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Nomenclature

τ̄ mean of the exponentially distributed mean
binding time between an antigen and a TCR

η relative error; standard deviation divided
by the mean

T random variable for the mean binding time
between an antigen and a TCR

τ binding time between an antigen and a TCR
ϑ tilting parameter
g density of W
G(z(f)) random variable for the total stimulus in-

duced by all the antigens on an APC to a
random T-cell, as a function of the copy
number of the foreign antigen

gact activation threshold; value that has to be
reached by G(z(f)) in order for a T-cell to
get activated

gthy thymic activation threshold; if this value is
reached during negative selection, the T-
cell is induced to die

m(c) number of constitutive antigen types pre-
sented on an APC

m(v) number of variable antigen types presen-
tend on an APC

W stimulation rate induced by a single antigen
to a random T-cell

w realisation of W
z(c) number of copies of an individual constitu-

tive antigen type presented on an APC
z(f) number of copies of the foreign antigen type

presented on an APC
z(v) number of copies of an individual variable

antigen type presented on an APC
zs number of copies of a self antigen type pre-

sented on an APC in the new T-cell acti-
vation model

AIRE autoimmune regulator; responsible for pGE
regulation
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APC antigen presenting cell
BCR B-cell receptor
DC dendritic cell
IL interleukin; group of different second mes-

sengers
IS importance sampling
LD large deviation
MHC major histocompatibility complex
pGE promiscuous gene expression
pMHC peptide-MHC; complex of an antigen and

an MHC presented on an APC
SS simple sampling
TC1,TC2,TC17 different types of cytotoxic T-cells
TH1,TH2 different types of T helper cells
TCR T-cell receptor
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Chapter 1

Introduction

When it comes to T-cells in immunobiology a summary of the standard school book
descriptions basically looks like as follows. There are cells of the innate immune system
that directly recognise and attack a pathogen and there are the cells of the adaptive
immune system that are able to learn to recognise and attack all the pathogens that
circumvent the innate immune system. One important family of cells of the adaptive
immune system are the so-called T-cells. These cells have a special receptor that helps
them to detect molecules on cell-surfaces called antigens. When a pathogen enters the
body, it leaves a trail of antigens which are recognised by one of the T-cells and this
T-cell clears the body of the pathogen.

So, where is the problem one might think. This seems like a pretty straightforward
description of a mechanism that is completely understood. However, as we will show,
quite the opposite is true. It is possible to give some general, oversimplifying explanations
but most of the rest is still very unclear. With this thesis we provide insights and new
ideas to illuminate the T-cell’s ability to detect pathogens. Let us make clear why this
is so important and justifies intense research.

If we observe ourselves and our environment by means of a microscope, we see that
we constantly interact in many different ways with many different microorganisms at
any given time. This can happen in a symbiotic way as it is with the bacteria in our
colon that support digestion or with the bacteria on our skin. Often, however, it is a
hostile interaction, that is bacteria, fungi or viruses try to invade our body to use it for
their survival and for their reproduction. Thereby they can make us sick or even kill us,
eventually.

Most people are living a healthy life, at least over long periods of their lifetime. We
rarely get ill and if so, we normally get better quite fast. This is a quite amazing
observation, though none of us thinks a lot about it. It is so amazing because our body
is under constant attack from a huge variety of pathogenic microbes, like bacteria and
viruses. A fact hardly acknowledged by anyone, as we only get to know an attack if it
is successful. The counterpart to these microbes in our body is the so called immune
system. This highly complex system of many different cells enables the recognition and
killing of pathogens in most of the cases.

One central part of this immune system are the so-called T-cells. Since decades much
research is devoted not only to T-cells but of course also to all other cells of our immune
system. This led to new drugs and therapies in order to prevent diseases. Despite all
these efforts much is still unknown.

T-cells belong to the part of the immune system that is termed adaptive because
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2 Introduction

they have the ability to recognise unknown pathogens and in case of a second meeting
with the same pathogen they are able to react much faster. T-cells can on the one
hand support other cell types in the direct attack of a pathogen or on the other hand
detect and destroy cells of our own body which are infiltrated by pathogens in order to
reproduce. They are even able to detect mutated (cancer) cells to a certain degree and
destroy them. Hence, it is highly advantageous to know all details regarding these cells.

Surprisingly, there is still a central aspect with regard to T-cells that can only be
explained insufficiently. T-cells are activated via the recognition of short amino acid
sequences that are displayed on cell surfaces in the body. These sequences are residues
from the degradation cycle of the cells and are called antigens. On this molecular level
there is no definite characteristic that identifies an antigen as foreign, that is as coming
from a pathogen, or as self, that is coming from our own cells. The T-cell constantly
’scans’ for antigens and mostly of course they encounter self antigens. A reaction to self
antigens would lead to autoimmune reactions. A missing reaction to foreign antigens on
the other hand can lead to severe diseases and death.

In order to explain the mystery of the recognition of a foreign antigen against a back-
ground of many different self antigens, experiments only are not sufficient. Therefore,
there are efforts to use the experimental knowledge as a basis for the development of
mathematical models that explain foreign-self discrimination.

At this intersection of immunology, mathematics and computer science this thesis is
situated. We use a combination of mathematical modeling on the basis of biological
hypothesis and an efficient simulation method to explore the mechanism of T-cell acti-
vation with emphasis on its foreign-self discrimination capability. We introduce some
of the already existing models in the next chapter and then concentrate on one spe-
cial model of T-cell activation developed by van den Berg, Rand and Burroughs (BRB
model of T-cell activation)) in 2001 [205]. In contrast to the other models, this model
describes T-cell activation probabilistically. We will explain why this is necessary and
beneficial. Previous work could show that this model is capable of explaining foreign-self
discrimination [205, 232]. This model is our starting point for the exploration of T-cell
activation and foreign-antigen discrimination. From here we go on to extensions of the
model and the development of a related model that captures the biological reality in a
better way.

An integral part of this thesis is the development of a general and efficient simulation
method for a certain type of stochastic models. We use this method for the analysis
of the BRB model and its extensions. The development of a new simulation method is
necessary because, as we pointed out, T-cells mainly meet self antigens and only very
rarely foreign antigens. Hence, the recognition and activation of a T-cell has to be a rare
event. But in order to investigate such rare events in detail, sophisticated methods are
needed.

The other important part of this thesis is the development and analysis of a new T-cell
activation model based on our results from the analysis of the BRB model and additional
recent experimental findings. In this model we include a special ’educational’ mechanism
during T-cell development termed ’negative selection’. Plainly speaking, this mechanism
helps to sort out T-cells that are too self-reactive. We succeed in combining negative
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selection with the central ideas from the BRB model and show its major influence on
foreign-self discrimination.

Because of its importance we devote an additional chapter to a first modeling approach
of T-cell migration in the thymus, the place where negative selection occurs. This opens
up a new direction of research that should on the one hand clarify the scope of negative
selection with regard to the foreign-self discrimination ability of T-cells. On the other
hand it should be the first step to the better understanding of negative selection in order
to find ways to actually manipulate this process to prevent autoimmune diseases and
enhance the effectiveness of T-cells against certain pathogens.

In summary, our present work has three important cornerstones. We introduce all
necessary biological details with regard to T-cells that not only suffice as a solid back-
ground for this thesis but also as a starting point for future work. Furthermore, we
develop a powerful simulation method whose application area goes beyond the models
we explore here. Most importantly, we deliver new hypotheses and parameter estimates
for T-cell activation, foreign-self discrimination and negative selection via the analysis
of the models presented in this thesis. These results can be one step in the direction
towards new experimental research in order to finally really explain T-cell activation and
therewith foreign-self discrimination.

The thesis is composed as follows:
Chapter 2 − 4 deal with the development of the basic biological and mathemati-

cal/informatics knowledge that is needed. In Chapter 2 we therefore introduce the
immune system in general and concentrate then on T-cells. Afterwards we describe in
Chapter 3 the BRB model of T-cell activation and finally in chapter 4 the basics for our
simulation method.

Chapter 5 and 6 represent the core of this thesis. In chapter 5 we develop the sim-
ulation method and prove its efficiency. Then we use it to analyse the BRB model.
Furthermore we develop and analyse extensions of the model as a consequence of our
first results. The sixth chapter is devoted to a new model of T-cell activation which we
develop on the basis of our ideas gained in chapter 5. We describe the development of
the necessary modified simulation method and test the model with different parameter
values in order to explain foreign-self discrimination by T-cells.

Chapter 7 deals with the development of a new model of T-cell migration that should
help to clarify the negative selection process. The model we develop in this chapter does
not describe T-cell activation but as this mechanism has a vital influence on foreign-self
discrimination of T-cells it fits well in the context of this thesis.

Finally we summarise our results in chapter 8 and give an outlook on the implications
of our work on future research.



Chapter 2

Biological background

In this chapter we elaborate on the immunobiological background of this thesis. In this
respect, it is our aim not only to introduce the necessary facts, but we incorporate them
in a kind of review. Thereby we want to draw a picture of the newest relevant findings
with regard to T-cells and present them in a way that leads to new approaches and
ideas also beyond this thesis. We therefore decided to introduce special sections which
summarise important data which we extrapolated from different publications as an asset
for further model development.

This chapter consists of three parts. At first we give a short, very general introduction
on the immune system in order to motivate the role of T-cells in this framework. The
second part is concerned with the T-cell development process. This is necessary because
it already conveys important information on the establishment of foreign-self discrimi-
nation of the T-cell repertoire. Finally, we explore the mechanism of T-cell activation.
Besides experimental and theoretical basics, we also introduce different models of T-cell
activation that already exist.

2.1 The immune system at a glimpse

We and all kinds of (jawed) vertebrates share a similar complex defence system, called the
immune system, which protects its host against all sorts of pathogenic microbes. Under
the roof of the immune system there is a multi-faceted collection of cells, molecules and
their interactions, which enable a specific and non-specific recognition and elimination
of a variety of pathogens. Generally, we distinguish between two different parts of the
immune system. There is the innate immune system, comprising all innate, that is non-
specific, immune responses and there is the adaptive immune system, which comprises
all specific immune responses. However, we have to point out that these two parts
are entwined with each other in many different ways. Adaptive responses develop as
innate responses occur. The innate immune system can therefore be seen as a first
response unit, that reacts directly on a pathogen encounter. Furthermore, the adaptive
immune system really is adaptive, that is, it allows for the development of a memory
and thereby amplifies the reaction efficacy to new encounters with the same pathogen.
Just in contrast, responses of the innate immune system do not vary, no matter how
often the same pathogen is encountered.
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2.1 The immune system at a glimpse 5
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Figure 2.1: The three lines of defence of the innate immune system. The first line tries to prevent
the penetration of the body. It consists of a mixture of passive (e.g. skin, stomach acid, membranes)
and active (e.g. special types of dendritic cells (DCs), neutrophils, macrophages) elements, where the
former ones are just physical barriers and the latter ones are situated at/in this barriers and attack
the possible intruder. The second line consists of different types of dendritic cells, neutrophils or
macrophages which are situated inside the body but near the surface. Finally, the third line of defence
produces an inflammatory environment via cytokines that facilitates DC and macrophage movement
and their ability to attack germs.

2.1.1 Innate immune system

We are surrounded by myriads of microorganisms, some of which try to invade our body.
To prevent this in the first place, we have different innate lines of defence (see Fig. 2.1)
[152, 142]. The most obvious one is the skin and its inner-body equivalent, the mucous
membranes (inner-body surfaces which are exposed to the environment). Both form a
physical barrier through so called tight junctions, which are firm cell-cell connections.
They are furthermore covered with different epithelial cells. Those on our skin form a
dry, protecting layer which is hardly penetrable. This is why most of the pathogens
try to overcome the mucous membranes instead. Their epithelial cells utilise different
mechanisms to prevent this intrusion. They produce mucus to trap microbes, propel
them away using cilia and they produce special enzymes and anti-bacterial peptides to
eliminate pathogens. Additionally, they facilitate the colonisation of their surface with
friendly microorganisms which compete against foreign microbes and can synthesise
anti-bacterial substances.

If this first barrier is penetrated, for example by an injury of our skin, the second
barrier comes into play. It comprises special cell types which are capable of endo-
or phagocytosis, that is the internalisation and degradation of either macromolecules
(endocytosis) or whole microorganisms (phagocytosis) [105, 200]. The main cell types
responsible for these actions are the dendritic cells (DCs), macrophages and the neu-
trophils. They identify targets via pattern recognition receptors on their cell surface
that bind to surface molecules of invading microorganisms [132, 101].

Before proceeding with the innate immune response it is at this point necessary to have
a closer look on receptors and receptor binding, as this is crucial not only here, but also
for the adaptive immune system and in particular for this thesis. In order to ’see’ their en-
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vironment all cell types rely on different types of receptors. These are special molecules
which are embedded into the membrane of a cell. Mostly they are trans-membrane
molecules that detect molecules with their extracellular part and start signalling with
their intracellular part. Depending on aspects as different as three-dimensional con-
formation, charging, amino acid composition and so on, different molecules (normally
called ligands, in the special case of immunology we speak of antigens) bind with dif-
ferent affinities to a receptor. If a molecule with a certain affinity binds to a receptor,
the receptor is activated and starts its task, which normally involves the start of some
type of intracellular signalling cascade. There are quite unspecific receptors which re-
act to many ligands with low binding affinities, as well as very specialised receptors,
which only react to one or two well-fitting ligands with very high binding affinities. In
general ligands are peptides, hormones, toxins or drugs. In the special case of foreign
microbe recognition by T-cells, they are normally just peptide chains (strings of amino
acids) which result from a preprocessing of the native (three-dimensional) antigen and
are presented by a special class of cells, called antigen presenting cells. As there are 22
different amino acids which can be concatenated to peptide chains in all combinations,
the number of possible antigens is very high, which will come into play later. Germ
detection by other cell types of the immune system is not so restricted. Their receptors
are able to detect antigens in their native, three-dimensional form.

Receptors used in the innate immune response are germline encoded and therefore
cannot be changed. That is, every receptor type is hardcoded by a specific gene. This
is why there is only a limited number of receptors available in a host. To overcome
the disadvantage of this restricted repertoire in the face of the enormous variety of
pathogens, these receptors are quite unspecific (also termed crossreactive) concerning
the targets they bind (e.g. CD14 is a receptor which binds to all kinds of bacterial
lipopolysaccharides). They detect special patterns that are pathogen associated [132].
Thereby they can detect whole families of pathogens that share structural elements which
are detected by such a pattern recognition receptor.

A third barrier of the innate immune system is formed by inflammations, which come
about if tissue is damaged or if pathogens are recognised [142]. Inflammatory reactions
facilitate the movement of effector molecules and cells to the affected area in order to
support the killing of the pathogens. Furthermore, the infection is restricted through the
healing of the tissue and the building of physical barriers to prevent a further movement
of the pathogens.

It is obvious that, although fast and highly effective in killing pathogens, the innate
immune system has its Achilles heel in the restricted number of possible receptors for the
recognition of pathogenic organisms. In the course of evolution microbes have developed
numerous ways to prevent recognition, e.g. by the development of a thick polysaccharide
capsule. Even if they are recognised some microbes are capable of (mis-)using the degra-
dation cycle of macrophages for their own purpose and grow within these macrophages.
The answer to these threats was the development of a second detection system, which
had to be more specific in its recognition mechanism and not restricted to a limited
number of receptor types.
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2.1.2 The adaptive immune system

It is an inherent feature of evolution that through mutation and selection it produces
either new variants of a species or even new species. The rate of change of a species is
dependent on the length of its reproduction cycle, as during reproduction the important
changes occur via genetic mutation and recombination. Most of the microorganisms
have very short reproduction cycles, especially compared to vertebrates. Hence, they
can change faster and thereby avoid detection. It follows that to prevent bypassing of
the host’s immune system, there were two possible ways in evolution to go. The first one
would have been the expansion of the repertoire of germline encoded receptors. This
happended probably during the evolution of invertebrates, which often have a much
bigger repertoire of these receptors than vertebrates [151]. The second way has been
the development of a new detection mechanism, which is more flexible and specific in
its pathogen detection capability. This came about during the evolution of (jawed)
vertebrates. Although no one can say for sure whether this way was the optimal one
(in terms of selective pressure during evolution), there exists a convincing hypothesis.
In vertebrates there is a huge variety of microorganisms, living in symbiosis with the
host. In order to guarantee the safety of these symbiotic arrangements, the vertebrates
had to deplete their innate receptor repertoire of all receptors which could recognise
antigens from these ’friendly’ microorganisms. This would have made the host also
more vulnerable to other pathogenic microorganisms [151, 163]. The development of a
second, adaptive, immune system with a receptor repertoire that is more specific was
therefore necessary. This section highlights the most important aspects of this adaptive
immune system, with special emphasis on T-cells.

