34 research outputs found

    Rare event simulation for probabilistic models of T-cell activation

    Get PDF
    Lipsmeier F. Rare event simulation for probabilistic models of T-cell activation. Bielefeld (Germany): Bielefeld University; 2010.One of the central questions in immunobiology is: How does the immune system reliably distinguish between antigens of our own body and foreign antigens? This ability is critical for our survival. One of the major cell types involved in these decisions are the so called T-cells, which are specialized white blood cells with a detection mechanism that is not fully explained until now. There is not a one to one specificity between T-cells and antigens. T-cells have to be cross-reactive, that is they have to be able to be activated by several antigens. The usual mathematical models in immunobiology are deterministic ones and therefore not applicable to the given problem. We need probabilistic approaches in order to describe the problem properly, because of the huge amount of possible receptor-antigen-combinations and the fact that a given T-cell is not confronted with individual antigens but has to make its decision when being in contact with so called antigen presenting cells (APC) which present a huge amount of antigens on their surface. This thesis deals with the probabilistic modeling and efficient simulation of models which describe the mechanism of T-cell activation and foreign-self discrimination. Because of the complexity of the topic, the first part of the thesis forms a review of the recent experimental findings with regard to T-cell immunology. Afterwards we introduce the already existing first probabilistic model of T-cell activation developed by van den Berg, Rand and Burroughs (BRB). The second part of this thesis is concerned with the simulation and analysis of this model. As T-cell activation is a rare event, that is the probability of T-cell activation is very low, we cannot analyze the model with the usual simple sampling strategies, but rely on the so-called importance sampling approach. With the help of large deviation theory we are able to construct an efficient simulation algorithm, which uses special alternative distributions for sampling for which we can proof asymptotic efficiency. In our analysis of the BRB model we are able to show that it can explain foreign-self discrimination and explain how this comes about in the model. We are also able to show where the defects of the model are, especially with regard to the biological relevance. Consequently, in the third part of this thesis we develop a new model of T-cell activation. One major improvement in this model is, that we are able to integrate negative selection which is a process during T-cell maturation where T-cells that are to self-reactive are induced to die. Again, we have to adapt and develop new simulation algorithms for the analysis of this model. We are then able to show that our new model is able to explain foreign-self discrimination with parameters that are biologically much more plausible than in the BRB model

    Preliminary validity of the Draw a Shape Test for upper extremity assessment in multiple sclerosis

    Get PDF
    Multiple sclerosisEsclerosi múltipleEsclerosis múltipleObjective To validate the smartphone sensor-based Draw a Shape Test – a part of the Floodlight Proof-of-Concept app for remotely assessing multiple sclerosis-related upper extremity impairment by tracing six different shapes. Methods People with multiple sclerosis, classified functionally normal/abnormal via their Nine-Hole Peg Test time, and healthy controls participated in a 24-week, nonrandomized study. Spatial (trace accuracy), temporal (mean and variability in linear, angular, and radial drawing velocities, and dwell time ratio), and spatiotemporal features (trace celerity) were cross-sectionally analyzed for correlation with standard clinical and brain magnetic resonance imaging (normalized brain volume and total lesion volume) disease burden measures, and for capacity to differentiate people with multiple sclerosis from healthy controls. Results Data from 69 people with multiple sclerosis and 18 healthy controls were analyzed. Trace accuracy (all shapes), linear velocity variability (circle, figure-of-8, spiral shapes), and radial velocity variability (spiral shape) had a mostly fair/moderate-to-good correlation (|r| = 0.14–0.66) with all disease burden measures. Trace celerity also had mostly fair/moderate-to-good correlation (|r| = 0.18–0.41) with Nine-Hole Peg Test performance, cerebellar functional system score, and brain magnetic resonance imaging. Furthermore, partial correlation analysis related these results to motor impairment. People with multiple sclerosis showed greater drawing velocity variability, though slower mean velocity, than healthy controls. Linear velocity (spiral shape) and angular velocity (circle shape) potentially differentiate functionally normal people with multiple sclerosis from healthy controls. Interpretation The Draw a Shape Test objectively assesses upper extremity impairment and correlates with all disease burden measures, thus aiding multiple sclerosis-related upper extremity impairment characterization.This research was funded by F. Hoffmann-La Roche Ltd, Basel, Switzerland

