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Abstract

Monoclonal antibodies (mAbs) and proteins containing antibody domains are the most prevalent class of biotherapeutics in
diverse indication areas. Today, established techniques such as immunization or phage display allow for an efficient
generation of new mAbs. Besides functional properties, the stability of future therapeutic mAbs is a key selection criterion
which is essential for the development of a drug candidate into a marketed product. Therapeutic proteins may degrade via
asparagine (Asn) deamidation and aspartate (Asp) isomerization, but the factors responsible for such degradation remain
poorly understood. We studied the structural properties of a large, uniform dataset of Asn and Asp residues in the variable
domains of antibodies. Their structural parameters were correlated with the degradation propensities measured by mass
spectrometry. We show that degradation hotspots can be characterized by their conformational flexibility, the size of the C-
terminally flanking amino acid residue, and secondary structural parameters. From these results we derive an accurate in
silico prediction method for the degradation propensity of both Asn and Asp residues in the complementarity-determining
regions (CDRs) of mAbs.
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Introduction

Monoclonal antibodies (mAbs) and new antibody domain-based

molecules constitute the majority of protein therapeutics under

clinical investigation [1,2] for severe malignancies such as cancer,

viral and inflammatory diseases. mAbs are potent in a diverse

range of therapeutic indications, and are readily generated against

promising new targets. The specificity of mAbs is determined by

sequences in the CDRs located in the variable Fv domain. The

process of selecting the clinical candidate mAb typically starts with

large-scale screening for functional properties. Screening is

followed by detailed in vitro profiling of multiple mAbs to identify

candidates that fulfill all desired functional criteria. To ensure

optimal technical development and in vivo stability, potentially

instable mAbs have to be identified and excluded during the lead

selection process.

During manufacturing, storage and in vivo, therapeutic antibod-

ies are at risk for degradation via a number of pathways (reviewed

by [3]). Amongst the most frequently occurring degradation

reactions in proteins are the chemical degradation of Asn [4] and

Asp residues [5,6]. While these reactions may be kept under

control by appropriate storage and formulation conditions [7–10]

of the final drug substance and drug product, degradation during

fermentation, downstream-processing, and in vivo can often not be

controlled sufficiently. If Asn and Asp residues are involved in

antigen recognition, their chemical alteration can lead to severe

loss of potency [11–15]. In several cases, these degradation events

were reported to hamper long-term mAb functionality

[11,12,14,16–19]. In vivo, protein degradation events are described

in connection with protein ageing [20–26], with cancer by

triggering apoptosis [27–29] or with severe effects on other

biological functions, e. g. stability decrease of human lens betaA3-

crystallin, abnormal MAPK signaling, the alteration of potential

beta-secretase efficacy and specificity in the course of Abeta

generation, or increase of lysozyme lytic activity against bacterial

cells [30–37]. The identification of degradation-prone drug

candidates is ideally done early in the drug development process

to either adjust the manufacturing and formulation process

accordingly or to re-engineer a problematic candidate to remove

such hotspots [38].

Asn and Asp residues share a degradation pathway that

proceeds via the formation of a cyclic succinimide intermediate

(Figure 1) [4,6,39]. Succinimide results from deamidation of Asn

or dehydration of Asp by nucleophilic attack of the backbone
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nitrogen of the succeeding amino acid on the Asn/Asp side chain

c-carbonyl group. The metastable cyclic imide can hydrolyze at

either one of its two carbonyl groups to form aspartyl or iso-

aspartyl linkages in different ratios, depending on hydrolysis

conditions and conformational restraints [4,6,18,25,40,41]. In

addition, alternative degradation mechanisms for Asn were

proposed [11] such as nucleophilic attack by the backbone

carbonyl oxygen to form a cyclic isoimide [6,42,43] or direct

hydrolysis of Asn to Asp [44,45] (Figure 1). Several analytical

methods, mostly charge-sensitive methods such as ion exchange

chromatography or isoelectric focusing, were described to detect

either of the degradation products, i.e. succinimide, Asp or isoAsp

[14,46–48]. Most suitable for the quantification and the localiza-

tion of degradation sites in proteins is the analysis via liquid

chromatography tandem mass spectrometry (LC-MS/MS)

[13,14,16,19,43,49–56].

Diverse parameters were proposed which may influence the

degradation propensity of Asn and Asp residues, e.g. the primary

sequence [4,6,21,39,45,57–62], the solvent dielectric constant,

temperature, and the pH, mostly in the peptide [58,59,63–65], but

also in the protein context [8,11,18,66]. Already in the 1980s,

several structural requirements were suggested as principal

determinants for protein deamidation [6,67] which have later

been confirmed and extended [16,40,42,43,45,57,68–70].

Despite accumulated knowledge about the degradation mech-

anism and its structural requirements, the reliable prediction of

deamidation and isomerization in mAbs remains an unresolved

issue. In the early stages of drug discovery, the amino acid

sequence is often known for a large number of lead candidates, but

the protein amounts available for in vitro stability testing are often

limited and the necessary mass spectrometry assays are labor

intensive and time consuming. Thus, the possibility to reliably

predict Asp and Asn hotspots without the need for experiments is

key to the rapid identification of stable Fv sequences early in the

discovery phase.

To shed light on the complex interplay of several parameters

potentially leading to chemical degradation, we generated a

uniform experimental data set of site-specific degradation events

before and after ‘‘stress’’ treatment in 37 mAbs by mass

spectrometry. These in vitro data combined with structural

parameters derived from homology models were used to study

the quantitative contribution of structural parameters in the

degradation pathway, and to develop an in silico approach for the

identification and selection of chemically stable mAbs during the

clinical candidate generation process.

Results

Experimental survey of antibody degradation sites and
rates

In order to determine the driving factors for Asn and Asp

degradation sites in the Fv regions of mAbs, analytical, structural,

and computational methods were combined. A collection of 37

different therapeutic IgG1, IgG2 and IgG4 mAbs (in-house as well

as marketed products) was investigated (Table 1, Materials and

Methods). These antibodies were subjected to forced degradation

(‘‘stress’’) at a typical formulation pH of 6.0 at 40uC for 2 weeks

(Material and Methods), and subsequently analyzed for degrada-

tion events by mass spectrometric analysis after tryptic digestion.