The adaptive immune system has a complex task. It should defend its host against all
pathogenic microbes that circumvent the innate immune system and thereby deal with all
occurring new mutants of such a microbe, keep it then in a kind of memory to act faster
on the occasion of a second infection attempt and of course it should not attack the host
itself or microorganisms living in symbiosis with its host. These are exactly the very
characteristics of the adaptive immune system [142, 152]. There are two key players
involved in adaptive immunity, the so-called lymphocytes and the antigen-presenting
cells (APC). Both can enter lymphoid organs and tissues and otherwise circulate around
the body by means of the vascular and lymphoid system.

Antigen presenting cells are, as the name tells, highly specialised cells, which can
internalise and present antigens. The most important group of APCs are the dendritic
cells (see Figure 2.2). Here, we can see one of the several connections between the innate
and the adaptive immune system. DCs also play a role in the former one because they
internalise pathogenic material, as already mentioned. However, they have developed a
very specialised signalling and receptor apparatus that makes them the ideal interaction
partner for one group of lymphocytes, so-called T-cells. Another group of APCs are
special lymphocytes called B-cells, which besides being APCs serve other important
purposes, which is explained in the next paragraph. An APC produces so called major
histocompatibility complex molecules (MHC) and acquires antigens. An MHC needs the
antigen to form a stable macromolecule, which is then expressed on the surface of an
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APC as an antigen (or peptide)-MHC (pMHC) complex. An antigen can only bind to
some of the several types of MHC molecules. Currently, for humans 3371 different MHC
alleles are known which belong to two different classes (2351 for MHC class I, 1020 for
MHC class II) (see www.ebiac.uk/ipd for updated numbers), from which only very few
are expressed in every single individual [160]. In fact all cells in the body express MHC
I molecules on their surface together with fragments out of their interior, but APCs
are especially equipped to produce them in great numbers together with many more
antigens.

The pMHCs on the APCs are scanned by the T-cells. Anti-

Figure 2.2: A dendritic cell
equipped with antigens

gen acquisition is primarily done by the already mentioned
mechanisms of phago/endocytosis. The internalised cell frag-
ments are degraded and the resulting very small peptide frag-
ments form the antigens. Figure 2.3 illuminates this, for the
present thesis, very important mechanism. The different as-
pects of it are explained in detail in different sections of this
chapter.

At this point it is important to note that an APC has
only very limited capabilities of pathogen detection through
pattern recognition receptors. In principle it internalises all

sorts of cell material from its surroundings. This implies that most of them are parts
of dead cells from the host itself. Hence, most of the antigen produced fall into the
category of so-called self antigens, that is antigens of the host itself. On the molecular
level there exists no distinction between a foreign and a self antigen, that is they are just
strings of amino acids with no special marker for pathogenic material. As long as no
infection occurs we have to assume that there are even no pathogenic antigens presented
by an APC. However, these APC also lack an activation signal that enables them to
stimulate T-cells. This signal is supplied via the pattern recognition receptors if they
detect pathogens. A signal of these receptors does not only activate the APC, but also
leads to an enhanced incorporation of (presumably) foreign antigen [150, 132]. However,
it should be clear that even APCs that encounter pathogens will mostly present self
antigens because they are flooded with them constantly. This is a crucial observation
with regard to the topic of this thesis. The recognition of the limited amount of foreign
antigens against a background of many self antigens. A reaction to self antigens would
lead to autoimmune reactions and a missing reaction to foreign antigens would let the
pathogen invade the body. Furthermore, APCs can co-determine the reaction of the T-
cells to the pMHC by means of other types of molecules such as co-receptors or cytokines,
which will be elucidated later.

Lymphocytes constitute 20-40% of the white blood cell population. Their two major
subsets are the already mentioned T- and B-cells.

As this thesis deals with T-cells, we only briefly outline the function of B-cells. They
are responsible for the humoral immune response, that is they induce a reaction on sub-
stances in the extracellular fluids [142]. B-cells are generated in the bone marrow, where
they also mature. During maturation they develop a special receptor, the B-cell receptor
(BCR), which is unique for every B-cell. This is achieved by the genetic rearrangement
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Figure 2.3: A T-cell and an antigen-presenting cell (based on Fig. 1 of [206]). An APC absorbs
molecules and particles from its vicinity and breaks them down. The emerging fragments, so-called
peptides (short sequences of amino acids), serve as antigens. They are bound to so-called MHC molecules
(still within the cell), and the resulting complexes, each composed of an MHC molecule and a peptide,
are displayed on the surface of the cell (the MHC molecules serve as “carriers” or “anchors” to the cell
surface). Since most of the molecules in the vicinity of an APC are “self” molecules, every APC displays
a large variety of different types of self antigens and, possibly, one (or a small number of) foreign types.
The various antigen types occur in various copy numbers. Each T-cell is characterised by a specific type
of T-cell receptor (TCR), which is displayed in many identical copies on the surface of the particular
T-cell. When a T-cell meets an APC, the contact between them is established by a temporary bond
between the cells, in which the TCRs and the MHC-peptide complexes interact with each other, which
results in stimuli to the T-cell body. If the added stimulation rate is above a given threshold, the T-cell
is activated to reproduce, and the resulting clones of T-cells will initiate an immune reaction against
the intruder.

of the genes responsible for the expression of this receptor (VDJ recombination) [126].
A very similar mechanism is also involved in T-cell development, therefore we skip any
details. With the BCR a B-cell can bind to free (soluble) antigens in their native form.
To prevent autoimmune reactions to self antigen, all B-cells have to undergo a selection
process during maturation. They meet a huge amount of self antigens in a special envi-
ronment and only survive if they do not react [2, 144]. On the encounter of its cognate
(= perfectly fitting = agonistic) antigen outside the bone marrow, the B-cell is activated
and can become either a plasma B-cell, which secrets antibodies (exact copies of its
BCR), which bind to every cognate antigen and thereby mark the associated microbe
for termination, or it can become a memory B-cell, which lives for a long time and can
react much faster to a second encounter with the same antigen (see Figure 2.4). So
B-cells fulfill all the requirements mentioned above for the adaptive immune system.

T-cells

T-cells belong to the group of white blood cells (lymphocytes). They develop in the
thymus and form an integral part of the adaptive immune system, with plenty of different
tasks. Mainly they detect and attack pathogens which bypass the detection via B cells
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Figure 2.4: B lymphocytes are responsible for the humoral immunity. That is, they detect soluble
antigens (small germs or toxins) in the blood via their special B-cell receptor (BCR). This BCR binds to
antigens in their native, 3 dimensional shape (in contrast to the T-cell receptor as we will explain later).
After a successful detection, the B-cell can release antibodies, which are exact replicas of their BCR.
These antibodies bind to all cognate molecules and surface proteins and thereby mark them for other
cells like macrophages for termination by phago/endocytosis. Some of the activated B-cells become
memory B-cells that survive in a resting-state and can react much faster on a second encounter with
the same antigen.

and their antibodies. Moreover, they support B-cells with the effect of new cognate
antibody production. One subpopulation of T-cells, called regulatory T-cells (Treg),
even acts to stop immune responses in order to prevent autoimmune reactions [142].

A T-cell carries several copies of a specific unique receptor, called T-cell receptor
(TCR), on its surface. Upon leaving the thymus, T-cells migrate through blood vessels
and especially the lymph nodes. If they encounter an APC, they sort of ’scan’ it via
their TCR, that is the copies of their TCR bind to the pMHC molecules on the surface
of the APC. Every TCR can only bind to one (or a very restricted set) of the several
MHC types, which is the first step in a stable binding of the TCR-pMHC complex. The
second step is the binding to the presented antigen. If this binding is stable enough,
that is the binding duration of such a complex exceeds a certain threshold, the TCR is
triggered, signals this to the T-cell and eventually the T-cell is activated.

Generally, naive T-cells, that is T-cells which have not been activated, belong to either
of two main types: CD8+ CD4− (cytotoxic) and CD4+ CD8− (helper) T-cells (the +
in CD4+ just means that this receptor is expressed on the cell surface. A − means the
opposite. In the following we omit the + and the whole − term). These two molecules
are important co-receptors besides the regular T-cell receptor. CD8 helps to stabilise
the binding of its T-cell with a MHC molecule of class I, whereas CD4 helps with the
binding to MHC II molecules. Tregs are a special group of CD4 T-cells with additional
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CD25 molecules. Less than 10% of the T-cells have neither of the two molecules. These
special T-cells do not bind to pMHC complexes, but have different other molecules which
enhance the binding to for example glycolipid antigens [37].

T-cell differentiation

Without going into the details of T-cell activation, which forms the integral part of this
thesis and will be described in greater detail later on (see Section 2.3), let us assume that
a T-cell is activated by a pMHC complex on an APC. Both, activated CD4 and CD8
T-cells start a rapid proliferation process in order to generate many clones. Furthermore,
the activation event leads to a differentiation of the T-cell clones into various possible
T-cell types, depending on the co-stimulatory signals and cytokines being present during
the activation process [141]. Until now, 4 main subpopulations of helper T-cells and 3
main subpopulations of cytotoxic T-cells were identified. In the presence of interleukin
12 (IL-12) naive CD4 T-cells become TH1 cells, which support cell-mediated immune
responses by secreting the second messengers IL-2, IFNγ and TNF-α and thereby com-
municate to other cells. This leads, for example, to a an improved killing efficacy of
macrophages and an improved proliferation of cytotoxic T-cells as well as production
of antibodies. They also support TH1 differentiation through a positive feedback loop
[191, 180, 122].

Activation of naive CD4 T-cells via IL-4 stimulated dendritic cells lead to a differen-
tiation to TH2 cells [51], which support humoral, antihelminthic (against worms) and
allergic immune responses [227, 44]. By the production of IL-4, IL-5, IL-6, IL-10 and IL-
13 and GATA-3, they enhance B-cell proliferation and antibody secretion. Additionally,
they inhibit TH1 cell differentiation while simultaneously promoting TH2 differentiation
[223].

A third very recently found subpopulation of helper T-cells are the TH17 cells, which
are developed in the presence of TGF-β and IL-6. They owe their name to the cytocine
IL-17, which they produce beside IL-17a and IL-22. Due to the broad distribution of
IL-17 and IL-22 receptors, they thereby induce a massive tissue reaction. Consequently,
they promote tissue inflammation (especially during autoimmune diseases). A second
very important task of TH17 cells is the clearance of extracellular pathogens during
infections [188, 109, 147].

A special group of CD4 T-cells are the regulatory T-cells . For these cells two distinct
ways of development were identified [38]. A larger part of the Treg cells are CD4 CD25
natural Tregs, which are indispensable for the maintenance of immunological tolerance
in the host, that is they prevent autoimmune reactions [171, 170, 172, 149]. These Tregs
are thymus-derived, similar to the naive CD4 and CD8 T-cells. In contrast to these, the
second group, so-called induced Tregs, are generated during CD4 T-cell differentiation
upon activation and the simultaneous presence of IL-2 and TGF-Beta. This is important
for achieving oral tolerance to allergens and other antigens. It has been found that
differentiation of these Tregs and TH17 cells is reciprocally regulated [226]. All these
descriptions are summarised in Figure 2.5.
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Figure 2.5: CD4 T-cell differentiation; During activation, the T-cell receives different stimulation and
inhibition signals in form of different interleukin molecules. These signals influence the differentiation of
the T-cell into different types of activated T-cells, which then also fulfill different tasks in the immune
reaction. Consequently a naive CD4 T-cell can ultimately influence the immune reaction in all different
parts of the immune system, that is humoral, cellular and innate immunity.

In a similar manner CD8 T-cells differentiate into the subpopulations TC1,TC2, and
TC17, whereby these play a much more active role in comparison to T helper cells.
[223, 120, 137]. After activation they scan all cells in their surrounding and as these cells
also present MHC I molecules with antigens (but only in small numbers), they might
encounter their activating antigen again if the pathogen is reproducing inside the cell.
If so, they attack this cell and thereby prevent this reproduction.

All in all, it is important to note that the whole process of T-cell activation and
differentiation is much more than a binary on-off decision upon antigen encounter. On
the contrary, the final outcome is very much dependent on a well-orchestrated mixture of
different second messengers that bind to other receptors on the T-cell. However, we are
only interested in the very first step, namely the activation signal induced by antigens
and we assume that this process follows the same rules for all types of T-cells.

2.2 T-Lymphopoiesis

After the short general introduction to the immune system and T-cells, we now focus on
all the different aspects regarding T-cells, starting in this section with their developmen-
tal process (T-Lymphopoiesis). We will explain why this can already help to understand
many aspects of foreign-self discrimination.

T-cells as well as the other lymphocytes (B-cells , natural killer (NK) cells), but also
a portion of dendritic cells, develop from the same origin, so call hematopoietic stem
cells (HSCs) [19]. These cells are situated in the bone marrow and are the source of
all types of blood cells. Through a complicated signalling network, HSCs differentiate
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into different progenitor populations, ultimately resulting in all lineages of blood cells.
For most of these cell types, the maturation process takes place in the marrow, with
one important exception, the T-cells. For their development a whole organ, the thymus,
stands by [41].

At the top of the T-cell development hierarchy in the thymus are the so called thymus-
resident T-cell progenitors. These cells originate from the bone marrow and are period-
ically imported into the thymus [66]. The continual settling of new progenitor cells is
necessary due to the fact that these cells have only a limited self-renewing capacity. The
wave-like behaviour of the progenitor cell influx into the thymus accompanied by a wave
of intrathymic DC formation is assumed to optimise T-cell selection, the ultimate stage
of T-cell development in the thymus [60]. T-cell selection helps to sort out inactive or
autoaggressive T-cells and is described in detail later.

During T-Lymphopoiesis three main stages are identified. They are called double neg-
ative (DN), double positive (DP) and single positive (SP), depending on the expression
of none of the co-receptors CD4 and CD8, the expression of both of them and ultimately
the expression of only one of the two co-receptors [183]. This differentiation leads to
two different T-cell subpopulations, whose functions have already been characterised in
Section 2.1.2. Each of the three stages occurs in different areas of the thymus consisting
of different microenvironments [5]. Actually, it is important to note that the develop-
ment of thymocytes is crucially dependent on the interaction with thymic epithelial cells
(TECs) in the different microenvironments, but on the other hand TECs need the in-
teraction with thymocytes to develop the appropriate microenvironments [210, 209, 21].
Thymocyte development and migration through the thymus seems to be governed by
the sequential expression of different chemokine receptors and the release of chemokines
via TECs in individual microenvironments [192].

The first two stages occur in the cortex of the thymus. During the DN stage the
lymphocytes migrate to the outer cortex called subcapsular zone. Meanwhile they pro-
mote the development of cortical TECs (cTECS) from TEC progenitors and start the
development of the already mentioned T-cell receptor (TCR). This receptor consists of
two different protein chains. The successful assembly of the first protein chain and the
formation of a pre-TCR complex on the cell surface marks the transfer of a T-cell from
the DN to the DP stage. In this second stage T-cells fully develop the TCR and express
it in low levels on its surface besides the two co-receptors CD4 and CD8. They now
undergo the process of positive selection, during which most of the T-cells die [63, 73].
After surviving positive selection, T-cells switch to the SP stage and migrate to the
medulla. Here they encounter a negative selection mechanism, which can beside killing
a T-cell, also turn it into a Treg cell. The few surviving T-cells finally enter the periphery
in order to defend the host. In the following we highlight some of the important aspects
of T-cell development, including these selection mechanisms, to clarify this on the first
sight rather complicated developmental process.

As mentioned briefly in the introduction, T-cell activation is dependent on the TCR,
which will be highlighted in Section 2.3. It is therefore necessary to have a closer look at
this T-cell receptor. Indeed, the TCR of a T-cell will be its defining element throughout
this thesis.
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Figure 2.6: T-lymphopoiesis. T-cell precursors enter the thymus and start to interact with the thymic
microenvironment. In the 3 double negative stages (DN1, DN2, DN3) they express no co-receptor and
start to develop the β-chain of the TCR. The successful assembly of a β and pre-α-chain marks the
transfer to the double positive (DP) stage where both co-receptors, CD4 and CD8, are expressed. The
T-cells undergo positive selection during which different α-chains of the TCR are generated until the
T-cell receives signals from the cTECs or dies by neglect. Ultimately, the T-cells move from the thymic
cortex to the thymic medulla and by downregulation of one of the co-receptors enter the single positive
stage (SP). Then the T-cells meet with mTECs and DCs which can induce death by apoptosis. Finally,
after circulating around for some days in the medulla, the surviving T-cells leave the thymus.

