. Bao et al. / Nonlinear Analysis 74 (2011) 6601–6616

Then the solution X(t), t ≥ 0, of Eq. (1.5) has the property

lim sup
t→∞

1
t

ln(|X(t)|) +

min
1≤i≤n

b̂ii
√
n

∫ t

0
|X(s)|ds

 ≤ max
1≤i≤n

ǎi, a.s. (3.8)

Proof. For any x ∈ Rn
+
, suppose that V (x) =

∑n
i=1 xi; by Itô’s formula,

ln(V (X(t))) ≤ ln(V (x0)) +

∫ t

0


XT (s)(a(s) − B(s)X(s))/V (X(s)) − (XT (s)σ (s))2/(2V 2(X(s)))


ds

+

∫ t

0
XT (s)σ (s)/V (X(s))dW (s) +

∫ t

0

∫
Y
ln(1 + H(X(s−), s, u))Ñ(ds, du),

where

H(x, t, u) =


n−

i=1

γi(t, u)xi


V (x).

Here we used the fact that 1 + H > 0 and the inequality (2.3). Note from the inequality (2.2) and assumption (A) that

XT (s)(a(s) − B(s)X(s))/V (X(s)) − (XT (s)σ (s))2/(2V 2(X(s))) ≤

n∑
i=1

ai(s)Xi(s)

n∑
i=1

Xi(s)
−

n∑
i=1

Xi(s)
n∑

j=1
bij(s)Xj(s)

n∑
i=1

Xi(s)

≤ max
1≤i≤n

ǎi −
min
1≤i≤n

b̂ii
√
n

|X(s)|.

Suppose that

M(t) :=

∫ t

0
XT (s)σ (s)/V (X(s))dW (s) and M̃(t) :=

∫ t

0

∫
Y
ln(1 + H(X(s−), s, u))Ñ(ds, du).

Compute by the boundedness of σ that

⟨M⟩(t) =

∫ t

0
(XT (s)σ (s))2/V 2(X(s))ds ≤

∫ t

0
|σ(s)|2ds ≤ Kt.

On the other hand, by assumption (3.6) and the definition of H , for x ∈ Rn
+
we obtain

H(x, t, u) ≥ δ

and, in addition to (2.3), for −1 < δ ≤ 0,

| ln(1 + H(x, t, u))| ≤ | ln(1 + H(x, y, u))I{δ≤H(x,t,u)≤0}| + | ln(1 + H(x, y, u))I{0≤H(x,t,u)}|

≤ − ln(1 + δ) + |H(x, t, u)|.

This, together with (3.7), gives that

⟨M̃⟩(t) =

∫ t

0

∫
Y
(ln(1 + H(X(s), s, u)))2λ(du)ds

≤ 2(− ln(1 + δ))2λ(Y)t + 2
∫ t

0

∫
Y
H2(X(s), s, u)λ(du)ds

≤ 2(− ln(1 + δ))2λ(Y)t + 2
∫ t

0

∫
Y

|γ (t, u)|2λ(du)ds

≤ (2(− ln(1 + δ))2λ(Y) + K)t.

Then the strong law of large numbers, Lemma 3.1, yields

1
t
M(t) → 0 a.s. and

1
t
M̃(t) → 0 as t → ∞,

and the conclusion follows. �
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4. The variation-of-constants formula and the sample Lyapunov exponents

In this part we further discuss the long-term behaviours of model (1.5). To begin, we obtain the following variation-of-
constants formula for one-dimensional diffusion with jumps, which is interesting in its own right.

4.1. The variation-of-constants formula

Lemma 4.1. Let F ,G, f , g : R+ → R and H, h : R+ × Y → R be Borel measurable and bounded functions with property
H > −1, and Y (t) satisfy

dY (t) = [F(t)Y (t) + f (t)]dt + [G(t)Y (t) + g(t)]dW (t) +

∫
Y
[Y (t−)H(t, u) + h(t, u)]Ñ(dt, du), (4.1)

Y (0) = Y0.

Then the solution can be explicitly expressed as

Y (t) = Φ(t)

Y0 +

∫ t

0
Φ−1(s)

[
f (s) − G(s)g(s) −

∫
Y

H(s, u)h(s, u)
1 + H(s, u)

λ(du)

ds

+ g(s)dW (s) +

∫
Y

h(s, u)
1 + H(s, u)

Ñ(ds, du)
]

,

where

Φ(t) := exp
[∫ t

0


F(s) −

1
2
G2(s) +

∫
Y
[ln(1 + H(s, u)) − H(s, u)]λ(du)


ds

+

∫ t

0
G(s)dW (s) +

∫ t

0

∫
Y
ln(1 + H(s, u))Ñ(ds, du)