Thereby the affected residues were identified and the amount of

Figure 1. Asparagine and Aspartate degradation pathways. Deamidation of asparagine or dehydration of aspartic acid occurs by nucleophilic
attack of the a-amino group of the C-terminally flanking amino acid. This leads to formation of a metastable succinimide (cyclic imide) intermediate,
which hydrolyzes to a mixture of aspartyl and iso-aspartyl linkages. Alternatively, nucleophilic attack by the backbone carbonyl oxygen results in a
cyclic isoimide intermediate, yielding only aspartyl residues after hydrolysis independent of the point of attack of the incoming water molecule.
Asparagine residues can deamidate to Asp by direct water-assisted hydrolysis. Standard amino acids (Asn, Asp) are outlined with black boxes.
doi:10.1371/journal.pone.0100736.g001
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modification in stressed and corresponding reference samples was

quantified (Materials and Methods). Modifications already present

in unstressed samples, for instance due to poor stability at

physiological pH during fermentation or induced during biopro-

cessing, were also detected. To avoid further modification and to

stabilize the cyclic imide intermediate, the pH was maintained at

6.0 during peptide map sample preparation [54,71]. The

evaluation of the entire set of 74 LC-MS/MS peptide mapping

experiments from 37 stressed and corresponding reference samples

enabled us to detect all possible products of Asn and Asp

degradation, i.e. the succinimide intermediate, iso-Asp, and Asp

(example in Figure S1). Out of all 559 Asn and Asp residues in the

Fv regions of the 37 mAbs, 60 residues (11%) exhibit quantifiable

amounts of modification. We sub-classified these into 21 hotspots

(Table 1), 14 weak spots (Table S1), and 24 reactive spots (Table

S2). The term hotspot corresponds to $3%, weak spot to $1 and

,3%, and reactive spot to ,1% modification in the stressed

samples. In the data set used for statistical evaluation, only

hotspots and non-hotspots were considered. In order to achieve a

reliable, unambiguous dataset, reactive spots and weak spots, as

well as hotspots with unclear assignment or within an Fv N-

glycosylation site were excluded from the dataset.

Degradation sites are exclusively located in CDRs
Strikingly, all degradation hotspots are located in the CDR

loops (Table 1). Thus, the CH1/CL domains and the Fv framework

represent a stable scaffold. Most hotspots are located in the light

chain CDR 1 and the heavy chain CDR 3, whereas in our dataset

heavy chain CDR 1 does not contain any hotspot. In summary, 15

out of 37 analyzed mAbs contain at least one Asn or Asp hotspot

in one of the CDRs.

It was shown in previous studies that the amino acid residue

succeeding Asn and Asp influences the rate of succinimide

formation in proteins [45,57]. So far, eight different sequence

motifs involved in chemical degradation within Fv regions of

therapeutic antibodies have been described (Asn succeeded by

Gly, Ser, or Thr, and Asp succeeded by Gly, Ser, Thr, Asp, or His)

[11–18,72–79]. In accordance with previous observations, Asn-

Gly and Asp-Gly motifs are by far the motifs most prone to

modification in our data set, accounting for 67 and 36% of

hotspots observed, respectively (Figure 2). All described sequence

motifs except Asp-Thr and Asp-His were observed as degradation

sites in the CDRs of our antibody collection. In addition, chemical

degradation was detected at an Asn-Asn motif in mAb14 (Table 1).

Degradation at this sequence motif has so far not been described in

antibody CDRs, but in other proteins [45].

To assess the relevance of our therapeutic mAb collection in

relation to naturally occurring antibodies, the frequency of the

known Asn and Asp degradation sequence motifs (NG, NN, NS,

NT, DG, DS, DT, DD, DH) was compared between the CDRs of

our mAb collection (combined Kabat and Chothia definitions

[80]) and 16286 naturally occurring human mAb sequences (9990

V-D-J and 6296 V-J sequences) from the international ImMuno-

GeneTics (IMGT) information system’s monoclonal antibody

database (www.IMGT.org). Despite the enormous difference in

Table 1. Experimental Asn and Asp hotspot collection.

mAb modifi-cation % modified (stressed) % modified (un-stressed) motif location

mAb22 iD+suc 39 14 DG HC CDR 3

Omalizumab [12] iD+suc 31 3 DG LC CDR 1

mAb2 iD+suc 26 3 DS LC CDR 2

Trastuzumab [11,54] dea*+suc 24 11 NT LC CDR 1

Trastuzumab [11,54] iD+suc 22 7 DG HC CDR 3

mAb14 dea 22 n.a. NS LC CDR 3

mAb1` dea+suc 17 5 NT HC CDR 3

mAb22 iD+suc 12 6 DG LC CDR 2

mAb13 iD+suc 10 n.a. DG HC CDR 3

Nimotuzumab iD+suc 9 2 DS HC CDR 3

mAb26 dea 8 3 NG LC CDR 1

Nimotuzumab` dea#+suc# 8 5 ? LC CDR 1

mAb32 dea 6 5 NS HC CDR 2

Infliximab dea 6 2 NS HC CDR 2

Natalizumab dea+suc 5 3 NG HC CDR 2

Trastuzumab [11,54] dea+suc 5 4 NG HC CDR 2

mAb17 dea+suc 4 1 NS LC CDR 1

mAb14 suc 4 0 NN LC CDR 1

mAb11 suc 4 2 NT LC CDR 1

mab48 dea+suc 3 2 NG HC CDR 2

mAb2 iD+suc 3 n.a. DS HC CDR 3

*only Asp as deamidation species.
`excluded from hotspot data set because of interaction with a CDR glycosylation site which is not represented by the homology models.
#proof of modification site impossible with available methods (tryptic peptide, AspN peptide, CID fragmentation, HCD fragmentation), thus excluded from the hotspot
data set.
Main modifications are written in bold. iD = isomerization, suc = succinimide, dea = deamidation, n.a.: not assessed.
doi:10.1371/journal.pone.0100736.t001
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size of the compared datasets, the frequency at which Asn and Asp

motifs occur, is distributed comparatively equally and shows that

the sequence composition of the investigated antibody molecules

contains low bias (Figure 2). The only exception is the NT motif

that is found twice as frequently in therapeutic mAbs than in

IMGT. Obviously, the most degradation-prone Asn-Gly and Asp-

Gly motifs are comparatively infrequent.