During the DN stage lymphocytes start to generate the so called T-cell receptor
(TCR). Generally, two different classes of TCRs are identified, the αβ and the γδ recep-
tor. T-cell progenitors become committed to one of these two different T-cell lineages
[20].

2.2.1 The T-cell receptor

A T-cell receptor is a heterodimer that consists mainly of two transmembrane glycopro-
tein chains, α and β or γ and δ. Each of the protein chains is anchored through the cell
membrane and consists of two extracellular domains, a constant one and a variable one.
It is this variable domain that makes the TCR so special and allows for the detection
of many different antigens. The domain is called variable, because in the process of its
generation the expression of the associated genes undergoes a procedure called V(D)J
recombination [4]. This procedure rearranges variable (V), diversity (D) and joining (J)
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gene segments, such that every variable domain and thereby every TCR becomes almost
unique. This is true not only for every single individual, but also, to a certain degree, in
between different individuals. Recently is has been shown that there are certain TCRs
which are shared by groups of individuals. This is due to “convergent recombination”,
that is their probability to be expressed is higher because they can be built up from
several genetic combinations (degenerated genetic code, alternative splicing possibili-
ties), rather than because of a bias in recombination [213]. Furthermore, the full TCR
complex consists of several other protein chains, serving as co-receptors and having a
direct influence on the downstream signalling events inside the T-cell. Figure 2.7 shows
a cartoon version of the full TCR complex.

The generation of the TCR follows a strict or-
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Figure 2.7: TCR complex; the α and
β chain are the actual TCR, whereas
the other protein chains play the role
of co-receptors. ITAMs (immunoreceptor
tyrosine-based activation motif) are seg-
ments of the CD3ζ chains that are phos-
phorylated during TCR-antigen binding by
receptor-associated kinases like LCK. This
phosphorylation is the starting point of T-
cell signalling and is also influenced by the
co-receptors.

der in which the genes for the different protein
chains are recombined sequentially (δ > γ > β >
α) [59]. Interestingly, γδ T-cells can generate
more unique receptors than αβ T-cells and B-
cells combined, but their repertoire is quite re-
stricted only to a specific subset of these recep-
tors [27]. The role of γδ T-cells in the immune
system is not well understood until now. They
play a role in innate as well as adaptive immune
responses and have different functions depending
on the tissue they reside in. Indeed, there seems
even to be a particular association between cer-
tain γδTCR repertoires and certain tissues [84].
Receptor binding and activation is not MHC re-
stricted and they are assumed to bind to so-called
phospho-antigens, that is non-peptidic, phospho-
rylated compounds. It is assumed that they, for
example, influence DC functions and thereby their
immune responses to infectious pathogens and/or
are a complement and regulator of αβ T-cells [29].
γδ T-cell activation seems to rely mainly on self

antigens which are expressed by stressed or (near)-apoptotic cells, due to for example
tumor development or infection by viruses [195], just in contrast to αβ T-cells which
are strongly dependent on foreign antigens and have all the different functions already
described previously in Section 2.1.2. Therefore, αβ and γδ T-cells are two very dis-
tinct T-cell lineages which have not very much in common and need to be examined
separately. In the following we omit the γδ T-cells and concentrate on αβ T-cells, the
integral part of the adaptive immune system.

As mentioned earlier, the checkpoint for a T-cell to turn from DN to DP stage is the
development of a pre-TCR complex. This checkpoint is called β-selection, as this pre-
TCR complex contains the successfully assembled β chain, together with a pre-α chain.
The latter chain is then also assembled and the T-cell has a fully functional TCR. From
this point on, the survival of a T-cell is crucially dependent on its receptor. A T cell
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regularly needs certain signals in order to survive. These signals can only be induced
by the binding of its TCR to peptide-MHC complexes on the cell surface of antigen
presenting cells. This is true for the thymus, where the TECs and DCs play the role of
APCs, as well as for the periphery where there are further types of APCs. As a result
of this dependence, T-cells start to scan cTECs and DCs in the cortex for pMHCs and
if their receptors are not able to bind to any of these pMHC complexes, the T-cells die
(death by neglect). This process is called positive selection.

2.2.2 Positive selection

T-cell receptors as such are just macromolecules with the capability to bind to cell
surface proteins. In this respect they are not different from for example antibodies.
This also implies that initially there should be no bias for a T-cell to bind to pMHC
molecules on specialised APCs, but given the broad spectrum of possible surface proteins
in an individual, it is very probable that every freshly produced TCR could bind to
several of these surface proteins [69]. On the other hand T-cells need to specifically
bind with their TCRs to pMHC complexes on APCs in order to receive surviving signals
and ultimately detect foreign antigens. Consequently, not every T-cell produced in the
thymus should be able to fulfill these task, but every T-cell circulating in the periphery
has the ability to bind to one type of pMHC complex and thereby to receive surviving
signals. Furthermore, it is obvious that there cannot be a common binding site for all
types of MHC molecules that can be recognised by every TCR, because then every T-cell
in the periphery would recognise all MHC types. The specificity of the TCR suggests
that the binding site of the TCR to the MHC is built either completely randomly during
V(D)J recombination or the genetic combinations are restricted such that a TCR can
bind to only one MHC type. In either case, many T-cells are produced which cannot
bind to one of the very few MHC types present in an individual. It is obvious that these
T-cells are superfluous and further maturation of them would be a waste of energy for
the thymus. Therefore it is necessary to sort out these useless cells, which is fortunately
quite easy. The thymus itself has to take no active role in it, but acts as a passive
bystander. It is this passivity, which eventually leads to the death of anergic T-cells. Up
to this point developing T-cells have constantly received signals from TECs to ensure
their survival and development. With a fully functional TCR developed, T-cells rely on a
new surviving signal, the activation signal of the TCR, which is induced by a sufficiently
long-lasting binding of the TCR to a pMHC on an APC. T-cells which do not receive such
a signal die (death by neglect). This process is termed positive selection [184]. During
the whole phase between successful β-selection and either successful positive selection or
cell death, the T-cell is able to change the TCR α-chain via rearrangements several times
[153] and thereby enhance its chance to get a positive selection signal. T-cells in the DP
stage survive about 3-4 days, which limits the number of possible rearrangements. It is
assumed that this restricted time window is necessary to regulate the TCRα repertoire
[79].

A question yet to be answered is the influence of specific antigens in positive selection.
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Antigens stabilise the binding of the TCR with a pMHC complex. Therefore it is obvious
that, even if the threshold (in terms of TCR-pMHC half-life) for TCR triggering (and
thereby positive selection) is low, antigens play a role in it. Several experiments have
shown that, at least under certain conditions, there is no need for a diverse self antigen
repertoire in the cortex in order to induce positive selection [95, 96]. In fact, only a
single antigen is needed to ensure positive selection of quite a diverse T-cell repertoire,
which hints to a very low threshold for TCR triggering. Recently it could be shown
that cTECs have a unique complex for proteolysis (the degradation of proteins), termed
the thymoproteasome [139]. It belongs to the same family of proteasomes that are
responsible for the generation of antigenic peptides presented by MHC I molecules in
the periphery. The thymoproteasome fulfills the very same task in the cTECs. In
contrast to the other proteasomes, it has a weak chymotryptic activity (chymotrypsin is
the enzyme responsible for the proteolysis), such that only a unique restricted repertoire
of MHC I associated antigens can be generated [193]. It is further hypothesized that for
MHC II associated antigens a similar protein cleavage process occurs, involving cathepsin
L or S, which is highly expressed in cTECs but not in mTECs [12, 90]. Consequently,
positive selection seems to depend on the recognition of MHC in conjunction with a
special restricted set of antigens, which are generated by the so called ’modest’ cTEC
protein degradation [193, 140].

For a long time, positive selection has been seen to be the process that shapes the
T-cell repertoire such that every T-cell binds uniquely to a specific MHC. But research
into the reasons for organ rejection after transplantation has already shown that T-cells
of the host were able to bind to foreign pMHC molecules of the organ, which implies a
certain crossreactivity of a TCR to several MHC molecules. In several experiments the
T-cell repertoire before positive selection was tested for its crossreactivity and it could
be shown that many of them are crossreactive even to the few MHC molecules of the
host itself [230, 69]. The same is true for the repertoire after positive selection. In the
beginning there is actually even no restriction on either of the two MHC classes [65].
These observations are clarified by the investigation of TCR-pMHC crystal structures.
Although the part of the receptor which binds to MHC molecules is generated randomly,
there seem to be restrictions such that this randomness is almost limited to a specific
pool of sequences. On the other hand an MHC molecule has several surface residues
to which a TCR can bind, so called ’codons’ [69]. Thus, there is no shared structural
binding epitope for all MHC molecules, but a collection. Both, this collection of codons
and the pool of TCR binding sequences may have co-evolved, such that many TCRs are
in fact quite crossreactive with respect to MHC molecules. All these observations imply
that the role of positive selection in rejecting T-cells may be overrated [65].

Its role in the CD4 CD8 lineage decision is still not clear. The strength of the signal
induced by pMHC complexes may play a role in it [82, 177]. Here the restricted repertoire
of selecting antigens may play a role. There appears to be a negative/positive feedback
from TCR-pMHC I/II complexes which influences this decision [65].

Nevertheless it is a fact that T-cells in the periphery do not bind to different MHC
molecules, hence, are restricted to one class of MHC. Furthermore, T-cells also rarely
bind and react to pMHC complexes where the peptide is a self antigen. Therefore, there
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has to be another process which shapes the T-cell repertoire that leaves the thymus.
This process is the last checkpoint a T-cell has to pass before entering the periphery and
is termed negative selection.

2.2.3 Negative selection

During the DP stage, the TCR is not fully up-regulated. Hence, the TCR sensitivity
is biased toward low-affinity interactions. Upon positive selection T-cells reach the SP
stage. They are now committed to either the CD4 or CD8 lineage and express a fully
functional signalling apparatus, such that in principle they could be released into the
periphery in order to meet with APCs and look for pMHC molecules with high affinities
to their TCRs in order to get activated [45]. Unfortunately, most of these presented
peptides are self antigens, that is antigens derived from proteins of the host itself. A
reaction to such antigens would lead to an autoimmune reaction and eventually the death
of the host. This is obviously not the usual case in reality. Furthermore, it remains to
be clarified why T-cells are restricted to one type of MHC and what the advantage of
this restriction is. All of this can be explained by a close look at the last selection step
in the thymus, negative selection. In short words, during this process all T-cells which
react too strongly to self pMHC are killed and how this is achieved will be the topic of
this section.

In the SP stage T-cells migrate to the medulla. During this migration and later in the
medulla they constantly meet APCs in form of DCs, macrophages, cTECs and mTECs
[192, 129]. These cells present self-derived pMHCs and many of the T-cells encounter
their cognate antigen while scanning these cells, which leads to strong signals induced
through the triggered TCRs to their T-cells. In the periphery this would lead to a T-cell
activation, but in the controlled environment of the thymus the opposite is happening.
A T-cell which is triggered too much induces its own apoptosis program. Although, in
principle, in the cortex T-cell triggering (for full activation, in contrast to ’just’ receiving
survival signals) and deletion are also possible, it is far more unlikely [87, 116, 129].
Besides TCR-pMHC binding duration, T-cell activation is also dependent on extrinsic
factors such as co-stimulatory molecules. Only in the medulla these are expressed in
sufficient amounts (comparable to the periphery) by mTECs and DCs, such that strong
TCR triggering is much more likely.

It is this process which also imposes the strong MHC restriction on the peripheral
T-cell repertoire [221, 95, 110]. All T-cells that have the ability to bind to several of
the few different MHC types present in a host have a huge disadvantage during negative
selection. As already mentioned before, different MHC molecules can present different
antigens. Hence, if a T-cell can bind to several MHCs the probability to encounter
a cognate antigen is elevated significantly and it is very improbable that this T-cell
survives.



2.2 T-Lymphopoiesis 19

The need for MHC restriction and diversity

At this point it is appropriate to think about the reasons behind the MHC restriction
and the reason why there are different MHC types available. MHC restriction leads to a
T-cell reaction in a controlled environment. Without the restriction to one MHC type,
the probability of activation by self antigens would be quite high, especially if there
would be no restriction to MHC at all, which would be thinkable, as TCRs can bind to
several other molecules. On the other side it is advantageous to have more than one MHC
molecule type in a host, in order to counter evading strategies of pathogens. By means
of mutations and recombinations these change their peptides in the course of evolution,
which could lead to antigens that cannot be connected to the given MHC molecule and
thereby detection via T-cells would be impossible. Thus, a diverse repertoire of MHC
types is necessary. However, as mentioned before, for a single individual this diversity
is very restricted, whereas over the whole population it is very high [160]. There is the
paradox of high inter-individual diversity and low intra-individual diversity [221]. This
can be explained best out of the perspective of evolution and selective pressure. If a
single individual has too many different MHC types many more T-cells would be depleted
from the repertoire during negative selection, because many more self antigens could be
presented. Moreover, the risk of an autoreactive T cell to escape negative selection
rises, as it is impossible to present all self antigens to a T-cell. On the other hand, this
puts a single individual at risk to be defenceless to a mutated pathogen. However, it
is very unlikely that the same pathogen can circumvent the immune system of other
individuals of the same populations, because they have many distinct MHC molecules.
Establishing a diverse repertoire of MHCs in an individual is therefore restricted by
the risk of autoimmunity, while it is enhanced over the total population to ensure the
survival of the other individuals [221].

How to obtain self antigens

Up to this point we have been generally concerned with self antigens that are presented
via APCs in the thymus, but we ignored a crucial question. Where do these self antigens
actually come from? In the periphery, APCs constantly collect cells, cell fragments,
proteins etc., digest them and thereby produce antigens. It is thinkable that this is also
true for the thymus. However, we have to think about the thymus as a very special
organ, with very special tasks, that are different from all other tissues in the body.
Therefore, the proteins and cells involved might also be different from those in the rest
of the body and thus also the resulting antigens. This could be true for regular antigens,
resulting from molecules involved in the normal cell cycle of every cell, and is definitely
true for tissue restricted antigens (TRAs), degradation products of molecules which are
only present in a certain tissue. Furthermore the body changes while developing and
new kinds of cells and proteins occur. If the T-cell repertoire is not prepared for these,
autoimmune reactions are provoked.

The thymus is often described as an autarkic regime, which releases T-cells, NK cells
and DCs, but lets nothing inside from the periphery. This is not true at all. In fact
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dendritic cells constantly migrate from the periphery to the thymus, loaded with pMHCs
[94]. Recently it could be shown that this is true for a specific group of DCs, termed
circulatory DCs, whereas there are also groups of DCs that are thymus residents [155].
Until now it is not clear how both types of DCs are involved in mediating central toler-
ance. For thymic DCs it could be shown in vitro that they mediate Treg development
[217]. Circulatory DCs seem to play a role in both negative selection and Treg induction
[155]. It is clear that this constant influx of pMHC can mediate autoagressive T-cell dele-
tion at least for the regular antigens, although it is not clear how the thymus manages
to prevent DCs with foreign pMHC to enter the thymus, which would be devastating for
immune protection. Very recently it could also be shown that there are also certain T-
cells that migrate back to the thymus [80, 23]. Speculations on their role in the thymus
are even more diverse, from the maintenance of certain thymic microenvironments, over
import of self pMHCs up to deletion of autoreactive T-cells or the conversion to Tregs.

While circulatory DCs might carry enough pMHCs to mediate tolerance to regular
antigens, it is improbable that they present enough tissue restricted antigens, let alone
antigens from proteins involved in later stages of host development. Therefore, there is
the need for other tolerance mechanisms. Until recently it was proposed that periph-
eral tolerance (that is tolerance mechanisms outside the thymus) is required to keep
T-cells from reacting to these TRAs, although it was hard to explain how this is estab-
lished. This is not necessary anymore with the recent discovery of a mechanism termed
promiscuous gene expression (pGE) [107, 108]. This mechanism allows mTECs to ex-
press antigens from all organs and tissues and even from developmentally and temporally
regulated genes [54, 75, 181]. With this discovery several questions arose.

There were two competing hypothesis in which way these TRAs are expressed. Either
randomly, that is an mTEC expresses antigens from different tissues at the same time,
or in a tissue emulating pattern, that is an mTEC plays the role of a cell from a specific
tissue and only expresses antigens from this tissue. The latter hypothesis suggests that
in different compartments of the medulla different tissues are emulated and T-cells learn
there to be tolerant to the specific antigens. This hypothesis is rather intuitive as this
should eliminate T-cells quite efficiently and the mechanisms for gene expression are
copies of the actual mechanisms in the tissue cells. However, the reality looks different.
TRAs are expressed randomly. There is no indication that antigens from specific tissues
are expressed more often together [116]. Instead, mTECs express random TRAs co-
localised in chromosomal clusters [75, 102].