]
is the fundamental solution of the corresponding homogeneous linear equation

dZ(t) = F(t)Z(t)dt + G(t)Z(t)dW (t) + Z(t−)

∫
Y
H(t, u)Ñ(dt, du). (4.2)

Proof. Noting that

Φ(t) = exp
[∫ t

0


F(s) −

1
2
G2(s) +

∫
Y
[ln(1 + H(s, u)) − H(s, u)]λ(du)


ds

+

∫ t

0
G(s)dW (s) +

∫ t

0

∫
Y
ln(1 + H(s, u))Ñ(ds, du)

]
is the fundamental solution to Eq. (4.2), we then have

dΦ(t) = F(t)Φ(t)dt + G(t)Φ(t)dW (t) + Φ(t−)

∫
Y
H(t, u)Ñ(dt, du). (4.3)

By [23, Theorem 1.19, p. 10], Eq. (4.1) has a unique solution Y (t), t ≥ 0. We assume that

Y (t) = Φ(t)

Y (0) +

∫ t

0
Φ−1(s)

[
f̄ (s)ds + ḡ(s)dW (s) +

∫
Y
h̄(s, u)Ñ(ds, du)

]
,

where f̄ , ḡ , and h̄ are functions to be determined. Suppose that

Ȳ (t) = Y (0) +

∫ t

0
Φ−1(s)

[
f̄ (s)ds + ḡ(s)dW (s) +

∫
Y
h̄(s, u)Ñ(ds, du)

]
,

which means that

dȲ (t) = Φ−1(t)
[
f̄ (t)dt + ḡ(t)dW (t) +

∫
Y
h̄(t, u)Ñ(dt, du)

]
. (4.4)

Observing thatΦ and Ȳ are real-valued Lévy-type stochastic integrals, by Itô’s product formula (see, e.g., [24, Theorem4.4.13,
p. 231]), we can deduce that

dY (t) = Φ(t−)dȲ (t) + Ȳ (t−)dΦ(t) + d[Φ, Ȳ ](t), (4.5)
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where [Φ, Ȳ ] is the cross-quadratic variation of processes Φ and Ȳ , and by (4.14) in [24, p. 230],

d[Φ, Ȳ ](t) = G(t)ḡ(t)dt +

∫
Y
H(t, u)h̄(t, u)N(dt, du). (4.6)

Putting (4.3), (4.4) and (4.6) into (4.5), we deduce that

dY (t) =

[
f̄ (t)dt + ḡ(t)dW (t) +

∫
Y
h̄(t, u)Ñ(dt, du)

]
+ F(t)Y (t)dt + G(t)Y (t)dW (t) + Y (t−)

∫
Y
H(t, u)Ñ(dt, du)

+G(t)ḡ(t)dt +

∫
Y
H(t, u)h̄(t, u)N(dt, du)

=

[
f̄ (t) + F(t)Y (t) + G(t)ḡ(t) +

∫
Y
H(t, u)h̄(t, u)λ(du)

]
dt + [ḡ(t) + G(t)Y (t)]dW (t)

+

∫
Y


h̄(t, u) + Y (t−)H(t, u) + H(t, u)h̄(t, u)


Ñ(dt, du).

Setting

f̄ (t) + G(t)ḡ(t) +

∫
Y
H(t, u)h̄(t, u)λ(du) = f (t)

and

ḡ(t) = g(t) and h̄(t, u) + H(t, u)h̄(t, u) = h(t, u),

we hence derive that

f̄ (t) = f (t) − G(t)g(t) −

∫
Y

H(t, u)h(t, u)
1 + H(t, u)

λ(du), ḡ(t) = g(t) and h̄(t, u) =
h(t, u)

1 + H(t, u)

and the required expression follows. �

4.2. The one-dimensional competitive model

In what follows, we shall study some properties of the processes Yi(t) defined by (2.4), which is actually a one-
dimensional competitive model.

Lemma 4.2. Under assumption (A), Eq. (2.4) admits a unique positive solution Yi(t), t ≥ 0, which admits the explicit formula

Yi(t) =
Φi(t)

1
Xi(0)

+
 t
0 Φi(s)bii(s)ds

, (4.7)

where

Φi(t) := exp
∫ t

0

[
ai(s) −

1
2
σ 2
i (s) +

∫
Y
(ln(1 + γi(s, u)) − γi(s, u))λ(du)

]
ds

+

∫ t

0
σi(s)dW (s) +

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


.