Analysis of degradation site structure
The structural environment of Asn and Asp hotspots and non-

hotspots in the antibodies’ Fv fragments was characterized by a set

of 20 parameters with a putative role in the degradation

mechanism. Homology models of Fv fragments were generated

by a state-of-the art homology modeling software (Materials and

Methods). Parameters were extracted from these homology models

by an automated procedure (Materials and Methods). Generally,

the high homology to template structures typically results in

precise homology models of framework and short CDR regions.

However, modeling of long CDR loops is prone to large modeling

uncertainties, possibly due to the high inherent flexibility of such

loops [81–84]. Therefore, all CDRs were subjected to an

additional loop modeling procedure [85] (Materials and Methods),

yielding a five-membered homology model ensemble. Like this,

additional information on different possible CDR conformations

was captured (Figure S2), without the necessity of computationally

demanding molecular dynamics simulations. Moreover, bias in

homology models generated from templates with bound antigen is

removed by the loop refinement procedure which models loops

using experimental loop structures from a loop database, followed

by energy minimization. The correlation between structural

parameters and in vitro degradation was investigated by machine-

learning algorithms. Statistical validation of the predicting model

shows promising accuracy and low mis-prediction compared to

sequence motif-based prediction.

A set of 20 parameters describes the structural
environment of Asn and Asp residues

As the discrimination of both Asn/Asp degradation hotspots

and stable Asn/Asp residues only based on primary sequence is

prone to massive over-prediction [57], a set of 20 structural

parameters described below was defined to reflect the 3D

environment of these amino acids. They were chosen on the basis

of their putative role in the degradation mechanism (Figure 1,

Figure 3, Table S1) and were computationally extracted from the

homology model ensembles.

A prerequisite for cyclic imide formation is the leaving tendency

of the hydroxyl or the amino group of the Asp or Asn side chain,

respectively. To estimate this tendency, the number of hydrogen

bonds to the side chain oxygen atoms, or the side chain nitrogen

atom was counted. For succinimide formation to occur, the

carboxyl group of the Asp side chain must be protonated [39,86].

The probable protonation state was obtained by calculating the

structure-dependent Asp pKa values using the PROPKA algo-

rithm (SI Materials and Methods) [87]. Accessibility and high

nucleophilicity of the succeeding backbone nitrogen are other

potential prerequisites for succinimide formation (Figure 1).

Therefore, the succeeding backbone nitrogen’s solvent accessible

surface area was calculated and the number of hydrogen bonds

was counted.

The transition state of the succinimide formation reaction

requires the Asp or Asn head group to approach the backbone

nitrogen of the succeeding residue. Transition state-like confor-

mation was probed by measuring the distance of the side chain Cc-

atom to the Nn+1-atom (Figs. 1, 3 [67]), the side chain dihedral

angle x1, and the dihedral angle CGONC that was defined as the

angle between the atoms Cc, O, Nn+1, and C. Additionally, the

solvent-accessible surface area of each Asp or Asn was calculated.

It was shown that the residue succeeding an Asn or Asp influences

the rate of succinimide formation [4,6,21,34,39,57,58,60]. Hence,

Figure 2. Occurrence of Asn and Asp amino acid motifs in the CDRs of a therapeutic mAb collection and a set of naturally occurring
antibodies (IMGT). Black triangles show percentages of hotspots within Asn and Asp motifs of the experimental collection of 37 mAbs. Bars
represent percentages of depicted sequence motifs among all Asn or Asp residues in only CDR regions. Percentages shown as filled bars represent
the non-redundant collection of the 37 analytically assessed therapeutic mAbs, bars striped in light grey belong to a collection of 9990 V-D-J- and
6296 V-J regions of naturally occurring antibodies from the IMGT database. (A) Asn sequence motifs, (B) Asp sequence motifs.
doi:10.1371/journal.pone.0100736.g002
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the successor amino acid size is recorded, as well as the backbone

dihedral angles Q (C’n-1-N-Ca-C’) and y (N-Ca-C’-Nn+1) which

provide information about the local structural conformation and

thus the potential accessibility of the transition state.

Further parameters describe the broader structural environ-

ment. The root mean square deviation (RMSD) of the Asn/Asp

residues’ Ca-atoms in the homology model ensemble reflects

structural diversity within the ensemble and is seen as an

indication of possible conformational flexibility. The secondary

structure the residue is embedded in (helix, sheet, turn, or coil)

[40,68], and the distance to the next different N- and C-terminal

secondary structure element [57] are included as additional

parameters. If a residue is located in a coil secondary structure, its

position within the coil (margin or center) was annotated

(Materials and Methods). To quantify the ‘‘bend’’ of a coil tip,

the distance between the Ca-atoms of the n-1 and the n+1 residues

was measured. Finally, the location within the Fv fragment (CDRs

or framework) was attributed to each residue.

Machine learning
Nine different machine learning methods were tested with the

goal to find the optimal classifier for distinction between hotspots

and non-hotspots in the Fv region. Our data set consisting of 185

models (3765 models) contains in the case of Asn 55 hotspots and

940 non-hotspots, in the case of Asp 40 hotspots and 1425 non-

hotspots, and was used for statistical analysis. Training of the

classifiers was performed separately for Asn and Asp with a

random 75% training dataset (always keeping the 5-membered

ensembles together), excluding terminal residues as well as weak

spots and reactive spots to avoid misleading classification.