    Personalized Longitudinal Assessment of Multiple Sclerosis Using Smartphones

    Full text link
    Personalized longitudinal disease assessment is central to quickly diagnosing, appropriately managing, and optimally adapting the therapeutic strategy of multiple sclerosis (MS). It is also important for identifying the idiosyncratic subject-specific disease profiles. Here, we design a novel longitudinal model to map individual disease trajectories in an automated way using sensor data that may contain missing values. First, we collect digital measurements related to gait and balance, and upper extremity functions using sensor-based assessments administered on a smartphone. Next, we treat missing data via imputation. We then discover potential markers of MS by employing a generalized estimation equation. Subsequently, parameters learned from multiple training datasets are ensembled to form a simple, unified longitudinal predictive model to forecast MS over time in previously unseen people with MS. To mitigate potential underestimation for individuals with severe disease scores, the final model incorporates additional subject-specific fine-tuning using data from the first day. The results show that the proposed model is promising to achieve personalized longitudinal MS assessment; they also suggest that features related to gait and balance as well as upper extremity function, remotely collected from sensor-based assessments, may be useful digital markers for predicting MS over time

    U-turn speed is a valid and reliable smartphone-based measure of multiple sclerosis-related gait and balance impairment

    Get PDF
    Background: People living with multiple sclerosis (MS) experience impairments in gait and mobility, that are not fully captured with manually timed walking tests or rating scales administered during periodic clinical visits. We have developed a smartphone-based assessment of ambulation performance, the 5 U-Turn Test (5UTT), a quantitative self-administered test of U-turn ability while walking, for people with MS (PwMS). Research question: What is the test-retest reliability and concurrent validity of U-turn speed, an unsupervised self-assessment of gait and balance impairment, measured using a body-worn smartphone during the 5UTT? Methods: 76 PwMS and 25 healthy controls (HCs) participated in a cross-sectional non-randomised interventional feasibility study. The 5UTT was self-administered daily and the median U-turn speed, measured during a 14-day session, was compared against existing validated in-clinic measures of MS-related disability. Results: U-turn speed, measured during a 14-day session from the 5UTT, demonstrated good-to-excellent test-retest reliability in PwMS alone and combined with HCs (intraclass correlation coefficient [ICC] = 0.87 [95 % CI: 0.80-0.92]) and moderate-to-excellent reliability in HCs alone (ICC = 0.88 [95 % CI: 0.69-0.96]). U-turn speed was significantly correlated with in-clinic measures of walking speed, physical fatigue, ambulation impairment, overall MS-related disability and patients' self-perception of quality of life, at baseline, Week 12 and Week 24. The minimal detectable change of the U-turn speed from the 5UTT was low (19.42 %) in PwMS and indicates a good precision of this measurement tool when compared with conventional in-clinic measures of walking performance. Significance: The frequent self-assessment of turn speed, as an outcome measure from a smartphone-based U-turn test, may represent an ecologically valid digital solution to remotely and reliably monitor gait and balance impairment in a home environment during MS clinical trials and practice

    Preliminary validity of the Draw a Shape Test for upper extremity assessment in multiple sclerosis