Proof. It is easy to see that Φi(t) is integrable in any finite interval; hence Yi(t) will never reach 0. Supposing that
Ȳi(t) :=

1
Yi(t)

and applying the Itô formula, we have

dȲi(t) = −
1

Y 2
i (t)

Yi(t)[(ai(t) − bii(t)Yi(t))dt + σi(t)dW (t)] +
1
2

2
Y 3
i (t)

σ 2
i (t)Y 2

i (t)dt

+

∫
Y

[
1

(1 + γi(t, u))Yi(t)
−

1
Yi(t)

+
1

Y 2
i (t)

Yi(t)γi(t, u)
]

λ(du)dt

+

∫
Y

[
1

(1 + γi(t, u))Yi(t−)
−

1
Yi(t−)

]
Ñ(dt, du),
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that is,

dȲ (t) = Ȳ (t−)

[
σ 2
i (t) − ai(t) +

∫
Y


1

1 + γi(t, u)
− 1 + γi(t, u)


λ(du)


dt − σi(t)dW (t)

+

∫
Y


1

1 + γi(t, u)
− 1


Ñ(dt, du)

]
+ bii(t)dt. (4.8)

By Lemma 4.1, Eq. (4.8) has an explicit solution and the conclusion Eq. (4.7) follows. �

Definition 4.1. The solution of Eq. (2.4) is said to be stochastically permanent if for any ϵ ∈ (0, 1) there exist positive
constants H1 := H1(ϵ) and H2 := H2(ϵ) such that

lim inf
t→∞

P{Yi(t) ≤ H1} ≥ 1 − ϵ and lim inf
t→∞

P{Yi(t) ≥ H2} ≥ 1 − ϵ.

Theorem 4.1. Let assumption (A) hold. Assume further that there exists a constant c1 > 0 such that, for any t ≥ 0 and i =

1, . . . , n,

ai(t) − σ 2
i (t) −

∫
Y

γ 2
i (t, u)

1 + γi(t, u)
λ(du) ≥ c1. (4.9)

Then the solution Yi(t), t ≥ 0, of Eq. (2.4) is stochastically permanent.

Proof. The first part of the proof follows by the Chebyshev inequality and Corollary 3.2. Observe that (4.7) can be rewritten
in the form

1
Yi(t)

=
1

Xi(0)
exp

∫ t

0
−

[
ai(s) −

1
2
σ 2
i (s) +

∫
Y
(ln(1 + γi(s, u)) − γi(s, u))λ(du)

]
ds

−

∫ t

0
σi(s)dW (s) −

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


+

∫ t

0
bii(s) exp

∫ t

s
−

[
a(r) −

1
2
σ 2
i (r) +

∫
Y
(ln(1 + γi(r, u)) − γi(r, u))λ(du)

]
dr

−

∫ t

s
σi(r)dW (r) −

∫ t

s

∫
Y
ln(1 + γi(r, u))Ñ(dr, du)


ds. (4.10)

By, e.g., [24, Corollary 5.2.2, p. 253], we note that

exp


−
1
2

∫ t

0
σ 2
i (s)ds −

∫ t

0

∫
Y


1

1 + γi(s, u)
− 1 + ln(1 + γi(s, u))


λ(du)ds

−

∫ t

0
σi(s)dW (s) −

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


is a local martingale. Hence supposing that M̄i(t) :=

1
Yi(t)

and taking expectations on both sides of (4.10) leads to

EM̄i(t) =
1

Xi(0)
exp


−

∫ t

0

[
ai(s) − σ 2

i (s) −

∫
Y

γ 2
i (s, u)

1 + γi(s, u)
λ(du)

]
ds

+

∫ t

0
bii(s) exp


−

∫ t

s

[
ai(r) − σ 2

i (r) −

∫
Y

γ 2
i (r, u)

1 + γi(r, u)
λ(du)

]
drds,

which, combining with (4.9), yields

EM̄i(t) ≤
1

Xi(0)
e−c1t +

∫ t

0
bii(s)e−c2(t−s)ds ≤

b̌
c1

+


1

Xi(0)
−

b̌
c1


e−c1t . (4.11)

Hence there exists a constant K > 0 such that

EM̄i(t) ≤ K . (4.12)

Furthermore, for any ϵ > 0 and constant H2(ϵ) > 0, thanks to the Chebyshev inequality and (4.12),

P{Yi(t) ≥ H2} = P

M̄i(t) ≤ 1/H2


= 1 − P


M̄i(t) > 1/H2


≥ 1 − H2EM̄i(t) ≥ 1 − ϵ

whenever H2 = ϵ/K , as required. �



Author's personal copy

6610 J. Bao et al. / Nonlinear Analysis 74 (2011) 6601–6616

Theorem 4.2. Let the conditions of Theorem 4.1 hold. Then Eq. (2.4) has the property

lim
t→∞

E|Yi(t, x) − Yi(t, y)|
1
2 = 0 uniformly in (x, y) ∈ K × K, (4.13)

where K is any compact subset of (0, ∞).