Bayesian classification, recursive partitioning, support vector

machines, random forests, regularized discriminant analyses, and

neuronal networks were tested in 40 repeats of random training set

assignments (Monte Carlo cross validation), using all 20 param-

eters (SI Materials and Methods). Monte Carlo cross validation is

described as a mathematically stringent validation approach in

cases where no large, independent training and validation data sets

are available [88,89]. Asn and Asp classifications were separately

dealt with because Asn degradation could follow different

mechanisms [6,42–45], (Figure 1), which led to an improved

classification scheme. A residue counts as a predicted hotspot if at

least one member of the five-membered ensemble was classified as

such. To choose the optimal classifier out of the tested

classification models, we used a receiver operating characteristic

(ROC) analysis that is commonly applied to illustrate the

performance of binary classification systems (SI Materials and

Methods). Weighting a high true-positive rate as the most

important criterion, the Pipeline Pilot implementation of a

single-tree lookahead-enabled recursive partitioning algorithm

[90] was chosen as the most suitable classifier and optimized for

prediction purposes (Figure 4, Figure 5, SI Materials and

Methods). The decision trees are shown in Figure 6.

After forty runs of test set validation against the model trained

with randomized 75% training sets, an average of 0.5 out of 8 Asp-

hotspots were not recognized, whereas an average of 6.6 out of

Figure 3. Parameters characterizing Asn and Asp residues in a structural environment outlined at an exemplary Asp residue.
Parameters describing the carboxyl/amino group leaving tendency, the transition state accessibility, the Nn+1 nucleophilicity, and the structural
environment are depicted in pink, light blue, purple, and dark blue, respectively. Parameter names are used as in Table S1.
doi:10.1371/journal.pone.0100736.g003
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285 Asp non-hotspots were assigned false-positively. This corre-

sponds to a TPR of 0.94, being the number of true positives (7.5)

divided by the number of positives (8), and a FPR of 0.02, defined

as the number of false positives (6.6) divided by the number of

negatives (285) (Figure 4 A,C). In the case of Asn, an average of 0.6

out of 11 Asn-hotspots was assigned as false-negative (TPR = 0.95)

and 8.1 out 188 non-hotspots were obtained as false-positives

(FPR = 0.04) (Figure 4 B,D). This is a significant improvement to

prediction based on solely primary sequence information, which

led to a strong over-prediction in our dataset (Asp TPR = 1.0,

FPR = 0.31; Asn TPR = 0.91, FPR = 0.41).

Asp and Asn degradation propensity depends on residue
flexibility, successor size, and secondary structure

In the case of Asp, the dataset consists of only 2.7% hotspots

that need to be distinguished from the non-hotspot Asp residues.

The first two decision tree splits can separate 93% of all non-

hotspots (Figure 6 A). Non-hotspots are either inflexible or are

succeeded by a large C-terminal amino acid. The remaining Asps

to be classified show a high degree of conformational variability in

the model ensembles and are succeeded by a small amino acid

(Gly, Ala, Ser, Cys, or Asp). Of these, the first and largest Asp

hotspot class is characterized by very high conformational

Figure 4. ROC plots for comparison of 3D classifiers to sequence-based prediction shows significant decrease of false-positive
rates. Evaluation of different statistical methods is compared with only sequence-based prediction. For statistical classification methods, average
numbers of false-positive and false-negative Asn/Asp residues are results of 40 rounds of Monte Carlo cross validation. TPR (true positive rate) =
number of true positives divided by number of positives. FPR (false positive rate) = number of false positives divided by number of negatives. Tree,
rpart, PP (Pipeline Pilot) tree, and RandomForest are recursive partitioning algorithms; svm, ksvm are support vector machine algorithms; rda is a
regularized discriminant analysis algorithm; nnet is a neural network; sequence-based corresponds to prediction based on sequence motifs NG, NS,
NT, and DG, DS, DT, DD, DH. The Pipeline Pilot tree, shown as a yellow circle, was selected as prediction algorithm, at pruning level 4. A: Asp model; B:
Asn model. Panels C and D show a zoom view of the panels A and B, respectively. The numerical values shown in these graphs can be found in Table
S3.
doi:10.1371/journal.pone.0100736.g004
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variability (RMSD.0.485) and Asp, Cys, Ser, Ala or Gly as a

successor. It contains 5 hotspots (5 members each) as well as 2 non-

hotspot Asp residues (5 members each).

At the next node, hotspot class 2 is split off. Its 3 members (1

with 5 homology model members, 1 with 2, and 1 with 1 member

only) are characterized by moderate conformational variability

(RMSD between 0.145 and 0.485), are followed by either Asp,

Cys, Ser, Ala or Gly, and show a change in C-terminal secondary

structure within a stretch of less than 3 amino acids.

Hotspot class 3 represents an Asp-Gly motif with moderate

conformational variability (RMSD 0.145–0.485) and a change in

C-terminal secondary structure within more than 3 residues. It

contains 2 hotspots (1 with 4 homology model members, and 1

with 3 members) and 1 false-positive Asp (5 members).

For Asn degradation hotspot classification, the main criteria are

the size of the carboxy-terminal amino acid and conformational

variability (Figure 6 B). Compared to the Asp dataset, there are

twice as many Asn hotspots in relation to non-hotspots, which

correspond to 5.5%. Also here, the first two decision tree splits can

separate the bulk of non-hotspots (72%). Non-hotspots are

succeeded by a big carboxy-terminal amino acid or are inflexible.

The next split criterion is the successor size and leads to 2

branches, containing Asn residues with a successor size less or

greater than 102.7 Å2. The latter is further categorized by the

CDR loop location. Thus, the first Asn hotspot class contains

residues in CDR loop 1, is characterized by carboxy-terminal

residues such as Asp, Pro, Thr, or Asn, and is not inflexible

(RMSD.0.01). It contains 3 hotspot members (5 homology model

members each).

The residues with a successor size less than 102.7 Å2 are further

classified by their backbone dihedral angle phi. Asn residues

followed by Gly, Ala, Ser, or Cys (,102.7 Å2) that are not

inflexible (RMSD.0.01) and whose phi angle is smaller than 2

75.2 degrees constitute the second and largest hotspot class 2. It

contains 6 hotspot members (4 with 5 homology model members,

1 with 4, and 1 with 2 members), as well as 4 false-positives (1 with

5 homology model members, 2 with 3, and 1 with 1 member).