A second question deals with the regulation of pGE. The central and until now the
only known molecule in this context is the autoimmune regulator (AIRE) [6], although
some co-regulators like the interferon pathway begin to appear [72]. The discovery of
TRAs which can be expressed independently of AIRE implies LTβR to regulate their
expression [174, 54]. However, the outstanding role of AIRE in pGE regulation could be
shown in several experiments with AIRE deficient or altered mice, that lead to different
autoimmune diseases [6, 83, 159]. Interestingly, pGE is highly conserved between mouse
and human [75], which underlines its importance in the course of evolution and is an
explanation for many similar autoimmune diseases in both vertebrates. It is evident that
AIRE regulates TRA expression directly and via epigenetic mechanisms, but its exact
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function(s) are not identified and several models exist [199].

To understand pGE it is also of interest to have a look at the mTECs themselves. They
share the same progenitor cells as the cTECs, but little is known about the first lineage
decisions to becoming mTECs [18]. Medullary thymic epithelial cells can be divided
into different subsets depending on the expression of the surface markers CD80 , CD40,
MHC class II and AIRE. It has recently been shown that mTEC differentiation follows
the so called ’terminal differentiation model’, that is mTECs develop from CD80low

AIRE− (few CD80 molecules, no AIRE) to CD80high AIRE+ (many CD80 molecules,
AIRE present) and meanwhile expand the repertoire of genes they express [116]. It is
suggested that there exists a unique mTEC lineage up to the mature mTECs [81]. The
fully mature mTECs with the widest ranges of gene expression only survive about 2
weeks, which could be due to an overload of the gene expression machinery [114]. The
mTECs in the medulla form separated areas called microdomains, which consist of one
to three clonal islets [199, 18]. These islets again contain varying numbers of mTECs of
all developmental stages.

One problem with mTECs is their limited capability of inducing T-cell apoptosis and
their short lifetime in which they can present TRAs [68]. DCs on the other hand are
highly capable of T-cell apoptosis induction and many of them are present in the medulla.
It was shown that some of these DCs derive TRAs via so-called cross-presentation from
mTECs. How this acquisition is achieved is under discussion, one mechanism might just
be the collection of cell material from mTECs that died by apoptosis [76, 77]. This could
help to magnify the effectivity of negative selection to TRAs. Furthermore, a special
set of DCs together with a special set of mTECs is implied to be the mediator of Treg
development in the medulla [217].

In a nutshell, pGE provides for an expression of tissue restricted antigens, whereby
every antigen is expressed by only some of the mTECs, randomly in spatially distinct
regions of the medulla. Only a certain number of TRAs is expressed simultaneously
by neighboring mTECs [199]. Somehow there has to be a mechanism to ensure the
effectiveness of pGE in order to prevent autoimmune diseases, especially in light of the
fact that in some situations the loss of expression of only one particular TRA can have
devastating effects [57]. This mechanism is implied to be stochastic and has to involve
epigenetic regulators that are responsible for chromosomal remodelling [55, 215]. It
remains to be shown how it really works.

Mature T-cells which survive negative selection eventually migrate to the periphery.
The exact mechanism behind this is not identified, but it appears to happen in an ordered
fashion, that is the oldest T-cells leave first [129].

2.2.4 T-Lymphopoiesis in numbers

After the qualitative description of T-cell development, we here describe it briefly quan-
titatively.

On average about 10− 100 hematopoietic precursors enter the thymus per day [116].
But, as already mentioned, this happens in a cyclic manner, such that one week after
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leaving the bone marrow these cells enter the thymus and start seeding [60]. It then
follows a stage of proliferative expansion and further differentiation over 10 − 14 days
[154]. In total, T-cell production has a periodicity of about 3−5 weeks [66]. Upon T-cell
linage commitment a T-cell divides about 20 times, mostly in the 2 week long double
negative stage [116, 16]. All in all the thymus produces about 5 · 107 T-cells daily, but
only 1− 2 · 106 mature T-cells are released.

Upon β selection a T-cell has to be positively selected. The T-cell constantly tries
to bind to pMHC molecules on DCs and cTECs, meanwhile editing the α chain of
its receptor via sequential recombination rounds. This process lasts about 3 − 5 days,
resulting in the death of the T-cell, if it is not positively selected. The theoretical
repertoire size of unique TCRs which can thereby be created is > 1015 for mice and
> 1018 for humans [46, 213]. About 3% of all T-cells survive thymic selection (10%
survive positive selection from which again only 35% survive negative selection, other
estimates are up to 60% survival rate during negative selection), which reduces the
number of possible unique TCRs in the periphery to about 1013 for mice and 1016 for
humans [175, 128, 56]. However, the estimated number of TCRs in the periphery is much
lower (108 mice, 1012 humans) and the number of unique TCRs is only 106 for mice and
107 for humans [8, 30, 145]. This observation and the fact that there is a pool of TCRs,
called public TCRs, which are present it many humans, lead to the theory of convergent
recombination. It could be shown that certain TCRs can in principle be generated with
a much higher probability [214, 213]. The overall effect of convergent recombination is
until now not quantified and therefore it is not clear if it suffices to explain the quite
small size of the unique TCR repertoire.

On the other hand we have the vast amount of possible antigens. This number is
theoretically estimated to be in the same range as the original number for the TCRs,
that is 1017 or higher [127]. But in every individual this number is much lower. Here,
the restriction is imposed by the MHC molecules, as they cannot bind to all antigens.
On the contrary, it is estimated theoretically and experimentally that every type of
MHC can ’only’ bind to about 109 different antigens [67]. This also underlines the
need for several different MHC molecules in order to expand the space of presentable
antigens. However, this number is still higher than the number of unique TCRs in an
individual. Consequentially, a T-cell has to be cross-reactive (also termed poly-specific).
Experimental measurements imply that a TCR can bind to about 106 antigen types [67].
Generally, these types share similarities on the molecular level, that is a T-cell cannot
bind to different totally distinct antigens. This suggests that negative selection creates
’holes’ in the space of detectable antigens, which could be shown by an experiment
where a antigens resulting from HIV share similarities with self antigens and thereby
evade detection [67].

It can be shown that prior to entering the selecting stromal environment T-cells move
with an average speed of 3 − 8µm/min and top speed of 30µm/min, following random
trajectories [16]. This changes during (positive) selection. The T-cells scan APCs and
bind to them. Two different contact types with cTECs were identified, a short one lasting
13−36 minutes and a long one lasting over 6 hours. Upon positive selection T-cells move
more rapidly and in a more directed fashion in direction of the medulla. In the medulla
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they constantly scan mTECs and DCs. New findings indicate that this stage takes only
4 − 5 days, instead of the 12 − 16 days previously assumed [130, 220]. We can further
assume a mean scanning time of 3min, which is the mean binding time between a T-cell
and a DC during in a lymph node [85, 231]. If we put these numbers together, we can
assume that a given T-cell has about 2400 APC meetings in the medulla. Afterwards
T-cells migrate to the periphery following the rule that the oldest mature T cells leave
first [130, 129].

The important site for negative selection is the medulla and it is important to have a
look at its structure. There are several microdomains with 1 to 3 so called clonal islets
which merge to large domains [199]. All in all one can identify about 300 areas adding
up to 900 different clones [18]. In the early developmental stage each clone consists
of 5 − 110 cells with an average of 40, with mTECs in different developmental stages.
However, the number of mTECs is estimated to be about 300000, which leads to an
average of 166 mTECs per clonal islet [114]. 70% of all mature mTECs are AIRE+, 30%
AIRE− [55]. The average turnover time of a mature mTEC is 2 weeks and the total cell
cycle time between 12 to 30 hours [18]. As already mentioned mTECs present an array
of TRAs, which increases with their maturation. These epithelial cells express about
1 − 5 · 104 MHC molecules and many of them are also equipped with regular antigens
[138, 52]. It is estimated that at least a total of 1200−3000 TRA genes are overexpressed
in mTECs or 5 − 10% of all human (mouse) transcripts [75]. The half-life of a pMHC
on a mTEC is about 20h and one type of TRA is presented by 1− 3% of all mTEC [55].
The comparison of mRNA levels of some antigens in mTECs and mammary epithelial
cells showed much lower levels in mTECs, 167 (53) fold for Csna (Csnb), which will
probably be true for all types of TRAs [55]. This indicates of course that the number of
copies of a TRA presented by an mTEC is quite low, compared to the periphery.

2.3 T-cell activation

Adaptive immune responses are crucially dependent on one central event, the activation
of a T-cell upon an encounter with an antigen bearing cell and the subsequent recognition
of an antigen in form of a pMHC complex. This recognition event has to be both, highly
specific and highly sensitive.

However, despite decades of research, a growing body of observations and different
proposed activation models, the overall explanation for the whole mechanism is still
lacking, or as stated recently: ’In the back of our minds, we all know how antigen
receptors trigger the activation of T- and B-lymphocytes. It seems relatively well worked
out. The binding of an antigen to the T-cell receptor results in the phosphorylation of
the cytoplasmic domains of these receptors, and off the cells go. Yet how exactly does
that happen?’[197]

The problem here is the word ’exactly’. T-cell activation can be viewed on different
levels of abstraction. One could build a model incorporating all the different molecules
and their interaction on the T-cell and APC surfaces, incorporate signalling cascades
and so on. This would lead to a model which really tries to explain everything exactly.
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But, at the moment this is hardly possible as the significance and role of many of the
molecules and dynamics are quite speculative. Moreover, it is quite likely that in such
a big model much useless information would be included, which could even lead to
wrong results. For example, T-cell activation in general is often thought to require two
simultaneous signals [1, 146]. One coming from the various co-stimulatory molecules like
CD80, CD86 and CD40 on the APC and their interaction with CD28 and CD40L on
the T-cell [39, 104] and the other one coming from the interaction of pMHC and TCR.
However, only a modulation of the latter effects the T-cell response, whereas the former
shows only minor variability between different T-cells and APCs [103, 1, 157, 146]. It
follows that for a model that describes foreign-self discrimination the co-stimulatory
interactions are of minor importance and can be omitted.

Generally it should be possible to explain important facets of T-cell activation with-
out going into the deepest molecular details but rely on some important, yet perhaps
unexplained observations. Here, we try to illuminate the foreign-self discrimination ca-
pability of the peripheral T-cell repertoire. Next we therefore introduce T-cell activation
briefly, highlight the important processes involved, before we present some possible mod-
els. This will prepare the ground for the formulation of the T-cell activation model that
is the basis of this thesis and is introduced in the chapter thereafter.

2.3.1 Introduction

Models that describe the discrimination of foreign antigens from self antigens by T-
cells have ultimately to fulfill the requirement of high specificity and high sensitivity.
Normally, there is a trade-off between both of them, which makes T-cell activations very
unique [70].

Imagine a TCR and its agonistic antigen, the specificity of a T-cell is then regularly
described in terms of the number of different antigens detected by the TCR, where these
different antigens result from amino acid substitutions of the original, agonistic antigen.
Already one amino acid substitution can prevent T cell activation [179], although usually
a TCR is at least a little bit unspecific (also termed crossreactive) [127, 67]. Sensitivity
of a TCR on the other hand is measured as the number of cognate antigens necessary
to invoke T-cell activation. One early marker of T-cell activation is the flux of Ca2+. It
was measured that already one cognate antigen induces a Ca2+ flux. Its concentration
increases with the number of engaged cognate antigens up to 10 cognate antigens, which
seems sufficient to form the immunological synapse [97, 156]. It was also observed that
only 3 cognate pMHCs were sufficient for cytotoxic T-cells to switch into killing model.
There are about 105 − 106 pMHCs on the APC surface, which are about 3000 different
antigen types in various copy numbers from the previously mentioned vast space of
possible antigens [93, 127, 187, 70]. With an average DC surface of 500µm2 and a DC-
T-cell area of 50µm2 it follows that a T-cell seems to discriminate only a few cognate
antigens from a background of at least 104 irrelevant antigens [176, 85].

Next we present the relevant biological background together with different models
that try to explain this extraordinary discrimination capability. As we will see, many of



2.3 T-cell activation 25

these models inherently assume that one TCR-pMHC interaction is sufficient to invoke
T-cell activation. We explain the difficulties with this assumption and infer that there
have to be additional mechanisms in place.

2.3.2 TCR binding

The central element in T-cell activation is the interaction of the TCRs with the pMHC
molecules on the surface of an APC. In contrast to affinity-matured antibodies, the
TCR-pMHC interaction has a low affinity in the range of 1 − 100µM [47, 208]. In its
simplest form it is described by the reaction:

TCR + pMHC
kon

�
koff

TCR:pMHC

where kon is the association rate which is often quite slow. In fact it is slower than a
binding which is dependent on random collisions of TCR and pMHC molecules [47, 208].
The dissociation rate koff on the other hand is high. This rate is often used to calculate
the half-life of the interaction t1/2 = ln 2/koff which is easier to measure and to deal with.
There is a good correlation between t1/2 and T-cell activity, which makes it an important
parameter for model building [47, 208]. But there are exceptions that also point to some
influence of the association rate, which would make the binding constant KD = koff/kon

the important model parameter [164, 64, 196, 189, 62]. Another study showed that a
combination of heat capacity changes ∆Cp and t1/2 can overcome interactions that do
not follow the t1/2 rule [112]. The problem with many of these studies is the use of
different peptides as antigens, such that other factors like the influence of MHC binding
or measurement inaccuracies with very fast dissociation rates come into play [189]. A
strong argument for the t1/2 rule is supplied by Cole et al [42]. They show that the
TCR binding affinity is governed by the MHC class, that is there are different on-rates
of the two different MHC classes. The off-rates for the TCRs on the other hand fall
into the same narrow regime regardless of the MHC class. For a list of different TCRs
and pMHCs with their reaction parameters and their activation capability see [189].
Unfortunately all this measurements are made at 25℃ instead of 37℃ and are therefore
not directly applicable in models.

For this thesis, the three-dimensional conformations of a TCR and a pMHC and their
actual binding behaviour are not relevant. For a recent review of the topic see [168].
Here, it suffices to assume that the association of TCR and pMHC follows a 2-step
binding process as for example proposed in [225]. In a first step the TCR binds to the
MHC and in a second step to the antigen. Whereas the first step leads to a very transient
TCR-MHC complex, the second binding step seemingly suffices to stabilise the binding
of the TCR-pMHC complex long enough to invoke some sort of signal which could lead
to T-cell activation. More sophisticated models of TCR-pMHC binding would also have
to incorporate the influence of co-receptor. For example, Wooldridge et al could show
that CD8 stabilises the TCR-pMHC complex which has influence on the activation of
cytotoxic T-cells [224]. However, it is generally assumed that T cell activation is similar
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for both cytotoxic and helper T-cells, the effect of CD8 might just be to modulate the
activation behaviour as proposed and modeled in [206].

2.3.3 TCR triggering

The question is, how does the binding of the TCR to the pMHC invoke a signal to the
T-cell. The consensus seems to be that through the binding to the pMHC molecule a
cascade of phosphorylation events starts, which ultimately sends an activation signal or
as it is often put, the TCR is triggered.

The non-variable part of the TCR complex consists of different signal transduction
subunits and these contain so called immunoreceptor tyrosine-based activation motifs
(ITAMs). Upon TCR engagement by pMHC, it has been detected that these ITAMs
are phosphorylated with the help of Src family tyrosine kinases (SFK) Lck and Fyn
[219, 211]. It is still unclear how these early events are started, which is why most of
the TCR triggering models try to explain this early activation events, but have quite
different approaches.

There are models which explain TCR triggering throughMHC

self
antigenagonistic

antigen

CD4

Figure 2.8: Pseudodimer model;
One TCR binds to an agonistic
antigen and its co-receptor CD4
binds to an MHC molecule of an-
other pMHC-TCR complex where
the antigen is self.

aggregation of TCRs. Models like the co-receptor het-
erodimerization model or the pseudodimer model ex-
plain this aggregation by different mechanisms of dimer-
ization [198, 3, 111]. For example, in the latter model
there are two TCRs involved. One binds to an ago-
nistic pMHC, the other one to a self pMHC and both
are interconnected via a co-receptor, as can be seen
in Figure 2.8. Such a TCR dimer together with both
pMHCs would then result in T-cell activation. One ma-
jor problem with these models is that they do not take
into account the ability to react to very low numbers
of agonistic pMHC or they instead make use of special
endogenous pMHCs, where it is quite improbable that
a fitting agonistic and endogenous pMHC are localised

next to each other. For a short critical review see [208].