Proof. By the Hölder inequality,

E|Yi(t, x) − Yi(t, y)|
1
2 = E


Yi(t, x)Yi(t, y)

 1
Yi(t, y)

−
1

Yi(t, x)

 1
2

≤ (E(Yi(t, x)Yi(t, y)))
1
2


E
 1
Yi(t, y)

−
1

Yi(t, x)

 1
2

.

To show the desired assertion it is sufficient to estimate the two terms on the right-hand side of the last step. By virtue of
the Itô formula,

d(Yi(t, x)Yi(t, y)) = Yi(t−, x)dYi(t, y) + Yi(t−, y)dYi(t, x) + d[Yi(t, x), Yi(t, y)]

= Yi(t−, x)Yi(t−, y)
[
(ai(t) − bii(t)Yi(t−, y))dt + σi(t)dW (t) +

∫
Y

γi(t, u)Ñ(dt, du)
]

+ Yi(t−, x)Yi(t−, y)
[
(ai(t) − bii(t)Yi(t−, x))dt + σi(t)dW (t) +

∫
Y

γi(t, u)Ñ(dt, du)
]

+ σ 2
i (t)Yi(t, x)Yi(t, y)dt +

∫
Y

γ 2
i (t, u)Yi(t−, x)Yi(t−, y)N(dt, du)

= (2ai(t) + σ 2
i (t))Yi(t, x)Yi(t, y)dt − bii(t)Yi(t, x)Yi(t, y)(Yi(t, x) + Yi(t, y))dt

+ 2σi(t)Yi(t, x)Yi(t, y)dW (t) + 2
∫

Y
γi(t, u)Yi(t−, x)Yi(t−, y)Ñ(dt, du)

+

∫
Y

γ 2
i (t, u)Yi(t−, x)Yi(t−, y)N(dt, du).

Thus, in view of Jensen’s inequality and the familiar inequality a + b ≥ 2
√
ab for any a, b ≥ 0, we deduce that

E(Yi(t, x)Yi(t, y)) ≤ xy +

∫ t

0
δi(s)E(Yi(s, x)Yi(s, y))ds

− E
∫ t

0
bii(s)(Yi(s, x)Yi(s, y)(Yi(s, x) + Yi(s, y)))ds

≤ xy +

∫ t

0
δi(s)E(Yi(s, x)Yi(s, y))ds −

∫ t

0
bii(s)(E(Yi(s, x)Yi(s, y)))

3
2 ds,

where δi(t) := 2ai(t) + σ 2
i (t) +


Y γ 2

i (t, u)λ(du). By the comparison theorem,

E(Yi(t, x)Yi(t, y)) ≤


1/

√
xye−

1
2
 t
0 δi(s)ds +

1
2

∫ t

0
bii(s)e−

1
2
 t
s δi(τ )dτds

−2

≤


b̂/δ̌i + (1/

√
xy − b̂ii/δ̌i)e−

δ̌i t
2

−2

. (4.14)

On the other hand, thanks to (4.7) we have

1
Yi(t, x)

−
1

Yi(t, y)
=


1
x

−
1
y


exp


−

∫ t

0

[
ai(s) −

1
2
σ 2
i (s) +

∫
Y
(ln(1 + γi(s, u)) − γi(s, u))λ(du)

]
ds

−

∫ t

0
σi(s)dW (s) −

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


.

In the same way as (4.11) was treated, it follows from (4.9) that

E
 1
Yi(t, x)

−
1

Yi(t, y)

 ≤

1x −
1
y

 e−c2t . (4.15)

Thus (4.13) follows on combining (4.14) and (4.15). �
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If ai, bii, σi, γi are time independent, Eq. (2.4) reduces to

dYi(t) = Yi(t−)

[
(ai − biiYi(t))dt + σidW (t) +

∫
Y

γi(u)Ñ(dt, du)
]

, (4.16)

with original value x > 0. Let p(t, x, dy) denote the transition probability of solution process Yi(t, x) andP(t, x, A) denote the
probability of event {Yi(t, x) ∈ A}, where A is a Borel measurable subset of (0, ∞). This is similar to the case of Corollary 3.1;
under the conditions of Theorem 4.1 there exists an invariant measure for Yi(t, x). Moreover by the standard procedure
[11, pp. 213–216], we know that Theorem 4.2 implies the uniqueness of the invariant measure. That is:

Theorem 4.3. Under the conditions of Theorems 4.1 and 4.2, the solution Yi(t, x) of Eq. (4.16) has a unique invariant measure.

We further need the following exponential martingale inequality with jumps; see, e.g., [24, Theorem 5.2.9, p. 291].