Hotspot class 3 is defined by the same flexibility and successor

characteristics as class 2 but its 4 members (2 with 5 homology

model members, 1 with 3, and 1 with 1 member only) feature a phi

angle greater than 275.2 degrees, high solvent exposure (SASA.

89.4 Å2) and a change in amino-terminal secondary structure

within a stretch of more than 3 amino acids. Two non-hotspot Asn

residues (1 and 2 homology model members) are also part of this

class.

Discussion

Spontaneous degradation of Asn and Asp residues in therapeu-

tic proteins can occur during production, storage, and in vivo. In

case of involvement in target binding, the formation of the

degradation products succinimide, isoAsp, and Asp embedded in

the CDRs can lead to loss of function or potency. The aim of this

study was to gain insights into the structural basis of these

degradation processes and thus allow for selection of chemically

stable antibody variable domains.

Due to known limitations of sequence-based predictions of the

propensity of Asn and Asp degradation, an in silico prediction tool

was established to facilitate selection of stable antibody candidates.

To this end we first obtained a uniform data set that contains

residue-specific quantitative data on antibody degradation prod-

ucts. Where available, these detected modifications are in

accordance with known hotspot information from published data

[11,12,54,91]. The pH was kept constant at 6.0 during forced

degradation and sample preparation to detect the succinimide

Figure 5. ROC plot for comparison of different pruning levels of decision trees. Decision trees were pruned automatically as implemented
in Pipeline Pilot. Average numbers of false-positive and false-negative Asn/Asp residues are results of 40 rounds of Monte Carlo cross validation. TPR
(true positive rate) = number of true positives divided by number of positives. FPR (false positive rate) = number of false positives divided by
number of negatives. Trees 1-3 and 5-6 are shown as spheres, tree 4 as a black triangle. Tree 1 is the un-pruned tree model. Tree 4 was selected for
prediction.
doi:10.1371/journal.pone.0100736.g005
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intermediate that quickly hydrolyzes at alkaline pH, Asp

isomerization, which occurs mainly at slightly acidic pH, and

Asn deamidation without method-induced deamidation events.

Usually, a mixture of Asp and iso-Asp is obtained in variable

ratios after succinimide hydrolysis [4,59,63] which is the case for

the majority of the deamidation events in our study. The

occurrence of only one product in the published Asn degradation

hotspot of Trastuzumab [11], which was shown to be Asp,

supports a succinimide-independent degradation pathway – either

via an alternative nucleophilic attack mechanism resulting in

isoimide [42] or via direct Asn side chain hydrolysis [44] (Figure 1).

Several approaches to predict labile Asp and Asn residues from

the sequence context or experimental X-ray structures were

proposed [6,16,40,42,43,45,57,67–70]. A tool for prediction of

Asn deamidation but not Asp isomerization or succinimide

formation in proteins was presented by Robinson & Robinson in

2001 [57]. The authors used reported deamidation rates of 198

Asn residues in 23 different proteins and 70 Asn residues in 61

human hemoglobin variants that were observed under a wide

variety of experimental conditions. The main differences to our

study are that (i) the prediction is only applicable for Asn, (ii) the

hotspot collection – hence the basis for prediction – has a

heterogeneous experimental background, (iii) the 3D information

stems from experimental X-ray structures, not from homology

models, (iv) for general users the prediction is possible for proteins

with entries in the PDB until 2001, and (v) it requires an

experimental structure for its application to new proteins. In

comparison, the model proposed in our study is adapted to the

variable region of therapeutic antibodies, and relies exclusively on

in silico calculations, bypassing the need for experimental X-ray

structures. The only prerequisites are (i) an antibody Fv domain

sequence, (ii) a homology modeling tool, (iii) a molecular

visualization software such as PyMol, and (iv), the statistical model

presented in this work. The reduction of falsely assigned hotspots

(average 2.3% for Asp, 4.3% for Asn) compared to sequence-only

based prediction (31% for Asp, 43% for Asn) is reliable enough to

employ this prediction during lead candidate selection. The cause

for the described false-positives and also the false-negatives (6.3%

Figure 6. Final Aspartate (A) and asparagine (B) decision trees. The outline of nodes and leaves is colored by the weighted majority of the
class that is present (red: hotspots, green: non-hotspots). Filling levels of the bars on the right hand side of each node/leaf refer to the fraction of the
data set. The fraction of each class at a node/leaf is shown by the colored fraction of the circle. The number of members of each node/leaf is indicated
above.
doi:10.1371/journal.pone.0100736.g006
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Asp, 5.2% Asn) is the relatively small number of hotspots (8 Asp,

11 Asn) compared to non-hotspots (285 Asp, 188 Asn). Classifi-

cation with only residues embedded in the CDR loop led to less

predictive statistical values (not shown).

The best-performing predictor for this dataset is the Pipeline

Pilot implementation of a lookahead-enabled single recursive

partitioning tree. Partitioning trees provide split criteria in the

order of their ability to split the dataset into hotspot and non-

hotspot containing subsets. Thus, parameters utilized in the first

nodes are those with a high discriminative power. Parameters

which do not contribute to data splitting, either due to a lack of

significance or due to noise, are omitted automatically.

The work presented here resulted in a tool to predict sites of

antibody degradation and reveals the main characteristics that

distinguish unstable and stable Asn and Asp amino acids in the

variable region of mAbs: Asn and Asp residues with high flexibility

and a small successor are prone to degradation. They can be

further characterized by secondary structural elements. Interest-

ingly, parameters most promptly describing the reaction mecha-

nism (Figure 1) such as the distance between the C atom and

backbone nitrogen atom of the C-terminal amino acid, the Asp

pKa value, or the side-chain dihedral angle x1, were not relevant

for classification.