    Get PDF
    Objective To validate the smartphone sensor-based Draw a Shape Test - a part of the Floodlight Proof-of-Concept app for remotely assessing multiple sclerosis-related upper extremity impairment by tracing six different shapes. Methods People with multiple sclerosis, classified functionally normal/abnormal via their Nine-Hole Peg Test time, and healthy controls participated in a 24-week, nonrandomized study. Spatial (trace accuracy), temporal (mean and variability in linear, angular, and radial drawing velocities, and dwell time ratio), and spatiotemporal features (trace celerity) were cross-sectionally analyzed for correlation with standard clinical and brain magnetic resonance imaging (normalized brain volume and total lesion volume) disease burden measures, and for capacity to differentiate people with multiple sclerosis from healthy controls. Results Data from 69 people with multiple sclerosis and 18 healthy controls were analyzed. Trace accuracy (all shapes), linear velocity variability (circle, figure-of-8, spiral shapes), and radial velocity variability (spiral shape) had a mostly fair/moderate-to-good correlation (|r| = 0.14-0.66) with all disease burden measures. Trace celerity also had mostly fair/moderate-to-good correlation (|r| = 0.18-0.41) with Nine-Hole Peg Test performance, cerebellar functional system score, and brain magnetic resonance imaging. Furthermore, partial correlation analysis related these results to motor impairment. People with multiple sclerosis showed greater drawing velocity variability, though slower mean velocity, than healthy controls. Linear velocity (spiral shape) and angular velocity (circle shape) potentially differentiate functionally normal people with multiple sclerosis from healthy controls. Interpretation The Draw a Shape Test objectively assesses upper extremity impairment and correlates with all disease burden measures, thus aiding multiple sclerosis-related upper extremity impairment characterization

    Structure-Based Prediction of Asparagine and Aspartate Degradation Sites in Antibody Variable Regions

    Get PDF
    Monoclonal antibodies (mAbs) and proteins containing antibody domains are the most prevalent class of biotherapeutics in diverse indication areas. Today, established techniques such as immunization or phage display allow for an efficient generation of new mAbs. Besides functional properties, the stability of future therapeutic mAbs is a key selection criterion which is essential for the development of a drug candidate into a marketed product. Therapeutic proteins may degrade via asparagine (Asn) deamidation and aspartate (Asp) isomerization, but the factors responsible for such degradation remain poorly understood. We studied the structural properties of a large, uniform dataset of Asn and Asp residues in the variable domains of antibodies. Their structural parameters were correlated with the degradation propensities measured by mass spectrometry. We show that degradation hotspots can be characterized by their conformational flexibility, the size of the C-terminally flanking amino acid residue, and secondary structural parameters. From these results we derive an accurate in silico prediction method for the degradation propensity of both Asn and Asp residues in the complementarity-determining regions (CDRs) of mAbs

    Adherence and satisfaction of smartphone- And smartwatch-based remote active testing and passive monitoring in people with multiple sclerosis : Nonrandomized interventional feasibility study

    Get PDF
    Background: Current clinical assessments of people with multiple sclerosis are episodic and may miss critical features of functional fluctuations between visits. Objective: The goal of the research was to assess the feasibility of remote active testing and passive monitoring using smartphones and smartwatch technology in people with multiple sclerosis with respect to adherence and satisfaction with the FLOODLIGHT test battery. Methods: People with multiple sclerosis (aged 20 to 57 years; Expanded Disability Status Scale 0-5.5; n=76) and healthy controls (n=25) performed the FLOODLIGHT test battery, comprising active tests (daily, weekly, every two weeks, or on demand) and passive monitoring (sensor-based gait and mobility) for 24 weeks using a smartphone and smartwatch. The primary analysis assessed adherence (proportion of weeks with at least 3 days of completed testing and 4 hours per day passive monitoring) and questionnaire-based satisfaction. In-clinic assessments (clinical and magnetic resonance imaging) were performed. Results: People with multiple sclerosis showed 70% (16.68/24 weeks) adherence to active tests and 79% (18.89/24 weeks) to passive monitoring; satisfaction score was on average 73.7 out of 100. Neither adherence nor satisfaction was associated with specific population characteristics. Test-battery assessments had an at least acceptable impact on daily activities in over 80% (61/72) of people with multiple sclerosis. Conclusions: People with multiple sclerosis were engaged and satisfied with the FLOODLIGHT test battery. FLOODLIGHT sensor-based measures may enable continuous assessment of multiple sclerosis disease in clinical trials and real-world settings
    corecore