Lemma 4.3. Assume that g : [0, ∞) → R and h : [0, ∞) × Y → R are both predictable Ft-adapted processes such that for
any T > 0,∫ T

0
|g(t)|2dt < ∞ a.s. and

∫ T

0

∫
Y

|h(t, u)|2λ(du)dt < ∞ a.s.

Then for any constants α, β > 0,

P


sup
0≤t≤T

[∫ t

0
g(s)dW (s) −

α

2

∫ t

0
|g(s)|2ds +

∫ t

0

∫
Y
h(s, u)Ñ(ds, du)

−
1
α

∫ t

0

∫
Y
[eαh(s,u)

− 1 − αh(s, u)]λ(du)ds
]

> β


≤ e−αβ .

Lemma 4.4. Let assumption (A) hold. Assume further that for any t ≥ 0 and i = 1, . . . , n,

sup
t≥0

∫ t

0

∫
Y
es−t

[γi(s, u) − ln(1 + γi(s, u))]λ(du)ds < ∞. (4.17)

Then

lim sup
t→∞

ln Yi(t)
ln t

≤ 1, a.s. for each i = 1, . . . , n.

Proof. For any t ≥ 0 and i = 1, . . . , n, applying the Itô formula we have

et ln Yi(t) = ln Xi(0) +

∫ t

0
es

ln Yi(s) + ai(s) − bii(s)Yi(s) −

1
2
σ 2
i (s) +

∫
Y
[ln(1 + γi(s, u)) − γi(s, u)]λ(du)


ds

+

∫ t

0
esσi(s)dW (s) +

∫ t

0

∫
Y
es ln(1 + γi(s, u))Ñ(ds, du).

Note that, for c, x > 0, ln x− cx attains its maximum value −1− ln c at x =
1
c . Thus it follows from the inequality (2.3) that

et ln Yi(t) ≤ ln Xi(0) +

∫ t

0
es

−1 − ln bii(s) + ai(s) −

1
2
σ 2
i (s)


ds

+

∫ t

0
esσi(s)dW (s) +

∫ t

0

∫
Y
es ln(1 + γi(s, u))Ñ(ds, du). (4.18)

In the light of Lemma 4.3, for any α, β, T > 0,

P


sup
0≤t≤T

[∫ t

0
esσi(s)dW (s) −

α

2

∫ t

0
e2sσ 2

i (s)ds +

∫ t

0

∫
Y
es ln(1 + γi(s, u))Ñ(ds, du)

−
1
α

∫ t

0

∫
Y


eαes ln(1+γi(s,u)) − 1 − αes ln(1 + γi(s, u))


λ(du)ds

]
≥ β


≤ e−αβ .

Choose T = kγ , α = ϵe−kγ , and β =
θekγ ln k

ϵ
, where k ∈ N, 0 < ϵ < 1, γ > 0, and θ > 1 in the above equation. Since∑

∞

k=1 k
−θ < ∞, we can deduce from the Borel–Cantelli lemma that there exists an Ωi ⊆ Ω with P(Ωi) = 1 such that for
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any ϵ ∈ Ωi, an integer ki = ki(ω, ϵ) can be found such that∫ t

0
esσi(s)dW (s) +

∫ t

0

∫
Y
es ln(1 + γi(s, u))Ñ(ds, du) ≤

θekγ ln k
ϵ

+
ϵe−kγ

2

∫ t

0
e2sσ 2

i (s)ds

+
1

ϵe−kγ

∫ t

0

∫
Y


(1 + γi(s, u))ϵe

s−kγ
− 1 − ϵes−kγ ln(1 + γi(s, u))


λ(du)ds

whenever k ≥ ki, 0 ≤ t ≤ kγ . Next, note from the inequality (2.1) that, for any ω ∈ Ωi and 0 < ϵ < 1, 0 ≤ t ≤ kγ with
k ≥ ki,

1
ϵet−kγ

∫ t

0

∫
Y


(1 + γi(s, u))ϵe

s−kγ
− 1 − ϵes−kγ ln(1 + γi(s, u))


λ(du)ds

≤

∫ t

0

∫
Y
es−t(γi(s, u) − ln(1 + γi(s, u)))λ(du)ds.

Thus, for ω ∈ Ωi and (k − 1)γ ≤ t ≤ kγ with k ≥ ki + 1, we have

ln Yi(t)
ln t

≤
ln Xi(0)
et ln t

+
θekγ ln k

ϵe(k−1)γ ln((k − 1)γ )
+

1
ln t

∫ t

0
es−t


−1 − ln bii(s) + ai(s) −

1
2
(1 − ϵes−kγ )σ 2

i (s)

ds

+
1
ln t

∫ t

0

∫
Y
es−t

[γi(s, u) − ln(1 + γi(s, u))]λ(du)ds.