The specificity of the prediction algorithm for antibodies can

help to more efficiently pre-select mAbs in the process of finding

the most stable, and simultaneously most potent clinical candidate

molecule that is brought into further development, and into the

clinic. By applying the algorithm, long-term and in vivo stability can

be predicted, avoiding late stage failure. Filling the existing data set

with more case studies representing the succinimide-independent

Asn degradation pathway would probably further explain the

structural prerequisites for this alternative mechanism. An

adjustment to new molecule formats will be the next step in the

future. With an expansion of the acquired knowledge to other

protein classes, a broader application could be an interesting step

ahead, providing a more general understanding of protein

degradation mechanisms, independent of the protein class.

Materials and Methods

mAb origin
The marketed products used in this study include Avastin

(Bevacizumab, Genentech/Roche); CYT387 (Nimotuzumab,

Oncoscience, Ch.B.: 911017W002); Erbitux (Cetuximab, Bristol-

Myers Squibb and Eli Lilly and Company, Lot: 7666001);

Herceptin (Trastuzumab, RO-45-2317/000, Lot. HER401-4,

Genentech); Humira (Adalimumab, Abbott, Ch.B.:

90054XD10); Prolia (Denosumab, Amgen, Ch.B.: 1021509);

Raptiva (Efalizumab, Genentech, Merck Serono, Lot:

Y11A6845); Remicade (Infliximab, Centocor, Ch.B.:

0RMA66104); Simulect (Basiliximab, Novartis, Ch.B.: S0014);

Synagis (Pavilizumab, MedImmune, Lot.: 122-389-12); Tysabri

(Natalizumab, Biogen Idec and Elan, LotA: 080475); Vectibix

(Panitumumab, Amgen, Ch.B.: 1023731); and Xolair (Omalizu-

mab, Genentech/Novartis, Ch.B.: S0053). The remaining 24

mAbs of the antibody collection stem from Roche and are human

or humanized IgG1 or IgG4 antibodies.

Generation of samples with induced degradation
All 37 therapeutic mAbs were subjected to induced degradation

(stressed samples). To this end, 2 mg of each antibody were

dialyzed over night at 4 uC into dilution buffer (20 mM histidine-

chloride, pH 6.0) in D-Tube Dialyzers (Novagen, MWCO 6–

8 kDa). Concentrations were determined by UV280 absorption

and adjusted to 5 mg/ml with dilution buffer. After sterile

filtration (Pall Nanosep MF, 0.2 mm) and transfer to sterile screw

cap tubes, all mAb samples were quiescently incubated for 2 weeks

at 40 uC.

mAb sample preparation for tryptic peptide mapping
experiments

80 mg of mAb reference and stressed sample were denatured

and reduced for 1 h in a final volume of 124.5 mL of 100 mM

Tris, 5.6 M guanidinium hydrochloride, 10 mM TCEP (tris(2-

carboxyethyl)phosphine, Pierce Protein Biology Products, Thermo

Fisher Scientific, Waltham, MA, USA), pH 6.0 at 37 uC. Buffer

was exchanged to 20 mM histidine chloride, 0.5 mM TCEP,

pH 6.0 in 0.5 ml Zeba Spin Desalting Columns (Pierce Protein

Biology Products, Thermo Fisher Scientific, Waltham, MA, USA).

mAbs were digested overnight at 37 uC by addition of 0.05 mg

trypsin (Promega, Madison) per mg protein in a final volume of

140 mL. Digestion was stopped by addition of 7 mL of 10% formic

acid (FA) solution, and samples were frozen at 280uC until further

analysis.

Detection of modified peptides by liquid-
chromatography tandem mass-spectrometry

14 mg of digested protein were applied to an RP-HPLC (Agilent

1100 Cap LC, Agilent Technologies, Böblingen, Germany) on a

Varian Polaris 3 C18 – Ether column (16250 mm; 3 mm particle

diameter, 180 Å pore size) from Varian (Darmstadt, Germany) for

separation. The mAb2, mAb14, and Nimotuzumab digest were

additionally separated by RP-UPLC (ACQUITY BEH300 C18

column, 16150 mm, 1.7 mm bead size, 300 Å pore size, Waters,

Manchester, UK). The HPLC or UPLC eluate was split using

Triversa NanoMate (Advion, Ithaca, NY, USA) and 380 nl/min

were infused into a LTQ Orbitrap classic tandem mass

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)

operating in positive ion mode. The mobile phases of RP-HPLC

consisted of 0.1% FA in water (solvent A) and 0.1% FA in

acetonitrile (solvent B). The HPLC was carried out using a

stepwise gradient starting at 2% solvent B, elevated to 15% from

min 5-15, to 32% from min 15-70, to 38% from min 70-80, to

100% from min 80-90, and finally dropped to 2% from min 92–

110 with a flow rate of 60 mL/min. UPLC was effected with a

linear gradient from 1 to 40% solvent B from 0 to 130 min. UV

absorption was measured at wavelengths of 220 and 280 nm. Data

acquisition was controlled by Xcalibur software (Thermo Fisher

Scientific, Waltham, MA, USA). Parameters for MS detection

were adjusted according to general experience available from

peptide analyses of recombinant antibodies. For MS/MS

measurements, fragmentation was induced by low-energy CID

using helium as a collision gas with 35% collision energy in the

LTQ. To obtain higher resolution of the fragment ions for mAb14

and Nimotuzumab, the fragmentation was performed in the

Orbitrap using a parent mass list, an isolation width of 3, a parent

mass width of 0.2 Da, AGC Target 400000, and acquisition time

of 5000 ms.

mAb14 and Nimotuzumab sample preparation for MS/
MS evaluation

For further characterization, mAb14 and Nimotuzumab

stressed samples were treated as follows. 250 mg of mAb was

denatured by addition of denaturing buffer (0.4 M Tris (Sigma-

Aldrich, Taufkirchen, Germany), 8 M guanidinium hydrochloride

(Sigma-Aldrich, Taufkirchen, Germany), pH 8) to a final volume

of 240 mL. Reduction was achieved by addition of 20 mL of
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0.24 M dithiothreitol (DTT) (Roche, Mannheim, Germany)

freshly prepared in denaturing buffer and incubation at 37 uC
for 60 min. Subsequently, the sample was alkylated by addition of

20 mL of 0.6 M iodoacetic acid (Merck, Darmstadt, Germany) in

water for 15 min at room temperature in the dark. The excess of

alkylation reagent was inactivated by addition of 30 mL of DTT

solution. The samples were then buffer exchanged to approxi-

mately 480 mL of 50 mM Tris/HCl, pH 7.5 using NAP5

Sephadex G-25 DNA grade columns (GE Healthcare, Germany).