A second type of models uses conformational changes of the TCR induced by the
binding of the TCR to the pMHC. These changes could either free certain sites to make
them available for phosphorylation or bring together TCR subunits, such that ITAMs
are phosphorylated [208]. The advantage of this type of model is that it can explain TCR
triggering if only one pMHC is present. Generally, these models have to take into account
that the TCR and pMHC structures are quite versatile and flexible, but the triggering
mechanism has to work for all of them in the same way [207]. Moreover, it has been
shown that there is no conformation change leading to signal transduction within the
TCRαβ heterodimer upon binding [168]. These findings constrain the possibilities how
conformational change could work and many older models therefore fail [208]. However,
new evidence points to a new mechanism of conformational change [7, 123, 40, 212].
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Figure 2.9: Kinetic segregation model: In the state without pMHC binding, phosphorylation by LCK
molecules at the TCR complex is in equilibrium with dephosphorylation events (left). By binding of the
TCR to a pMHC, large molecules are excluded from the binding domain. More LCK molecules get the
possibility for phosphorylation that cannot be compensated by dephosphorylation. If the TCR-pMHC
is stable enough the phosphorylation lasts long enough to activate the T-cell.

Here it is assumed that the constant movement of the T-cells and DCs induce a pulling
force on the bonded TCR and thereby its conformation is changed.

A third type of model is based on the segregation or redistribution of the TCR com-
plex, either by kinetic segregation [50, 26, 40] or by lipid rafts [91]. In these models
special spatial domains are built after TCR-binding which are favourable for ITAM
phosphorylation. For an illustration see Figure 2.9.

As the exact mechanism of TCR triggering is still highly controversial it might be more
helpful at this point to assume that TCRs are triggered, most probably in dependence
on the half-life of the TCR-pMHC complex. Thereby it is possible to make more general
propositions about T-cell activation.

2.3.4 Models of T-cell activation

In order to explain the specificity of T-cell activation a kinetic proofreading system was
proposed [131, 157]. One interpretation can be seen in Figure 2.10. In this model there
is an obligatory chain of signalling intermediates resulting in a final complex. During
TCR engagement this chain is run through and if the final complex is reached the TCR
is triggered and the T-cell is activated. However, if the TCR disengages before chain
completion it is reset to the start complex. It can be shown that this model explains
specificity, given that each signalling step occurs at the same rate [34]. Unfortunately
this comes with a big loss of sensitivity. Alternatively, this kind of specificity can also
be explained by the use of models with different feedback pathways [185, 36].

The problem with all the models mentiond in this and the previous section is that
they assume that T-cell activation is more ore less the same as TCR triggering. If a
TCR is triggered (or only very few) the T-cell is activated. Of course, we mentioned
earlier that for a T-cell it is possible to detect one cognate antigen, but this does not
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Figure 2.10: Kinetic proofreading: A TCR binds to a pMHC complex. Phosphorylation events start.
The longer the binding lasts, the more phosphorylation is achieved. If there is enough phosphoryla-
tion and the TCR unbinds, the T-cell gets an activation signal. Otherwise, if there was not enough
phosphorylation, the TCR unbinds and is immediately dephosphorylated.

imply that T-cell activation depends on one such engagement alone. On the contrary,
there is a big problem with such an assumption. If we solely assume that a T-cell is
activated when a certain binding time between a TCR and a pMHC is exceeded then
we do not take into account the fact, that the dissociation of a TCR-pMHC complex
is stochastic. A half-life of for example 10 seconds means that in 50% of all bindings
of such a TCR-pMHC complex, this complex dissociates before 10 seconds (see Figure
2.11). This rather says that, although negative selection might sort out all TCRs with
long half-lives with self antigens, this might not affect the activation probabilities very
much, because it can be compensated by an increase of engagements between TCRs
and self antigens that have lower half-lives. Thereby the overall probability that at
least one antigen binds long enough just by chance is elevated. This is obviously no
problem given the enormous amount of self antigens on an APC. Therefore, models that
explain foreign-self discrimination have also to deal with triggering signals induced by
self antigens.

One way to deal with such problems are cooperative models, where TCRs use second-
messengers or physical contact to communicate with each other [173, 71, 185]. In these
models short binding times desensitise a TCR and TCRs in its neighbourhood, whereas
longer binding times work in the opposite way.

It is not hard to imagine that a pMHC triggers a TCR, dissociates from it and af-
terwards this pMHC can associate to another TCR and perhaps also trigger this one.
Valitutti et al could show this serial engagement of many TCRs by few pMHCs and
developed the serial-engagement model [203, 202], which then was analysed and mod-
ified via experiments and mathematical tools, see for example [10, 100, 182, 222, 201].
Hence, this sequentially binding of multiple TCRs amplifies the signal that one pMHC
can induce to the T-cell and only a few agonistic antigens are needed to activate the
T-cell. If we additionally assume that a TCR is triggered if a minimum binding time
between pMHC and TCR is exceeded, then it follows that there has to be an optimal
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Figure 2.11: Stochastic dissociation: Given a hypothetical triggering threshold of 20s, a TCR is
triggered in 50% of all cases if its binding to an antigen has a half-life of 20s. If the half-life is 10s, it
is triggered in 25% of all binding events. This just exemplifies that, given enough binding events with
one type of antigen, there will always be one event where the binding time exceeds any given triggering
threshold. It is therefore insufficient to just use such a triggering threshold for T-cell activation.

half-life which cannot be too short or too high. With a too short half-life a pMHC can
engage many TCRs but only trigger them with a very low probability. On the other
side, with a too long half-life a pMHC triggers the TCR with high probability but only
engages very few TCRs because it stays associated to all of them very long.

These considerations result in the optimal half-life(/dwell-time) hypothesis [103, 74,
28, 146, 43, 92, 106, 190, 167]. Although from a theoretical point of view it is quite
compelling, there is plenty experimental evidence for and against this hypothesis. There
are several experiments with mutated or newly engineered TCRs that have very slow
dissociation rates but lead to T-cell activation, see for example [89, 118, 218, 189]. On
the other hand there are examples where long half-lives lead to an impaired TCR-pMHC
interaction, see for example [103, 146, 190]. Many of these studies have been performed
in vitro and Carreno et al. could show that there are differences between in vitro and in
vivo results, where their in vivo results point to the correctness of the hypothesis [146].
Furthermore it is important to note that by increasing the cognate antigen density on an
APC long half-life pMHCs can also induce T-cell activation even if the optimal dwell-time
hypothesis is correct [74]. One question is therefore if in studies that seem to disprove
the hypothesis the antigen density was just too high to see the effect. This could be for
example due to an overall higher dosage of antigens or if antigens were used that bind
better to MHC molecules, such that they do not dissociate so fast. One further problem
is that the half-life is normally measured at 25℃, and there are some indications that
there are alterations in the half-life hierarchy in comparison to 37℃ measurements [146].

If we consider the optimal dwell-time hypothesis as true, T-cell activation becomes a
problem of statistical recognition. The question is, how the signal induced by a set of
pMHCs including self and foreign antigens differs from the signal induced by a set of self
antigens and how a T-cell can discriminate between these signals. Obviously, the pMHCs
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on an APC trigger different amounts of TCRs and there is no difference between these
triggered TCRs. Thus, we do not look on a specific signalling pattern where the T-cell
can tell how many TCRs were triggered by each antigen. There is only one accumulated
signal and the T-cell has to tell if there is a cognate antigen induced signal hidden in this
signal, which should lead to T-cell activation. In the following we introduce the T-cell
activation model which builds upon these findings and tries to explain the foreign-self
discrimination capability of the T-cells.



Chapter 3

BRB model of T-cell activation

In this chapter, we motivate and introduce the model of T-cell recognition as first pro-
posed by BRB in 2001 [205] and further developed by Zint, Baake and den Hollander
[232].

APC 2

T−cell 2T−cell 2

APC 1

T−cell 1 APC 3

T−cell 3

Figure 3.1: Caricature of T-cells and APCs (from [232]). Note that every T-cell has many copies of
one particular receptor type, but different T-cells have different receptor types. In contrast, every APC
carries a mixture of antigen types, which may appear in various copy numbers.

When T-cells and APCs meet, the T-cell receptors bind to the various antigens pre-
sented by the APC [49]. For every single receptor-antigen pair, there is an association-
dissociation reaction, the rate constants for which depend on the“match”of the molecular
structures of receptor and antigen. Assuming that association is much faster than disso-
ciation and that there is an abundance of receptors (so that the antigens are mostly in
the bound state), one can describe the reaction in terms of the dissociation rates only.

Every time a receptor unbinds from an antigen, it sends a signal to the T-cell, provided
the association has lasted for at least one time unit (i.e., we rescale time so that the unit
of time is this minimal association time required). The duration of a binding of a given
receptor-antigen pair follows the Exp(1/τ) distribution, i.e. the exponential distribution
with mean τ , where τ is the inverse dissociation rate of the pair in question. The rate
of stimuli induced by the interaction of our antigen with the receptors in its vicinity is
then given by

w(τ) =
1

τ
exp(−1

τ
) (3.1)

(i.e., the dissociation rate times the probability that the association has lasted long
enough). As shown in Fig. 3.2, the function w first increases and then decreases with τ
with a maximum at τ = 1, which reflects the fact that, for τ < 1, the bindings tend not
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Figure 3.2: Left: The function w. Right: the densities of W = w(T ) and Wϑ with tilting parameter
ϑ = 46 (The densities have poles at w(0) = 0 and w(1) = 0.3679 (due to the vanishing derivative of w
at τ = 0 and τ = 1), but the right poles are invisible because they support very little probability mass.
In fact, for ε = 0.01, one has P(0 ≤W ≤ ε) = 0.98 and P(w(1)− ε ≤W ≤ w(1)) = 2.17 · 10−9, whereas
P(0 ≤Wϑ ≤ ε) = 0.137138 and P(w(1)− ε ≤Wϑ ≤ w(1)) = 0.0050.

to last long enough, whereas for τ > 1, they tend to last so long that only few stimuli
are expected per time unit.

The T-cell sums up the signals induced by the different antigens on the APC, and if the
total stimulation rate reaches a certain threshold value, the cell initiates an immune re-
sponse. This model relies on several previously mentioned hypotheses, namely as kinetic
proofreading [131, 158, 121, 86], serial triggering [203, 202, 182, 22, 201, 61], counting of
stimulated TCR’s [216, 166], and the optimal dwell-time(/half-life) hypothesis.

Due to the huge amount of different receptor and antigen types, it is impossible (and
unnecessary) to prescribe the binding durations for all pairs of receptor and antigen
types individually. Therefore, BRB chose a probabilistic approach to describe the meet-
ing of APCs and T-cells. A randomly chosen T-cell (that is, a randomly chosen type of
receptor) encounters a randomly chosen APC (that is, a random mixture of antigens).
The mean binding time that governs the binding of this random receptor to the jth type
of antigen is taken to be a random variable denoted by Tj. The Tj are independent and
identically distributed (i.i.d.) and are assumed to follow the Exp(1/τ̄) distribution, i.e.,
the exponential distribution with mean τ̄ , where τ̄ is a free parameter. Note that there
are two exponential distributions (and two levels of averaging) involved here. First, the
duration of an individual binding between a type-j antigen and a random receptor is
Exp(1/Tj) distributed (see the discussion of Eq. (3.1)). Second, Tj, the mean duration
of such a binding (where the receptor is chosen once and the times are averaged over
repeated bindings with a j antigen) is itself an exponential random variable, with real-
isation τj. Finally, its mean, E(Tj) = τ̄ , is the mean binding time of a j-antigen (and,
due to the i.i.d. assumption, of any antigen) when averaged over all encounters with the
various receptor types. The exponential distribution of the individual binding time is
an immediate consequence of the (first-order) unbinding kinetics. In contrast, the cor-
responding assumption for the Tj is made for simplicity; the concept is compatible with
various other distributions as well, see [205] and [232]. The i.i.d. assumption, however, is
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crucial, since it implies, in particular, that there is no difference between self and foreign
antigens here; i.e., no a priori distinction is built into the model. The total stimulation a
T-cell receives is the sum over all stimulus rates Wj = w(Tj) that emerge from antigens
of the j’th type (we will denote the density of W as g). It is further assumed that there
is at most one type of foreign antigen in z(f) copies on an APC, whose signal must be
discriminated against the signals of a huge amount of self antigens. The self antigens are
here divided into two distinct classes, c and v, that are present in different copy numbers
z(c) and z(v). An APC displays m(c) and m(v) different types of class c and v. The indices
c and v stand for “constitutive” and for “variable”, respectively; but for the purpose of
this article, only the abundances are relevant, in particular, z(c) > z(v) and m(c) < m(v).
Over the whole APC the total number of antigens is then m(c)z(c) +m(v)z(v) =: M if no
foreign antigen is present. If z(f) foreign molecules are also present, the self molecules
are assumed to be proportionally displaced (via the factor q := (M − z(f))/M), so that
the total number of antigens remains unchanged at

z(f) +m(c)qz(c) +m(v)qz(v) = M. (3.2)

The total stimulation rate in a random encounter of T-cell and APC can then be
described as a function of z(f):

G(z(f)) :=

m(c)∑
j=1

qz(c)Wj

+

m(c)+m(v)∑
j=m(c)+1

qz(v)Wj

+ z(f)Wm(c)+m(v)+1, (3.3)

i.e., a weighted sum of i.i.d. random variables. Alternatively, we consider the extension of
the model proposed by Zint et al. [232], which, instead of the deterministic copy numbers

z(c), z(v), uses random variables Z
(c)
j , Z

(v)
j distributed according to binomial distributions

with E(Z
(c)
j ) = z(c) , E(Z

(v)
j ) = z(v) (so the expected number of antigens per APC is still

M). The model then reads

G(z(f)) :=

m(c)∑
j=1

qZ
(c)
j Wj

+

m(c)+m(v)∑
j=m(c)+1

qZ
(v)
j Wj

+ z(f)Wm(c)+m(v)+1. (3.4)

In line with [205, 232], we numerically specify the model parameters as follows: τ̄ =
0.04; m(c) = 50, m(v) = 1500, z(c) = 500, z(v) = 50 (and hence M = 105). The
distributions in the extended model are the binomials Bin(ζ(c), p) and Bin(ζ(v), p) for

Z
(c)
j and Z

(v)
j respectively, where ζ(c) = 1000, ζ(v) = 100, and p = 0.5.

The relevant quantity for us is now the probability

P
(
G(z(f)) ≥ gact

)
(3.5)

that the stimulation rate reaches or surpasses a threshold gact. To achieve a good foreign-
self discrimination, there must be a large difference in probability between the stimula-
tion rate in the case with self antigens only (z(f) = 0), and the stimulation rate with the
foreign antigen present, i.e.,

1� P
(
G(z(f)) ≥ gact

)
� P

(
G(0) ≥ gact

)
≥ 0 (3.6)
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for realistic values of z(f). Note that both events must be rare events – otherwise, the
immune system would “fire” all the time. Thus gact must be much larger than E(G(z(f)))
(which, due to (3.2) and the identical distribution of the Wj, is independent of z(f)).
Evaluating these small probabilities is a challenge. So far, two routes have been used:
analytic (asymptotic) theory based on large deviations (LD) and straightforward sim-
ulation (so-called simple sampling). Both have their shortcomings: The LD approach
is only exact in the limit of infinitely many antigen types (and the available error esti-
mates are usually too crude to be useful); the simulation strategy, on the other hand, is
so time-consuming that it becomes simply impossible to obtain sample sizes large enough
for a detailed analysis, in particular for large values of gact. Therefore, an importance
sampling approach is required.

The BRB model in its just described version is of course still quite abstract, as it for
example ignores the fact that even very low numbers of foreign antigens can activate a
T-cell and also the selection mechanisms are not included. There already exist extended
versions of the model [205, 232], but we will postpone their description to the analysis
of the model. There they will emerge as a consequence of the analysis as well as new
developed extensions and different models.

3.1 Additional remarks

In the beginning of of our explanations regarding T-cell activation we already made
clear that there are still many open questions and as pointed out there are quite a
few different possible models under consideration. Before concluding this chapter and
thereby the biological introduction we present some recent experimental observations
that have not been captured in T-cell activation models, yet.

In the search of a TCR triggering mechanism new results point again to the involve-
ment of receptor deformation [7, 123, 40, 212]. Ma et al. describe and include these
results in their receptor deformation model [123]. Although the triggering kinetics as
described in the BRB model would be quite different from a T-cell activation model
that builds upon the receptor deformation assumptions, there will most probably be
commonalities. Especially, there will be some kind of serial triggering. Through the
induction of force on the TCR-pMHC complex, they dissociate even faster and conse-
quently a pMHC molecule can bind even more TCRs. On the other side we do not see
an analogue to the optimal dwell-time hypothesis as the force induced by the T-cell and
APC movements is probably so high that the dissociation times between different TCRs
and pMHCs should be quite similar. This would point to a mechanism where we get a
saturation in signalling intensity induced by a pMHC with increasing half-life. However,
this could be disturbed if we further assume that a very long half-life leads to a too
strong force induced to the TCR such that the receptor deformation is too strong to
induce TCR triggering. Thereby some kind of optimal dwell-time would be restored and
the models should be quite similar.