Supposing that k ↑ ∞, combining assumption (A) and (4.17) leads to

lim sup
t→∞

ln Yi(t)
ln t

≤
θeγ

ϵ
,

and the conclusion follows on setting γ ↓ 0, ϵ ↑ 1, and θ ↓ 1. �
Noting the limit limt→∞

ln t
t = 0, we have the following corollary.

Corollary 4.1. Under the conditions of Lemma 4.4,

lim sup
t→∞

ln Yi(t)
t

≤ 0, a.s. for each i = 1, . . . , n,

and therefore

lim sup
t→∞

ln
 n∏
i=1

Yi(t)


t
≤ 0, a.s.

Corollary 4.2. Under the conditions of Lemma 4.4,

lim sup
t→∞

ln(Xi(t))
t

≤ 0, a.s. for each i = 1, . . . , n,

and therefore

lim sup
t→∞

ln
 n∏
i=1

Xi(t)


t
≤ 0, a.s.

Proof. Recalling

Zi(t) ≤ Xi(t) ≤ Yi(t), t ≥ 0, i = 1, . . . , n

and combining Corollary 4.1, we complete the proof. �

Theorem 4.4. Let the conditions of Lemma 4.4 hold. Assume further that for any t ≥ 0 and i = 1, . . . , n,

Ri(t) := ai(t) −
1
2
σ 2(t) +

∫
Y
(ln(1 + γi(t, u)) − γi(t, u))λ(du) ≥ 0, (4.19)

and there exists a constant c2 > 0 such that∫
Y
(ln(1 + γi(t, u)))2λ(du) ≤ c2. (4.20)
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Then for each i = 1, . . . , n,

lim
t→∞

ln Yi(t)
t

= 0 a.s. (4.21)

Proof. According to Corollary 4.1, it suffices to show that lim inft→∞
ln Yi(t)

t ≥ 0. Define for t ≥ 0

Mi(t) :=

∫ t

0
σi(s)dW (s) and M̄i(t) :=

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du).

Note that

[Mi](t) = ⟨Mi⟩(t) =

∫ t

0
σ 2
i (s)ds ≤ σ̌ 2

i t,

and by (4.20),

⟨M̄i⟩(t) =

∫ t

0

∫
Y
(ln(1 + γi(s, u)))2λ(du)ds ≤ c2t.

We have∫ t

0

1
(1 + s)2

ds = −
1

1 + s

t
0

=
t

1 + t
< ∞,

and combining this with Lemma 3.1, we then obtain

lim
t→∞

1
t

∫ t

0
σi(s)dW (s) = 0 a.s. and lim

t→∞

1
t

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du) = 0 a.s. (4.22)

Moreover, it is easy to see that for any t > s,∫ t

s
σi(r)dW (r) =

∫ t

0
σi(r)dW (r) −

∫ s

0
σi(r)dW (r)

and ∫ t

s

∫
Y
ln(1 + γi(r, u))Ñ(dr, du) =

∫ t

0

∫
Y
ln(1 + γi(r, u))Ñ(dr, du) −

∫ s

0

∫
Y
ln(1 + γi(r, u))Ñ(dr, du).

Consequently, for any ϵ > 0 we can deduce that there exists a constant T > 0 such that∫ t

s
σi(r)dW (r)

 ≤ ϵ(s + t) a.s. and
∫ t

s

∫
Y
ln(1 + γi(r, u))Ñ(dr, du)

 ≤ ϵ(s + t) a.s. (4.23)

whenever t > s ≥ T . Furthermore, by Lemma 4.2, together with (4.23), we have for t ≥ T ,

1
Yi(t)

≤
1

Yi(T )
exp

∫ t

T
−

[
ai(s) −

1
2
σ 2
i (s) +

∫
Y
(ln(1 + γi(s, u)) − γi(s, u))λ(du)

]
ds + 2ϵ(t + T )


+

∫ t

T
bii(s) exp


−

∫ t

s

[
ai(r) −

1
2
σ 2
i (r) +

∫
Y
(ln(1 + γi(r, u)) − γi(r, u))λ(du)

]
dr

+ 2ϵ(s + t)) ds, a.s.

This further gives that for any t ≥ T ,

e−4ϵ(t+T ) 1
Yi(t)

≤
1

Yi(T )
exp

∫ t

T
−

[
ai(s) −

1
2
σ 2(s) +

∫
Y
(ln(1 + γi(s, u)) − γi(s, u))λ(du)

]
ds

+

∫ t

T
bii(s) exp


−

∫ t

s

[
ai(r) −

1
2
σ 2
i (r) +

∫
Y
(ln(1 + γi(r, u)) − γi(r, u))λ(du)

]
dr

− 2ϵ(t − s) − 2ϵT

ds, a.s.