The mAbs were digested 5 h at 37 uC by addition of 0.03 mg

trypsin (Promega, Madison) per mg protein in a final volume of

500 mL. Digestion was stopped by addition of 20 mL of 10%

formic acid (FA)-solution, and samples were frozen at 280uC until

further analysis.

Data analysis for the quantification of modification levels
SIEVE software version 2.0 (VAST Scientific Inc., Cambridge,

MA) was used to pre-filter data for differences between stressed

and reference samples. Crucial SIEVE settings were a frame time

width of 1.0 min, m/z width of 8.0 ppm, and an intensity

threshold of 50000 counts. SIEVE data filtered for monoisotopic

masses (prelement = 0) was imported into a macro-enabled Excel

workbook as well as data from in silico tryptic digestion of mAbs’

heavy and light chains, containing theoretical mass-to-charge

ratios of modified and unmodified peptides (in-house data

processing software). Differences in signal intensities or retention

time (reference vs. stress) of relevant m/z values of peptides were

detected in a semi-automatized fashion by a macro-enabled

EXCEL workbook (Microsoft, Redmond, WA, USA). The

resulting pre-filtered peptides from 76 peptide maps were

manually inspected to verify Asn and Asp modifications by their

m/z-values within the experimental mass spectrum. For quantifi-

cation, extracted ion chromatograms (XICs) of peptides of interest

were generated on the basis of their monoisotopic mass and

detected charge states using Xcalibur Software (Thermo Fisher

Scientific, Waltham, MA, USA). Relative amounts of modified vs.

unmodified peptides were calculated after manual integration of

the corresponding peak areas. Additionally, all peptides lying in

the CDR regions containing a putative hotspot motif (Asn-Gly,

Asn-Thr, Asn-Ser, Asn-Asn, Asp-Gly, Asp-Thr, Asp-Ser, Asp-Asp,

Asp-His) were analyzed even if not alerted after SIEVE software

analysis to ensure completeness of the data.

Homology modeling and extraction of 2 and 3-
dimensional parameters

Homology models were built with an automated software script

for the program MODELER 9v7 [92]. Modeling templates were

chosen based on sequence conservation from a reference structure

database consisting of human, mouse, and chimeric antibody Fab

fragment crystal structures with a minimum resolution of 2.8 Å,

and without missing internal residues in their variable regions. The

best resulting model for each mAb was used as a basis for a loop

refinement procedure (LOOPER, [85]) [93]. In turn, the 5 most

likely solutions from loop refinement were selected and used as an

ensemble of structures for each mAb. Parameters were extracted

computationally from these homology model ensembles (Table

S1). The pKa value was calculated using the program PROPKA as

part of pdb2pqr [87]. The secondary structure elements (sheet,

helix, turn, coil) were extracted with a custom script using

Discovery Studio [85]. The parameters ‘‘next different N-terminal

secondary structure’’, ‘‘next different C-terminal secondary

structure’’ and ‘‘position in coil’’ were deduced from the secondary

structure information of surrounding residues using Boolean rules

(Table S1) implemented in Pipeline Pilot [90]. A ‘‘margin’’

‘‘position in coil’’ is assigned if the next different secondary

structure element is one or two residues away, either in N- or C-

terminal direction. A ‘‘center’’ ‘‘position in coil’’ is assigned if in

both N- and C-terminal direction the secondary structure is the

same for 4 residues or in both directions for more than 4 residues.

The parameter ‘‘Fab location’’ is a number that was deduced from

combined Chothia and Kabath CDR definitions for antibodies

[94]. ‘‘Fab location’’ number 1 corresponds to framework 1 of the

heavy chain (FR H1), 2 to CDR H 1, 3 to FR H 2, 4 to CDR H 2,

5 to FR H 3, 6 to CDR H 3, 7 to FR H 4, 8 to framework 1 of the

light chain (FR L1), 9 to CDR L 1, 10 to FR L 2, 11 to CDR L 2,

12 to FR L 3, 13 to CDR L 3, and 14 to FR L 4. ‘‘CDR loop’’ is a

number ranging from 1 to 3, equal for light and heavy chain.

‘‘Successor size’’ is the solvent accessible surface area of a fully

exposed amino acid[95] in Å2 and is defined as follows: Ala, 64.78;

Cys, 95.24; Asp, 110.21; Glu, 143.92; Phe, 186.7; Gly, 23.13; His,

146.45; Ile, 151.24; Lys, 177.37; Leu, 139.52; Met, 164.67; Asn,

113.19; Pro, 111.53; Gln, 147.86; Arg, 210.02; Ser, 81.22; Thr,

111.6; Val, 124.24; Trp, 229.62; Tyr, 200.31. Terminal residues

(lacking phi and psi) are marked in our data collection. All other

parameters were extracted from the PDB files with self-written

python scripts in PyMOL [96](Table S1).

Machine learning algorithms used for classification
assessment

In order to find the best possible classifier, several different

binary classification methods that appeared suitable for this type of

classification problem, were tested, namely support vector

machines, recursive partitioning algorithms, regularized discrim-

inant analysis and neuronal networks. They were available as

packages for the statistical software R or in Pipeline Pilot [90].

Support vector machines (SVM) offer different ways to transform a

given data set into higher dimensions with the help of a so called

kernel function. Here, the svm method [97] from the package

e1071 and the ksvm method from the kernlab package [98] were

used. Recursive partitioning methods identify parameters in a step-

wise manner to split the given data set into subsets, thereby

producing a decision tree. The difference between the algorithms

is mainly based on different methods to decide on the best splitting

parameter in a given step. The ‘‘tree’’ [99] and ‘‘rpart’’ [100]

methods were used in R whereby several different splitting

methods were tested, as well as the recursive partitioning tree

implementation in Pipeline Pilot.