It is also of note that there are indications that T-cells that have a low affinity to
certain self antigens evade negative selection and do not react in the periphery if they
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see these antigens in endogenous numbers. However, if the amount of antigen is increased
they are activated [228]. It seems even to be the case that T-cells are activated more
often than previously thought. Even weak pMHCs can activate a T-cell [229]. The
difference between T-cells activated by weak pMHC and by strong pMHC is then in
their behaviour afterwards. These observations imply that the activation threshold as
set in the BRB model has not to be too high and foreign-self discrimination has not to
be perfect. It is important to note that it certainly does not contradict the assumptions
of the BRB model. Instead it is thinkable to make use of the fact that we count triggered
TCRs and for example introduce additional thresholds.

The last observation we want to mention could as well be seen in this context as it
can stand for its own. Henrickson et al. show that T-cell activation in the lymph node
is (often) not an instant process but follows different stages [85, 133]. First, T-cells
undergo brief serial contacts with DCs for several hours, followed by a phase of stable T-
cell-DC interactions. Finally the T-cells return to short T-cell-DC interactions and start
to proliferate. Although these results are questioned [33, 32], they are quite interesting
as they point to a signal integration mechanism that goes beyond the meeting of a T-cell
with only one DC. The real point of T-cell activation would here be the time when a T-
cell switches from phase one to phase two. How long this takes can be modulated by the
cognate antigen density on the DCs, which could be the reason why Celli et al. do not
see a first phase in their experiments [33, 32]. A first computational simulation supports
these observations [231]. Again, this result does not contradict the BRB model but opens
new possibilities for foreign-self discrimination. There could be a intra-DC activation
threshold and an inter-DC activation threshold, that is a T-cell has to be activated several
times (perhaps in a time window or in dependence of the amount of DCs met) and is
then finally really activated. If we want to combine the last two mentioned observations
this could also be interpreted in another way. A T-cell that is activated more often by
DCs takes longer to turn to stage two and a T-cell that is only activated very rarely
turns fast to stage two. This would be consistent with the observation that weak pMHCs
can activate a T-cell but this T-cell does not expand very long but leaves the thymus
very fast. It is also possible to interpret this the other way around. High-potency pMHC
lead to a faster T-cell migration stop and proliferation whereas there is no stop signal
for weak bindings but proliferation is possible for intermediate binding strength [178]

It is evident that with every experiment we get new information on T-cell activation
and there is still much unknown. However, these recent results do not contradict the
BRB model but leave room for extensions of this model. This feels more than sufficient
to revisit the analysis of the BRB model and develop methods that enable a deeper
analysis and can be used for extended and follow-up models. This is the motivation for
the research that will be described in the main chapters of this thesis.

3.2 T-cell activation in numbers

To become biologically relevant, models of T-cell activation need to be based on exper-
imentally derived data. A quantification of all different aspects of T-cell activation is
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beyond the scope of this thesis. We therefore provide only some data and refer to dif-
ferent relevant publications. We make use of a top down approach, starting with APCs
and T-cells in general ending with signalling events at the TCR-pMHC complex.

It is safe to assume that every APC is unique with respect to its antigen profile, that is
the collection of pMHC complexes it presents. This is due to the fact that these pMHC
complexes are not part of the APC but are a result of the constant internalisation of
cell material in the APC’s surrounding. For T-cells the situation is slightly different.
We already mentioned in 2.2.4 the number of unique T-cells. However, through different
events in the periphery a T-cell exists in a low number of copies rather than being
really unique (for numbers see Section 2.2.4). On the other side, the number of possible
antigens in an individual is estimated to be in the range of 1013.

The next lower level are the single APCs and T-cells. For the former the number of
antigens per cell is estimated to be in the range of 300000 with about 3000 unique antigen
types in several copies [205, 52, 128]. The number of TCRs per T-cell is in the range
of 30000 [93, 127, 187, 70, 43, 189]. The surface area of a DC as the most important
APC is estimated to be 500µm2 [176, 85] to 1800− 2400µm2, where typically more than
two-thirds of this volume is deployed as dendrites [134]. A T-cell on the other hand is
much smaller with an estimated surface area between 19−40µm2 [78] and 150µm2 [134].
The size of the contact region between an APC and a T-cell can vary greatly and was
experimentally observed to be in the range of 1 to > 70µm2 with a mean of 8µm2 [134].

On the level of the TCR-pMHC interaction we have to deal with the association and
dissociation rates and of course the crossreactivity of a single TCR. The association and
dissociation rates vary greatly and there exists many measurements for different TCRs
and antigens together with their capability to induce a T-cell reaction, see for example
[189, 146, 28, 48, 103]. The crossreactivity, that is the number of different antigens a
TCR can react to, is also under discussion and is estimated to be in the range of 100 to
106, where the lower bound seems to be more reasonable [127, 145, 67].

TCR triggering is dependent on intracellular phosphorylation events, which can be
captured by the kinetic proof-reading model. Coombs et al., for example, assume 6
proof-reading steps with a rate of 0.25s−1.

Many of the here mentioned numbers are still under experimental investigation and
others are still missing. However, these numbers should be a good point to start the
development of T-cell activation models.



Chapter 4

Mathematical background and computational

methodology

This thesis has two main focuses. The one side is the development of a deeper under-
standing of the mechanism of T-cell activation and therewith foreign-self discrimination.
The other side is the development of computational methods that allow for an efficient
analysis of probabilistic T-cell activation models that already exist, like the BRB model,
or will emerge in the course of this thesis. In this chapter we introduce the relevant
mathematical and computational background and establish a first theoretical result that
will allow us in the next chapters to develop and modify such an efficient simulation
method.

In probabilistic models of T-cell activation the main task is the estimation of the
probability of T-cell activation given different parameter values. Hence, the general
problem we now consider is to estimate the probability P (A) of a (rare) event A under a
probability measure P . The straightforward approach, known as simple sampling, uses
the estimate

(P̂ (A))N :=
1

N

N∑
i=1

1{S(i) ∈ A} =
1

N
card{1 ≤ i ≤ N | S(i) ∈ A}, (4.1)

where the {S(i)}1≤i≤N are independent and identically distributed (i.i.d.) random vari-
ables with distribution P , 1{.} denotes the indicator function, and N is the sample

size; we will throughout use v̂ for an estimate of a quantity v. (P̂ (A))N is obviously an
unbiased and consistent estimate, but, for small P (A), the convergence to P (A) is slow,
and large samples are required to get reliable estimates.

Various simulation methods are available that deal with this problem and yield a better
rate of convergence under the right circumstances (see the monograph by Bucklew [25]
for an overview). Most of them achieve this improvement by reducing the variance of the
estimator. We will concentrate here on the most wide-spread class of methods, namely
importance sampling. As is well known, one introduces a new sampling distribution Q
here under which A is more likely to happen, produces samples from this distribution
and gets back to the original distribution by reweighting. In general, finding a good
importance sampling distribution that reduces the variance as much as possible is an
art, and much of the literature revolves around this. Some “general purpose” and many
ad hoc strategies exist, but usually, importance sampling distributions are best tailored
by exploiting the structure of the specific problem at hand. However, if the problem
can be embedded into a sequence of problems for which a so-called large deviation

37
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principle is valid, a unified theory is available that identifies the most efficient simulation
distribution. This technique of “large deviation simulation” was introduced by Sadowski
and Bucklew [169], laid down in the monograph by Bucklew [25], and further developed
by Dieker and Mandjes [58]. It rests on the well-established theory of large deviations,
as summarised, for example, in the books by Dembo and Zeitouni [53] or den Hollander
[88]. Let us recapitulate the basic background.

4.1 Large deviation probabilities

Consider a sequence {Sn} of random variables on the probability space (Rd,B,P), where
B is the Borel σ-algebra of Rd. Let {Pn} be the family of probability measures induced
by {Sn}, i.e., Pn(B) = P(Sn ∈ B) for B ∈ B. We assume throughout that {Sn} satisfies
a large deviation principle (LDP) according to the following definition [53, 58]:

Definition 4.1 (Large deviation principle). A family of probability measures {Pn} on
(Rd,B) satisfies the large deviation principle (LDP) with rate function I if I : Rd →
[0,∞] is lower semicontinuous and, for all B ∈ B,

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1

n
logPn(B) ≤ lim sup

n→∞

1

n
logPn(B) ≤ − inf

x∈B
I(x), (4.2)

where B◦ := int(B) and B := clos(B) denote the interior and the closure of B, re-
spectively. I is said to be a good rate function if it has compact level sets in that
I−1([0, c]) = {x ∈ Rd : I(x) ≤ c} is compact for all c ∈ Rd.

A set B is called an I-continuity set if

inf
x∈B◦

I(x) = inf
x∈B

I(x) = inf
x∈B

I(x). (4.3)

If B is such a set, the LDP means that Pn(B) decays exponentially for large n, with decay
coefficient infx∈B I(x). A point b is called a minimum rate point of B if infx∈B I(x) =
I(b).

Large deviation principles are well known for many families of random variables, like
empirical means of i.i.d. random variables or empirical measures of Markov chains. For
the application we have in mind, which involves sums of independent, but not identically
distributed random variables, we need the fairly general setting of the Gärtner-Ellis
theorem, which we recapitulate here (cf. [53, Thm. 2.3.6] and [88, Ch. V]). Let ϕn(ϑ) :=
EPn(e〈ϑ,Sn〉), ϑ ∈ Rd, be the moment-generating function of Sn, where 〈., .〉 denotes the
scalar product and Eµ(.) denotes the expectation of a random variable with respect to
the probability measure µ.

Theorem 4.2 (Gärtner-Ellis). Assume that

(G1) limn→∞
1
n

logϕn(nϑ) =: Λ(ϑ) ∈ [−∞,∞] exists,

(G2) 0 ∈ int(DΛ), where DΛ := {ϑ ∈ Rd : Λ(ϑ) <∞} is the effective domain of Λ,
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(G3) Λ is lower semi-continuous on Rd,

(G4) Λ is differentiable on int(DΛ),

(G5) Either DΛ = Rd or Λ is steep at its boundary ∂DΛ, i.e., limint(DΛ)3ϑ→∂DΛ
|∇Λ(ϑ)| =

∞.

Then, {Pn} satisfies the LDP on Rd with good rate function I, where I is the Legendre
transform of Λ, i.e.,

I(x) = sup
ϑ∈Rd

[〈x, ϑ〉 − Λ(ϑ)], x ∈ Rd. (4.4)

The function Λ in (G1) is convex. If there is a solution ϑ∗ of

∇Λ(ϑ) = x, (4.5)

one has
I(x) = 〈ϑ∗, x〉 − Λ(ϑ∗). (4.6)

If Λ is strictly convex in all directions, ϑ∗ is unique. See Fig. 5.1 for a one-dimensional
example (the T-cell application, in fact).

4.2 Simulating rare event probabilities

Let now A ∈ B be a rare event in the sense that 0 < infx∈A I(x) < ∞. Here, the
first inequality implies that A becomes exponentially unlikely as n → ∞, whereas the
second inequality serves to exclude nongeneric cases (in particular cases where the event
is impossible). An important notion for the rare event simulation of Pn(A) is that of a
dominating point [25, p. 83]: A point a is a dominating point of the set A if it is the
unique point such that

a) a ∈ ∂A,
b) ∃ a unique solution ϑ∗ of ∇Λ(ϑ) = a, and
c) A ⊂ {x ∈ Rd : 〈ϑ∗, x− a〉 ≥ 0}.
A dominating point, if it exists, is always a unique minimum rate point (see [25,

p. 83]). Convexity of A implies existence of a dominating point (cf. [58]).
Following [58] we now turn to the problem of simulating Pn(A) = EPn(1{Sn ∈ A}).

The naive simple-sampling estimate obtained from N i.i.d. copies S
(i)
n (1 ≤ i ≤ N),

drawn from Pn, is, as in (4.1), given by

(
P̂n(A)

)
N

:=
1

N

N∑
i=1

1{S(i)
n ∈ A}. (4.7)

It is clearly unbiased and converges (almost surely) to Pn(A) in the limit N →∞, but,
as clearly, it is inefficient since it requires that N increase exponentially with n to yield
a meaningful estimate. Instead of {Sn}, one therefore considers an alternative family of
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random variables, {Tn} with distribution family {Qn}, again on (Rd,B), under which
A occurs more frequently. Assuming that Pn and Qn are absolutely continuous with
respect to each other, one can use the identity

Pn(A) = EPn(1{Sn ∈ A}) = EQn

(
1{Tn ∈ A}

dPn
dQn

(Tn)
)
, (4.8)

where dPn/dQn is the Radon-Nikodym derivative of Pn with respect to Qn. The resulting

importance sampling estimate then relies on i.i.d. samples T
(i)
n from {Qn} and reads

(
P̂Qn(A)

)
N

:=
1

N

N∑
i=1

1{T (i)
n ∈ A}

dPn
dQn

(T (i)
n ), (4.9)

where (dPn/dQn)(.) acts as a reweighting factor from the sampling distribution to the
original one. It is reasonable to assume that (dPn/dQn) is continuous to avoid the usual
problems with L1-functions; this is no restriction for our targeted application.

An adequate optimality concept in this context is that of asymptotic efficiency. Ac-
cording to [58], it is based on the relative error ηN(Qn, A) defined via its square

η2
N(Qn, A) :=

VQn

(
P̂Qn(A)

)
N(

Pn(A)
)2 (4.10)

(where Vµ(.) denotes the variance of a random variable with respect to the probability
measure µ). The relative error is proportional to the width of the confidence interval
relative to the (expected) estimate itself. Asymptotic efficiency is then defined as follows.

Definition 4.3 (Asymptotic efficiency). An importance sampling family {Qn} is called
asymptotically efficient for the rare event A if

lim
n→∞

1

n
logN∗Qn = 0, (4.11)

where N∗Qn := inf{N ∈ N : ηN(Qn, A) ≤ ηmax} for some given maximal relative error
ηmax, 0 < ηmax <∞.

In words, asymptotic efficiency means that the number of samples required to keep
the relative error below a prescribed bound ηmax increases only subexponentially (rather
than exponentially as with simple sampling). The concrete choice of ηmax is actually
irrelevant, see Lemma 1 in [58].

An obvious idea from large deviation theory would be to use, as sampling distributions,
the family of measures {P ϑ

n } that are exponentially tilted with parameter ϑ, that is,

dP ϑ
n

dPn
(x) =

en〈ϑ,x〉

ϕn(nϑ)
, x ∈ Rd; (4.12)

P ϑ
n then takes the role of Qn. The task remains to find “the right” ϑ, i.e., a (or the)

tilting parameter that makes {P ϑ
n } asymptotically efficient (if at all possible). Necessary

and sufficient conditions for this are given in [58, Assumption 1 and Corollary 1] and are
summarised below, in a form adapted to the present context.
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Theorem 4.4 (Dieker-Mandjes 2005). Assume that, for some given ϑ∗,

(V1) {Pn} satisfies an LDP with good rate function I,

(V2) lim supn→∞
1
n

logϕn(γnϑ∗) < ∞ for some γ > 1, and, likewise, with ϑ∗ replaced
by −ϑ∗,

(V3) The rare event A is both an I-continuity set and an (I + 〈ϑ∗, .〉)-continuity set.

Then, the tilted measure {P ϑ∗
n } is asymptotically efficient for simulating A if and only if

inf
x∈Rd

[I(x)− 〈ϑ∗, x〉] + inf
x∈A

[I(x) + 〈ϑ∗, x〉] = 2 inf
x∈A◦

I(x). (4.13)

We use assumption (V2) here to replace the weaker but less easy to verify condition (2)
in Assumption 1 of [58], in line with the paragraph below (2) in [58], or [53, Thm. 4.3.1].
Note also that (V2) holds automatically if ϕn(nϑ) exists for all ϑ – but this is not
mandatory here, since only a given ϑ∗ is considered.

The proof of Theorem 4.4 is given in [58] and need not be recapitulated here; but we
would like to comment briefly on what happens in the central condition (4.13). Replacing
Qn by P ϑ∗

n in (4.10) and (4.9), we can rewrite η2
N as

η2
N(P ϑ∗

n , A) =
VPϑ∗n

( ̂PPϑ∗n (A))N(
Pn(A)

)2 =
1

N

VPϑ∗n
( ̂PPϑ∗n (A))1(
Pn(A)

)2

=
1

N

1(
Pn(A)

)2

[ ∫
A

( dPn
dP ϑ∗

n

)2

dP ϑ∗

n −
(
Pn(A)

)2
]
.