Thus in view of (4.19) there exists a constant K > 0 such that for any t ≥ T ,

e−4ϵ(t+T ) 1
Yi(t)

≤ K , a.s.
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Hence for any t ≥ T ,

1
t
ln

1
Yi(t)

≤ 4ϵ

1 +

T
t


+

1
t
ln K , a.s.

and the conclusion follows on supposing that t → ∞ and from the arbitrariness of ϵ > 0. �

4.3. Further properties of n-dimensional competitive models

We need the following lemma.

Lemma 4.5. Let the conditions of Theorem 4.4 hold. Assume further that for i, j = 1, . . . , n,

Rij := sup

bij(t)
bjj(t)

, t ≥ 0, i ≠ j


(4.24)

satisfy

Ri(t) −

−
i≠j

RijRj(t) > 0, t ≥ 0. (4.25)

Then

lim inf
t→∞

ln Zi(t)
t

≥ 0, a.s. (4.26)

where Zi(t), i = 1, . . . , n, are solutions of (2.5).

Remark 4.1. For i, j = 1, . . . , n and t ≥ 0, if bij(t) takes finite-number values, then condition (4.24) must hold.

Proof. It is sufficient to show that lim supt→∞
1
t ln

1
Zi(t)

≤ 0. Note from Lemma 4.2 that for any t > s ≥ 0,

1
Zi(t)

=
1

Zi(s)
exp

∫ t

s
−


ai(r) −

−
i≠j

bij(r)Yj(r) −
1
2
σ 2
i (r) +

∫
Y
(ln(1 + γi(r, u)) − γi(r, u))λ(du)


dr

−

∫ t

s
σi(s)dW (s) −

∫ t

s

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


+

∫ t

s
bii(r) exp


−

∫ t

r


ai(τ ) −

−
i≠j

bij(τ )Yj(τ ) −
1
2
σ 2
i (τ )

+

∫
Y
(ln(1 + γi(τ , u)) − γi(τ , u))λ(du)

]
dτ

−

∫ t

r
σi(τ )dW (τ ) −

∫ t

r

∫
Y
ln(1 + γi(τ , u))Ñ(dτ , du)


dr. (4.27)

Applying the Itô formula, for any t > s ≥ 0,∫ t

s
bii(r)Yi(r)dr = ln Yi(s) − ln Yi(t) +

∫ t

s

[
ai(r) −

1
2
σ 2
i (r) +

∫
Y
(ln(1 + γi(r, u)) − γi(r, u))λ(du)

]
ds

+

∫ t

s
σi(r)dW (r) +

∫ t

s

∫
Y
ln(1 + γi(r, u))Ñ(dr, du). (4.28)

This, together with Theorem 4.4 and (4.23), yields that for any ϵ > 0 there exists T̄ > 0 such that∫ t

s
bii(r)Yi(r)dr ≤

∫ t

s

[
ai(r) −

1
2
σ 2
i (r) +

∫
Y
(ln(1 + γi(r, u)) − γi(r, u))λ(du)

]
ds + 3ϵ(s + t) (4.29)

whenever t ≥ s ≥ T̄ . Moreover taking into account (4.28) and (4.29), we have for t > s ≥ T̄ ,∫ t

s
bij(r)Yj(r)dr =

∫ t

s

bij(r)
bjj(r)

bjj(r)Yj(r)dr

≤ Rij

∫ t

s
bjj(r)Yj(r)dr

≤ 3ϵ(s + t)Rij +

∫ t

s
Rij

[
ai(r) −

1
2
σ 2
i (r) +

∫
Y
(ln(1 + γi(r, u)) − γi(r, u))λ(du)

]
ds.
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Putting this into (4.27) leads to

1
Zi(t)

=
1

Zi(s)
exp


−

∫ t

s


Ri(r) −

−
i≠j

RijRj(r)


dr + ϵ(s + t)


3
−
i≠j

Rij + 2



+

∫ t

s
bii(r) exp


−

∫ t

r


Ri(τ ) −

−
i≠j

RijRj(τ )


dτ + ϵ(r + t)


3
−
i≠j

Rij + 2


dr,

which, in addition to (4.25), implies

1
Zi(t)

=
1

Zi(s)
exp


ϵ(s + t)


3
−
i≠j

Rij + 2


+

∫ t

s
bii(r) exp


ϵ(r + t)


3
−
i≠j

Rij + 2


dr.

By arguments similar to those of Theorem 4.4, we can deduce that there exists K > 0 such that for t > s ≥ T̄ ,

exp


−2ϵ(s + t)


3
−
i≠j

Rij + 2


1

Zi(t)
≤ K

and the conclusion follows. �

Now a combination of Theorem 4.4 and Lemma 4.5 gives the following theorem.