A more generalized form of classifier can be achieved by

combining decision trees based upon subsets of the original

training set into a so-called random forest. Regularized discrim-

inant analysis builds a classifier by combining a subset of the

available parameters using regularized group covariance matrices

in order to achieve best possible discrimination. This method is

implemented as the function ‘‘rda’’ in the klaR package [101]. A

neural network tries to emulate the basic functionality of one or

several interconnected layers of neurons. A so-called single-

hidden-layer neural network as implemented in the ‘‘nnet’’

method of R [102] was applied. Finally, a naı̈ve Bayes classifier,

a probabilistic method that uses Bayes’ theorem to compute

probabilities of a data sample belonging to a certain class, given

the training data, was tested as implemented in the ‘‘NaiveBayes’’

method of R.

As a highly imbalanced dataset with very few hotspots but many

non-hotspots had to be dealt with, class weights were introduced to

put more emphasis on the minority class. A standard weighting

scheme was identified, using the inverse of the class frequency, as

the best in terms of classification error with special emphasis on the

false negative rate.

Structure-Based Asn and Asp Degradation Prediction

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e100736



Classification evaluation
We used a receiver operating characteristic (ROC) analysis that

is commonly applied to illustrate the performance of binary

classification systems. Hereby, the fraction of true positives out of

the positives (true positive rate, TPR) is plotted against the fraction

of false positives out of the negatives (false positive rate, FPR).

Weighting a high true-positive rate as the most important

criterion, the Pipeline Pilot implementation of a single-tree

lookahead-enabled recursive partitioning algorithm [90] was

chosen as the most suitable classifier (Figure 4). At each step, the

recursive partitioning algorithm determines a parameter and a

threshold value that is the best in splitting the dataset into

homogeneous subsets belonging to one class (hotspot or non-

hotspot). The splitting point is called a node, and the class is called

a leaf. The integrated lookahead functionality ensures that the

chosen splitting parameter and threshold value is not only optimal

for the given step but also for subsequent steps. Like this, the

model identifies the most crucial parameters for distinguishing

hotspots from non-hotspots. This classifier yields the best

combination of a high TPR, a low FPR for prediction of Asn

and Asp degradation propensity, and good algorithm interpret-

ability, even after the following optimization procedure for

prediction purposes.

The Asn and Asp single-tree lookahead-enabled recursive

partitioning algorithms were optimized in order to enhance model

performance for new data and to avoid over-fitting. Therefore,

Asn and Asp trees were pruned, i.e. branches were systematically

removed to yield smaller trees. To test the pruned models’

predictivity, they were validated against a 25% test set in forty

independent runs (Figure 5). Final Asn and Asp algorithms were

trained with 100% of the data, and were chosen on the basis of the

corresponding ROC plots (Figure 4) as well as meaningful tree

interpretability. A lookahead depth of 4 with 7 lookahead

alternatives and pruning level 4 were used. They are represented

as decision trees in Figure 6.

Recursive partitioning and prediction
Terminal residues as well as residues with less than 3%

modification rate in the stressed sample (weak spots and reactive

spots) were excluded from the training. All 20 parameters

described were supplied to the training set. A main feature of

the single-tree recursive partitioning classification algorithm in

Pipeline Pilot is the opportunity to assign a certain ‘‘look-ahead’’

depth that allows for better classification due to testing more

alternative splits.

The two resulting prediction models are applied to new data.

The programmed rule for a hotspot alert is the following: if at least

one Asn/Asp in a set of five homology models is predicted to be a

hotspot, the residue per se is classified as such. The probability for

hotspot classification can range from a 0.5 minimum to a 1.0

maximum for each member of the ensemble. Thus, prediction

output is not only qualitative but also quantitative, expressed in the

average of the probabilities of each member for being a hotspot

including the standard deviation. Like this, the information if one,

two, three, four, or five members of the ensemble are in hotspot

conformation, is contained in the prediction output.

Supporting Information

Figure S1 Example of extracted ion current chromato-
grams and tandem mass spectra for detection and
localization of a deamidated peptide. A. Extracted ion

current chromatograms of the unmodified tryptic peptide

SINSATHYAESVK at m/z 703.84 and 469.56 (charges 2+ and

3+, upper panel) and its deamidated form at m/z 704.34 and

469.89 (charges 2+ and 3+, lower panel). Deamidation corre-

sponds to a mass increase of 0.98 Da. The unmodified peptide

elutes at 18.4 min. The deamidated species (peak 1 and 2) are

eluting at 18.7, and 19.2 min B. y+ fragment ions of the

deamidated peptide SINSATHYAESVK and their theoretical

masses (m/z) C. MS2 spectrum of the unmodified peptide at m/z

703.84 (charge 2+) and the deamidated peptide at m/z 704.34

(charge 2+). The y+ fragment ions supporting the deamidation of

the Asn-Ser motif compared to the unmodified peptide were

detected in the LTQ D. Zoom into y fragment ions 10 and 11.

The deamidation-induced y10
+ shift is indicated by a red arrow.

(TIF)

Figure S2 Conformational flexibility of loops is cap-
tured by use of 5 homology modeling solutions. The 5

most likely solutions of the loop refinement procedure are

structurally superimposed. For illustration purposes, only the side

chains of the CDR H3 are shown as lines and in different colors

per model.

(TIF)

Table S1 Weak spots which were excluded from the
training dataset because the extent of modification
(.1.0 and ,3.0% after stress) is detectable but consid-
ered irrelevant for stability under real-time storage
conditions.
(DOCX)

Table S2 Reactive spots which were excluded from the
training dataset because the extent of modification
(,1.0% after stress) is detectable but considered
irrelevant for stability under real-time storage condi-
tions.
(DOCX)

Table S3 Comparison of the various classifiers. Abbre-

viations and data origins are analogous to Figure 4.

(DOCX)
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