(4.14)

Obviously (by (V1) and (V3)), 2 infx∈A◦ I(x) (i.e., the right-hand side of (4.13)) is the
exponential decay rate of (Pn(A))2. Inspection of the proof of Theorem 4.4 reveals

that the left-hand side of (4.13) is the exponential decay rate of
∫
A

(
dPn

dPϑ∗n

)2

dP ϑ∗
n . It is

clear from (4.14) that, for asymptotic efficiency to hold,
∫
A

(
dPn

dPϑ∗n

)2

dP ϑ∗
n must tend to

zero at least as fast as (Pn(A))2. But it cannot decrease faster, since VPϑ∗n
( ̂PPϑ∗n (A))1 is

nonnegative, so that
∫
A

(
dPn
dQn

)2

dQn ≥ (Pn(A))2 for arbitrary Qn. Hence, the exponential

decay rates must be exactly equal, as stated by (4.13). (A closely related argument is
given in [25, Ch. 5.2].)

Theorem 4.4 is widely applicable. It holds in many standard situations, in particular
in many of those that arise in applications.

Proposition 4.5. Let {Pn} be a family of probability measures that satisfy the condi-
tions of the Gärtner-Ellis theorem, with (good) rate function I. Let A be a rare event
with dominating point a, let ϑ∗ be the unique solution of ∇Λ(ϑ) = a, and assume (V2)
and (V3). Then {P ϑ∗

n } is the unique tilted family that is asymptotically efficient for
simulating Pn(A).
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Proof. The proof is a simple application of Thm. 4.4. (V1) follows from the Gärtner-Ellis
theorem; we only need to verify condition (4.13). For the first infimum in (4.13), one
obtains

inf
x∈Rd

[I(x)− 〈ϑ∗, x〉] = −Λ(ϑ∗) = I(a)− 〈ϑ∗, a〉. (4.15)

Here, the first step follows from the convex duality lemma (compare [53, Lemma 4.5.8]),
which is applicable since Λ is lower semicontinuous by (G3), and convex and > −∞
everywhere (this follows from (G1) and (G2) by [88, Lemma V.4]). The second step is
due to part b) of the dominating point property of a, together with Eq. (4.6).

As to the second infimum in (4.13), note that, by the dominating point property, a
minimises both I and 〈ϑ∗, .〉 on A, which, together with (V3), gives

inf
x∈A

[I(x) + 〈ϑ∗, x〉] = I(a) + 〈ϑ∗, a〉. (4.16)

Eqs. (4.15) and (4.16) together give (4.13) because infx∈A◦ I(x) = infx∈∂A I(x) = I(a).

Remark 4.6. Note that an efficiency result closely related to Proposition 4.5 has pre-
viously been given by Bucklew [25, Thm. 5.2.1], but this is based on the variance rather
than the relative error; and it is only a sufficient condition.

Note that our assumption of a dominating point greatly simplifies the situation. The-
orem 2 also allows to cope with situations without a dominating point – but this is not
needed below.

The theory presented so far is general enough to provide asymptotically efficient simu-
lation distributions for a wide range of problems. Nevertheless, its concrete applications
have, so far, been somewhat restricted, in three ways:

1. Concrete applications require the availability of an explicit large deviation result; in
particular, the Λ(ϑ) appearing in the Gärtner-Ellis theorem, and the corresponding
tilting parameter ϑ∗, must be known in a more explicit form, or must at least
be easily accessible numerically. So far, popular examples include sums of i.i.d.
random variables, sums of a functional of a Markov chain, level crossing problems,
or queueing problems (see [25] for an overview). For example, for sums of i.i.d.
random variables, the Gärtner-Ellis theorem reduces to Cramér’s theorem.

2. A simulation method must be available to sample from the corresponding tilted
distribution. In the case of sums of independent random variables, tilting of the
sum with parameter ϑ is simply achieved by tilting each summand with ϑ. If the
individual terms have uniform, Bernoulli, exponential, or Gaussian distributions,
their tilted variants are known explicitly (for example, the exponential distribution
with parameter λ, Exp(λ), turns into Exp(λ − ϑ) under tilting with ϑ), and are
easily simulated via transformation of random variables from Uni[0,1], the uniform
distribution on the unit interval.
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3. So far, concrete applications have mainly come from within stochastic processes as
such (like queueing theory), or information theory (like models of digital commu-
nication systems).

Rare event simulation is very successful for the above examples – but the range of
applications is still small as compared to the generality of the theory; for example,
“LDP sampling” is hardly used in physics and biology. Our immunological problem thus
provides a nice opportunity to extend the range of applications.



Chapter 5

Analysis and extension of the BRB model of

T-cell activation

In the previous chapter we introduced the BRB T-cell activation model and the theoret-
ical background for the development of efficient simulation methods. In this chapter we
use the BRB model as a starting point for the development of ideas on how foreign-self
discrimination by T-cells is achieved. This model was already analysed to a certain extent
with the help of analytical and numerical calculations and the capability for foreign-self
discrimination could be shown [205, 232]. In order to analyse it even deeper and more
thoroughly we develop a new simulation technique and use these previous results in order
to confirm our first results from our analysis. Building upon new insights we get by our
analysis we go one step further and extend the basic BRB model. These extensions are
also analysed by a modified version of our newly developed simulation method.

5.1 Rare event simulation: The T-cell model

At first, we have to develop an efficient simulation method in order to estimate the
activation probabilities in the basic BRB model. Recall that simulating the T-cell model
means sampling the random variables G(z(f)) of (3.3) and estimating the corresponding
tail probabilities P(G(z(f)) ≥ gact). Inspection of Eq. (3.3) reveals two difficulties, which
correspond to 1. and 2. in the previous Section:

1. G(z(f)) is a weighted sum of i.i.d. random variables, to which the standard re-
sults for sums of i.i.d. random variables (in particular, Cramér’s theorem) are not
applicable. We therefore need an extension to weighted sums – or, better, to gen-
eral sums of independent, but not identically distributed random variables, which
include weighted sums as a simple special case. This is straightforward and will
be the subject of Sect. 5.1.1. In particular, it will be seen that, like in the i.i.d.
case, every term in the sum must be tilted with the same parameter, but now this
“global” tilting factor is a function of all the individual distributions involved.

2. Simulating the random variables Wj = w(Tj) is straightforward via simple sam-
pling: draw Exp(1/τ̄) distributed random numbers τj (as realisations of Tj) and
apply the transformation (3.1). However, simulating the corresponding tilted vari-
ables is a difficult task, for two reasons. First of all, there is no clue how to sample
from the tilted distribution via transformation of one of the “basic” distributions
(like Uni[0,1], or Exp(λ)) for which efficient random number generation is possible.

44
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Although such a transformation might exist in principle, there is no systematic way
of finding it. One reason for this is that tilting acts at the level of the densities,
but even the original (untilted) density of W = w(T ) is not available explicitly.
(With W and T (without indices) we mean any representative of the family.) This
is because its calculation requires the inverse functions and derivatives of the two
branches (increasing and decreasing) of the function w, but these are unavailable
analytically.

In lack of a transformation method, one might consider to determine the tilted
density numerically, integrate it (again numerically) and discretise and tabulate
the resulting distribution function. However, this is, again, forbidding for our
particular function w: Due to the vanishing derivatives at T = 0 and T = 1, the
transformation formula for densities yields singularities in the density of W at these
values, with a sizeable fraction of the probability mass concentrated very close to 0
(see Fig. 3.2). This renders numerical calculations unreliable. To circumvent these
problems, we will, in Sect. 5.1.2, present a sampling method for the tilted random
variable W ϑ that is based on tilting T rather than W itself.

5.1.1 Large deviations for independent but not identically distributed random variables

We considerK independent families of i.i.d. Rd-valued random variables, {Y (1)
` }, . . . , {Y

(K)
` }

(i.e., the distribution within any given family {Y (k)
` }, 1 ≤ k ≤ K, is fixed, but the dis-

tributions may vary across families). Assume that Λ(k)(ϑ) := log E(e〈ϑ,Y
(k)
1 〉), the log

moment-generating function of Y
(k)

1 , is finite for all ϑ ∈ Rd and 1 ≤ k ≤ K (here,
E(.) refers to the probability measure induced by the random variable involved). Let
n(1), . . . , n(K) be positive integers, n :=

∑K
k=1 n

(k),

Vn :=
n(1)∑
`=1

Y
(1)
` + . . .+

n(K)∑
`=1

Y
(K)
` , (5.1)

and Pn be the probability measure induced by Sn = Vn/n. In the limit n→∞, subject
to n(k)/n→ γ(k) for all 1 ≤ k ≤ K, the limiting log-moment generating function of {Sn}
becomes

Λ(ϑ) = lim
n→∞

1

n
log E(e〈ϑ,Vn〉) = lim

n→∞

K∑
k=1

n(k)

n
Λ(k)(ϑ) =

K∑
k=1

γ(k)Λ(k)(ϑ), (5.2)

where the second step is due to independence. Since, by assumption, Λ(k)(ϑ) <∞ for all
ϑ ∈ Rd and 1 ≤ k ≤ K, the Λ(k) are differentiable on all of Rd (see [53, Lemma 2.2.31]);
in fact, they are even C∞(Rd) [53, Ex.ercise 2.2.24]. Thus, Λ is C∞(Rd) as well.

By (5.2), we have (G1). Again due to Λ(k)(ϑ) <∞, (G2) and (G5) are automatically
satisfied. Furthermore, the differentiability of Λ entails (G3) and (G4). We have therefore
shown
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Lemma 5.1. Under the assumptions of this paragraph, {Pn} satisfies the Gärtner-Ellis
theorem, with rate function I given by Eq. (4.4).

Such {Pn} are therefore candidates for efficient simulation according to Prop. 4.5. The
tilting factor ϑ∗ may not be accessible analytically, but can be evaluated numerically
from (4.5). Due to independence, tilting of Sn with nϑ∗ (that is, tilting of Vn with ϑ∗)

is equivalent to tilting each Y
(k)
` with ϑ∗.

5.1.2 Tilting of transformed random variables

Unlike the Wj, the Exp(1/τ̄)-distributed random variables Tj are tilted easily (tilting
with ϑ simply gives Exp(1/τ̄ − ϑ)). One is therefore tempted to tilt the Tj rather than
the Wj, or, in other words, to interchange the order of tilting and transformation. The
following Theorem states the key idea.

Theorem 5.2. Let X be an Rd-valued random variable with probability measure µ,
and let Y := h ◦ X (or Y = h(X) by slight abuse of notation), where h : Rd → Rd

is µ-measurable. Then Y has probability measure ν = µ ◦ h−1, where h−1 denotes the
preimage of y. Assume now that Eµ(e〈ϑ,h(X)〉) exists, let X̃ϑ be an Rd-valued random
variable with probability measure µ̃ϑ related to µ via

dµ̃ϑ

dµ
(x) =

e〈ϑ,h(x)〉

Eµ(e〈ϑ,h(X)〉)
(5.3)

(so that µ̃ϑ � µ), and let Ỹ ϑ = h(X̃ϑ). Then, the measures ν̃ϑ (of Ỹ ϑ) and νϑ (for
the tilted version of ν, belonging to Y ϑ) are equal, where νϑ � ν with Radon-Nikodym
density

dνϑ

dν
(y) =

e〈ϑ,y〉

Eν(e〈ϑ,Y 〉)
. (5.4)

Proof. Note first that e〈ϑ,y〉 is clearly µ-measurable, and

Eν(e
〈ϑ,Y 〉) =

∫
Rd
e〈ϑ,y〉dν(y) =

∫
Rd
e〈ϑ,h(x)〉dµ(x) = Eµ(e〈ϑ,h(X)〉), (5.5)

which exists by assumption, so νϑ is well-defined. We now have to show that ν̃ϑ(B) =
νϑ(B) for arbitrary Borel sets B. Observing that ν̃ϑ = µ̃ϑ◦h−1 and employing the formu-
las for transformation of measures [17, (13.7)] and change of variable [17, Thm. 16.13],
together with (5.3), one indeed obtains

ν̃ϑ(B) = µ̃ϑ
(
h−1(B)

)
=

∫
h−1(B)

dµ̃ϑ

dµ
(x)dµ(x)

=
1

Eµ(e〈ϑ,h(X)〉)

∫
h−1(B)

e〈ϑ,h(x)〉dµ(x) =
1

Eν(e〈ϑ,Y 〉)

∫
B

e〈ϑ,y〉dν(y)

=

∫
B

dνϑ

dν
(y)dν(y) = νϑ(B),

(5.6)

which proves the claim.
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In words, Theorem 5.2 is nothing but the simple observation that, to obtain the tilted
version of Y = h(X), one can reweight the measure µ of X with the factors e〈ϑ,h(x)〉,
rather than reweighting the measure ν of Y with e〈ϑ,y〉. It should be clear, however, that
the measure µ̃ϑ differs from the “usual” tilted version of µ, which would involve tilting
factors e〈ϑ,x〉 rather than e〈ϑ,h(x)〉; for this reason, we use the notation µ̃ϑ rather than µϑ.
Nevertheless, this simple observation is the key to simulation if µ (and µ̃ϑ) are readily
accessible at least numerically, but ν (and νϑ) are not.

This is exactly our situation, with T̃ ϑ, αW ϑ and αw (α ∈ {qz(c), qz(v), z(f)}), respec-
tively, taking the roles of X̃ϑ, Y ϑ and h (we will use f , f̃ϑ, g and gϑ for the corresponding
densities of T , T̃ ϑ, αW , and (αW )ϑ). Still, reweighting of the exponential density of
T with eϑαw(τ) does not yield an explicit closed-form density (let alone an exponential
one), and no direct simulation method is available for the corresponding random vari-
ables. However, the reweighted densities are easily accessible numerically, in contrast
to those of W and its tilted variant, W ϑ. The way to go is therefore to calculate and
integrate f̃ϑ numerically and discretise and tabulate the resulting distribution function
F̃ ϑ. Samples of T̃ ϑ may then be drawn according to this table (i.e., by formally “looking
up” the solution of F̃ (T̃ ϑ) = U for U ∼ Uni[0,1]), and αW ϑ = αw(T̃ ϑ) is then readily
evaluated. The only difficulty left is the time required for searching the table. But this
is a practical matter and will be dealt with in the next paragraph.

5.1.3 The algorithm

Taking together our theoretical results, we can now spell out the specific importance
sampling algorithm for the simulation of the T-cell model of Sect. 3. If not stated
otherwise, we will refer to the basic model (3.3). Recall that it describes the stimulation
rate G(z(f)) and we wish to evaluate the probability P(G(z(f)) ≥ gact).

To apply LD sampling, let us embed the model into a sequence of models with in-
creasing total number n = n(c) + n(v) + n(f) of antigen types, where n(c), n(v), and n(f)

are the numbers of constitutive, variable and foreign antigen types. Let

Gn(z(f)) =

n(c)∑
j=1

qnz
(c)Wj

+

n(c)+n(v)∑
j=n(c)+1

qnz
(v)Wj

+

n(c)+n(v)+n(f)∑
j=n(c)+n(v)+1

z(f)Wn(c)+n(v)+j

 ,

(5.7)
where

qn =
n(c)z(c) + n(v)z(v) − n(f)z(f)

n(c)z(c) + n(v)z(v)
(5.8)

(where z(c), z(v), and z(f) are independent of n). Clearly, Gn(z(f)) coincides with G(z(f))
of (3.3) if n(c) = m(c), n(v) = m(v), and n(f) = m(f), where m(f) = 0 or m(f) = 1
depending on whether z(f) = 0 or z(f) > 0; then, n = m = m(c) + m(v) + m(f). We
have to consider P

(
Gn(z(f))/n > gact/m

)
(this reflects the fact that gact must scale

with system size). The sequences {Gn(z(f))} and {Gn(z(f))}/n take the roles of {Vn}
and {Sn}, respectively, in Secs. 4.1 and 5.1.1, with Pn the law of Gn(z(f))/n; and we
consider A = [gact/m,∞) with E(Gm(z(f))/m) < gact/m < Mw(1)/m (the latter is



48 Analysis and extension of the BRB model of T-cell activation

the maximum value of Gm(z(f))/m since w(τ) has its maximum at τ = 1). The limit
n→∞ is then taken so that limn→∞ n

(c)/n = m(c)/m, limn→∞ n
(v)/n = m(v)/m, as well

as limn→∞ n
(f)/n = m(f)/m, that is, the relative amounts of constitutive, variable, and

foreign antigens approach those fixed in the original model, (3.3). (Note that, in [232], a
different limit was employed, namely, n→∞ with limn→∞ n

(c)/n(v) = C1 ∈ (0,∞) and
limn→∞ n

(f)/n = 0; this is appropriate for exact asymptotics, but not for simulation,
because the asymptotic tilting factor to be used in the latter then does not “feel” the
foreign antigens.)