Theorem 4.5. Under the conditions of Lemma 4.5, for each i = 1, . . . , n,

lim
t→∞

ln Xi(t)
t

= 0, a.s.

Another important property of a population dynamics is the extinction, which means that every species will become
extinct. The most natural analogue for the stochastic population dynamics (1.5) is that every species will become extinct
with probability 1. To be precise, let us give the definition.

Definition 4.2. Stochastic population dynamics (1.5) is said to be extinct with probability 1 if, for every initial datum
x0 ∈ Rn

+
, the solution Xi(t), t ≥ 0, has the property

lim
t→∞

Xi(t) → 0 a.s..

Theorem 4.6. Let assumption (A) and (4.20) hold. Assume further that

ηi := lim sup
t→∞

1
t

∫ t

0
βi(s)ds < 0,

where, for t ≥ 0 and i = 1, . . . , n,

βi(t) := ai(t) −
1
2
σ 2
i (t) −

∫
Y
(γi(t, u) − ln(1 + γi(t, u)))λ(du).

Then stochastic population dynamics (1.5) is extinct a.s.
Proof. Recalling by the comparison theorem that, for any t ≥ 0 and i = 1, . . . , n,

Xi(t) ≤ Yi(t),

we only need to verify that lim supt→∞ Yi(t) = 0 a.s., due to

0 ≤ lim inf
t→∞

Xi(t) ≤ lim sup
t→∞

Xi(t) ≤ lim sup
t→∞

Yi(t).

Since bi(t) ≥ 0, by (4.7) it is easy to observe that

Yi(t) ≤ Xi(0) exp
∫ t

0
βi(s)ds +

∫ t

0
σi(s)dW (s) +

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


= Xi(0) exp


t

1
t

∫ t

0
βi(s)ds +

1
t

∫ t

0
σi(s)dW (s) +

1
t

∫ t

0

∫
Y
ln(1 + γi(s, u))Ñ(ds, du)


.

Thanks to ηi < 0, in addition to (4.22), we deduce that lim supt→∞ Yi(t) = 0 a.s. and the conclusion follows. �

Remark 4.2. In Theorem 4.3, we know that our one-dimensional model has a unique invariant measure under some
conditions; however we cannot obtain the same result for the n-dimensional model (n ≥ 2).
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5. Conclusions and further remarks

In this paper, we discuss competitive Lotka–Volterra population dynamics with jumps. We show that the model admits
a unique global positive solution, and investigate the uniformly finite pth moment with p > 0, stochastic ultimate bound-
edness, invariant measure and long-term behaviours of solutions. Moreover, using a variation-of-constants formula for a
class of SDEs with jumps, we provide an explicit solution for the model, and investigate precisely the sample Lyapunov
exponent for each component and the extinction of our n-dimensional model.

As we mentioned in the introduction section, random perturbation of interspecies or intraspecies interactions by white
noise is one of the ways to perturb population dynamics. In [9], Mao et al. investigated the stochastic n-dimensional
Lotka–Volterra systems

dX(t) = diag(X1(t), . . . , Xn(t)) [(a + BX(t))dt + σX(t)dW (t)] , (5.1)

where a = (a1, . . . , an)T , B = (bij)n×n, σ = (σij)n×n. It would be interesting to know what would happen if the stochastic
Lotka–Volterra systems (5.1) were further perturbed by jump diffusions, namely

dX(t) = diag(X1(t−), . . . , Xn(t−))

[
(a + BX(t−))dt + σX(t)dW (t) +

∫
Y

γ (X(t−), u)Ñ(dt, du)
]

, (5.2)

where γ = (γ1, . . . , γn)
T . On the other hand, the hybrid systems driven by continuous-time Markov chains have been used

tomodelmany practical systems,where theremay be abrupt changes in the structure and parameters caused by phenomena
such as environmental disturbances [11]. Asmentioned in Zhu and Yin [15,16], interspecies and intraspecies interactions are
often subject to environmental noise, and the qualitative changes cannot be described using the traditional (deterministic or
stochastic) Lotka–Volterra models. For example, interspecies and intraspecies interactions often vary according to changes
in nutrition and/or food resources. We use the continuous-timeMarkov chain r(t) with a finite state space M = {1, . . . ,m}

to model these abrupt changes, and need to deal with the stochastic hybrid population dynamics with jumps

dX(t) = diag(X1(t−), . . . , Xn(t−))

[
(a(r(t)) + B(r(t))X(t−))dt + σ(r(t))X(t−)dW (t)

+

∫
Y

γ (X(t−), r(t), u)Ñ(dt, du)
]

. (5.3)

We will report our findings in our following papers.
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