Lemma 5.3. Let f be the density of Exp(1/τ) (i.e., f(τ) = e−τ/τ/τ), and

ψ(t) := E(etW ) =

∫ ∞
0

exp
(
tw(τ)

)
f(τ)dτ =

1

τ̄

∫ ∞
0

exp

(
t
exp(−1/τ)

τ
− τ

τ̄

)
dτ (5.9)

be the moment-generating function of W1. Under the assumptions of Sect. 5.1.3, the
unique solution ϑ∗ of

gact

m
=
m(c)

m
qz(c)

[
d

dt
logψ(t)

]∣∣∣∣
t=qz(c)ϑ

+
m(v)

m
qz(v)

[
d

dt
logψ(t)

]∣∣∣∣
t=qz(v)ϑ

+
1

m
z(f)

[
d

dt
logψ(t)

]∣∣∣∣
t=z(f)ϑ

(5.10)

is the unique asymptotically efficient tilting parameter for LD simulation of Pn(A).

Proof. Clearly, Pn satisfies the assumptions of Sect. 5.1.1. Note, in particular, that
ψ(t) <∞ for all t ∈ R since W is bounded above and below, and so

Λ(ϑ) = lim
n→∞

log E(eϑGn(z(f))/n) =
m(c)

m
logψ(qz(c)ϑ)+

m(v)

m
logψ(qz(v)ϑ)+

1

m
logψ(z(f)ϑ) <∞

(5.11)
for all ϑ; hence, the Gärtner-Ellis theorem holds by Lemma 5.1. To verify the remain-
ing assumptions of Prop. 4.5, recall from Sec. 5.1.1 that Λ(ϑ) is differentiable (with
continuous derivative) on all of R. The bounds on gact/m lead to

Λ′(0) =
E
(
G(z(f)

)
m

<
gact

m
<
Mw(1)

m
= lim

ϑ→∞
Λ′(ϑ). (5.12)

Λ is strictly convex (since (d2/dt2) logψ(t) is the variance of W t, the tilted version of
W (cf. [9, Prop. XII.1.1]), which is positive since W and hence W t is nondegenerate).
Eq. (5.12) thus entails that Λ′(ϑ) = gact/m has a unique solution ϑ∗, which is positive
(and clearly satisfies (V2)). As a consequence, gact/m is a dominating point of A, which
is a rare event since 0 < I(gact/m) <∞ (by Λ(0) = 0 together with (5.12) and (4.6); cf.
Fig. 5.1, left). Finally, A is a continuity set of both I and I+〈ϑ∗, .〉 simply because I and
〈ϑ∗, .〉 are continuous at gact/m, and A = A◦. Realising that the right-hand side of (5.10)
equals Λ′(ϑ) (see also Eq. (20) in [232]), one obtains the claim from Prop. 4.5.
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Figure 5.1: The cumulant-generating function Λ (left) and the rate function I (right) for the T-cell
model (3.3). The slope of the straight line in the left panel is a = gact/m, where gact = 800 and
m = 1551. At ϑ∗, aϑ− Λ(ϑ) assumes its maximum, I(a) (cf. (4.4) –(4.6)).

The solution of (5.10) is readily calculated numerically. The function Λ, and the
resulting rate function I, are shown in Fig. 5.1.

As described in Sect. 5.1.2, we now tilt the density f of the Tj with ϑ∗ according to
Eq. (5.3). This yields three different densities f̃ϑ

∗
α , depending on the weighting factors

α ∈ {qz(c) , qz(v) , z(f)}, namely

f̃ϑ
∗

α (τ) =
exp(αϑ∗w(τ))f(τ)

ψ(αϑ∗)
=

1
τ̄

exp
(
αϑ∗ exp(−1/τ)

τ
− τ

τ̄

)
ψ(αϑ∗)

. (5.13)

As discussed in Sect. 5.1.2, this is not the density of any known standard distribution
(let alone an exponential one), and simulating from it requires numerical integration
(which is well-behaved since the f̃ϑ

∗
α are numerically well-behaved), and discretisation

and tabulation of the resulting distribution functions F̃ ϑ∗
α , followed by “looking up” the

solution τ̃ϑ
∗

of F̃ ϑ∗
α (T̃ ϑ∗) = U for U ∼ Uni[0,1], to finally yield αW ϑ∗ via αW ϑ∗ =

αw(T̃ ϑ∗).
Searching the table would be the speed- (or precision-) limiting step, requiringO(logK)

operations if K is the number of discretisation steps. This can be remedied by applying
the so-called alias method to quickly generate random variables according to the dis-
cretised probability distribution. For a description of the method, we refer the reader
to [125, pp. 25–27], [113], or [165, p. 248]. Let us just summarise here that, after a
preprocessing step, which is done once for a given distribution, the method only requires
one Uni[0,1] random variable together with one multiplication, one cutoff and one sub-
traction (or two Uni[0,1] random variables together with one multiplication, one cutoff
and one comparison, depending on the implementation) to generate one realisation of
T̃ ϑ∗ , regardless of K (in particular, it does without searching altogether).

We now have everything at hand to formulate the algorithm to simulate (realisations
of) G(z(f)) of (3.3). (For notational convenience, we will not distinguish between random
variables and their realisations here).
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Algorithm 1: Estimation of the activation probabilities in the BRB model.

Input: activation threshold gact, foreign antigen copy number z(f), number of
samples N ∈ N

Result: estimate of P(G(z(f)) ≥ gact)
compute ϑ∗ by solving Eq. (5.10) numerically1

calculate the tilted densities f̃ϑ
∗

α , α ∈ {qz(c), qz(v), z(f)}, via (5.13)2

for i = 1, ..., N do3

for every summand j of (3.3) generate a sample (T̃ ϑ∗j )(i) according to its density4

f̃ϑ
∗

α(j) with the help of the alias method (here, the upper index (i) is added to

reflect sample i, and α(j) is the weighting factor of the sum to which j belongs)
calculate5

(
G(z(f))

)(i)
=

(
m(c)∑
j=1

qz(c)w
(
(T̃ ϑ∗j )(i)

))
+

(
m(c)+m(v)∑
j=m(c)+1

qz(v)w
(
(T̃ ϑ∗j )(i)

))
+ z(f)w

(
(T̃ ϑ∗m(c)+m(v)+1)(i)

)
calculate the indicator function times the reweighting factor (i.e., the i-th6

summand in Eq. (4.9))
if (G(z(f)))(i) ≥ gact then7

R(i) =
m∏
j=1

fα(j)((T̃ ϑ
∗

j )(i))

f̃ϑ
∗

α(j)((T̃ ϑ
∗

j )(i))8

else9

R(i) = 010

end11

end12

calculate
(
P̂ ϑ∗
Pm

(A)
)
N

=

∑N
i=1R

(i)

N
, as estimate of P(G(z(f)) > gact)13

Note that simulation of the extended model (3.4) is a straightforward generalisation
(see also [232] for the explicit LD theory).

5.2 Results

Let us now present the results of our simulations in two steps. We first investigate the
performance of the method, and then use it to gain more insight into the underlying
phenomenon of statistical recognition.
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5.2.1 Performance of the simulation method

We will examine the performance of the importance-sampling method in three respects:
we will compare it to simple sampling (the previously-used simulation method) and to
the results of exact asymptotics (the previously-used analytic method); finally, we will
quantify the efficiency in terms of the relative error (and thus get back to the theory of
Sect. 4.2). In any case, we will consider P(G(z(f)) ≥ gact) as a function of gact (and for
various values of the parameter z(f)). Of course, this probability is just one minus the
distribution function of G(z(f)); in immunobiology, the corresponding graph is known as
the activation curve.

Evaluating this graph by LD simulation requires, for each value of gact to be considered,
a fresh sample, simulated with its individual tilting factor ϑ∗ (recall that this depends on
gact via (5.10)). At first sight, this looks like an enormous disadvantage relative to simple
sampling, where no threshold needs to be specified in advance; rather, the outcomes of
the simulation directly yield an estimate over the entire range of the activation curve.
However, it will turn out that this disadvantage is offset manifold by the specific efficiency
of “hitting” the rare events in LD sampling. (There is still room for improvement: The
samples that do not “hit” a given rare event could be used to improve the estimates of
the more likely events.)

Comparison with simple sampling

Clearly, both the simple-sampling and the importance-sampling estimates are unbiased
and converge to the true values as N → ∞. It is therefore no surprise that they yield
practically identical results wherever they can be compared – and this yields a first quick
consistency check for our method.

This is demonstrated in Fig. 5.2, which shows simple sampling (SS) and importance
sampling (IS) activation curves, each for z(f) = 1000 and z(f) = 2000. For SS, N =
1.3 ∗ 108 samples, G(i)(z(f)), 1 ≤ i ≤ N , were generated altogether for every graph,
whereas for IS, N = 10000 samples were generated for every threshold value considered
(from gact = 100 to gact = 1000 in steps of 50), i.e. 1.9 ∗ 105 samples altogether. Beyond
gact = 450 and gact = 800 (for z(f) = 1000 and z(f) = 2000, respectively), no estimates
could be obtained via SS due to the low probabilities involved, whereas with IS, it is easy
to get beyond gact = 900 in either case, although the probabilities can get down to 10−20

(note, however, that this far end of the distribution is no longer biologically relevant).
In terms of runtime, determining an activation curve (over its entire range) by SS took
48 hours of CPU time (Intel Pentium M 1.4 GHz 512MB RAM), whereas IS required
only about 2 minutes (in the threshold regime where the methods are comparable), that
is, a speedup by a factor of nearly 1500 is achieved.

We also applied our method to the extended model (3.4) with binomially distributed
copy numbers. Figure 5.3 shows the simulation results for two values of z(f), each for SS
and IS. Again, the curves agree, as they must. As to runtime, it took about 130 hours
to generate the 2 ∗ 107 samples for SS, whereas for IS it took 10 min. to generate the
9.5 ∗ 104 samples.
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Figure 5.2: Estimates of the activation curve, P(G(z(f)) ≥ gact), in the basic model (3.3) for
z(f) = 1000 and z(f) = 2000, as well as for the self background (z(f) = 0), on logarithmic scale.
The probabilities were estimated independently with simple sampling (SS), importance sampling (IS),
and exact asymptotics based on large deviation theory (LDT) as used in [232]. For IS, 19 values of
gact were considered (from 100 to 1000 in steps of 50), and N = 10000 samples were generated for each
value (i.e., 1.9 ∗ 105 samples altogether), whereas for the SS simulation, N = 1.3 ∗ 108 samples were
used over the entire range. The SS curves end at gact = 400 and gact = 800, respectively, because larger
values were not hit in the given sample. The IS and SS graphs agree perfectly until the SS simulation
lacks precision. For larger threshold values, we see a perfect agreement of the IS and LDT graphs. Note
the general feature that, for threshold values that are not too small, the activation probability in the
presence of foreign antigens is several orders of magnitude larger than the self background, i.e. Eq. (3.6)
is satisfied.

Comparison with exact asymptotics

A pillar of the previous analysis of Zint et al. [232] (and its precursor BRB [205]) has
been so-called exact asymptotics. This is a refinement of large deviation theory which
yields estimates for the probabilities Pn(A) themselves, rather than just their exponential
decay rates obtained via the LDP in Def. 4.1. With standard large deviation theory (and
our simulation method), it shares the tilting parameter which is calculated according to
Eq. (5.10); for more details, we refer to [232]. A comparison of IS simulation with exact
asymptotics is also included in Fig. 5.2. For small values of gact, exact asymptotics is
slightly imprecise. This is due to the asymptotic nature (n→∞) of the method, which
yields more precise results in the very tail of the distribution, where the deviations
are truly “large”. Note that, although our tilting factors agree with those in exact
asymptotics, rare event simulation does not suffer from this accuracy problem since, due
to the reweighting, it is always a valid importance sampling scheme that yields unbiased
estimates for every finite n; the finite-size effects will only manifest themselves as a
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Figure 5.3: Simulation of P(G(z(f)) ≥ gact) in the extended model (3.4), for z(f) = 1500 and z(f) =
2500. The probabilities were estimated independently with simple sampling, and with importance
sampling at 19 different threshold values (from 100 to 1000 in steps of 50). For IS, 9.5 ∗ 104 samples
were generated (5000 per threshold); for SS, 2 ∗ 107 samples were used. No estimates are obtained with
SS at thresholds beyond 600 or 920, respectively, in analogy with the situation in Fig. 5.2.

certain loss of efficiency, as will be seen below.

Asymptotic efficiency and relative error

In order to investigate the relative error of ( ̂PPϑ∗n (A))N , we first note that the variance
of the estimator is given by
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where we have used (4.9) for N = 1. V
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where the (tϑ
∗
n )(i) are now considered as realisations of (T ϑ
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the squared relative error as
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For simple sampling, one proceeds in the obvious analogous way (without tilting and
reweighting).

In line with the limit discussed in Sec. 5.1.3, we now considered Gn(z(f)) for system

sizes n = ni, where ni = n
(c)
i + n

(v)
i + n

(f)
i , 0 ≤ i ≤ 10, and we choose n

(α)
i = im(α),

α ∈ {c, v, f}, for 1 ≤ i ≤ 10, as well as n
(c)
0 = m(c)/2, n

(v)
0 = m(v)/2, and n

(f)
0 = m(f)

(i.e., we simply ‘multiply’ the system, except for i = 0, which corresponds to ‘half’
a system except for the foreign peptide, which cannot be split into two). We then
simulate P(Gni(z

(f)) ≥ gactni/m) for two values of z(f) and a fixed value of gact with our
importance sampling method, as shown in Fig. 5.4.
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Figure 5.4: Importance sampling simulations for P(Gn(z(f)) ≥ gactn/m) for n = ni, 0 ≤ i ≤ 10, for
gact = 400 and two values of z(f). Left: Estimate of the probability (note that the vertical axis is on
logarithmic scale). Right: estimated squared RE.

Obviously, the (estimated) probabilities decay to zero at an exponential rate with
increasing n, as they must by their LDP. In contrast, the (estimated) squared RE only
increases linearly – this even beats the prediction of the theory (asymptotic efficiency
only guarantees a subexponential increase).

So far, we have considered the n-dependence of the method for a fixed value of gact,
in the light of the available asymptotic theory. For the practical simulation of the given
T-cell problem, we now take the given system size n = m and numerically investigate
the relative error as a function of gact. Here, the exponential decay of P(G(z(f)) ≥ gact)
as a function of gact is decisive, which we have already observed in Fig. 5.2, and which
goes together with the at-least-linear increase of I with gact (recall that I is convex, and
see Fig. 5.1). Fig. 5.5 shows the relative error of both SS and IS. It does not come as
a surprise that, again, IS does extremely well and “beats” the exponential decay of the
probabilities: Whereas, on the log scale of the vertical axis, the squared RE of SS grows
roughly linearly, it remains more or less constant for IS. (The very low squared RE of
the simple sampling graphs for low thresholds in the right panel is due to the fact that
the probability to reach this threshold is quite high and the huge sample of N = 1.3 ·108

contributes to estimating it, that is, the sample sizes are not comparable. A simple
sampling simulation run with the total sample size of a corresponding IS simulation
(i.e., N= 10000 times the number of steps contained in the interval considered) results
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in higher relative errors than for importance sampling even for the low threshold values
(left panel). We would like to note, however, that the runtime of simple sampling for
these small sample sizes is shorter than the runtime for IS, even if one does not count
the overhead required to get the tilting parameters for importance sampling.)
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Figure 5.5: Estimated squared RE for simple sampling (N = 10000 times the number of steps contained
in the considered interval (left), N = 1.3 ∗ 108 (right)), and importance sampling (N = 10000 per
threshold value in either panel) simulations of P(G(z(f)) > gact) of the basic model, Eq. (3.3). Note
that the vertical axis is on logarithmic scale.
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Figure 5.6: Estimated squared RE of our IS estimate, for various frequencies z(f) of the foreign antigen.
Details are as in Fig. 5.5, but now the vertical axis is on linear scale.

Figure 5.6 sheds more light on the behaviour of the relative error of the IS simulation.
It shows the squared RE for 6 distinct z(f)-values and reveals the finite-size effects. The
wave-like behaviour for larger z(f) is due to the fact that, for very low threshold values,
there is no real need for tilting, because the original distribution Pn is already close
to optimal and the tilting factor is very small. For increasing thresholds, substantial
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tilting is required, but there are still visible deviations from the n→∞ limit (as already
discussed in the context of Fig. 5.2), so the tilted distributions are not optimal. This
produces the “hump” in the squared RE curves, which is more pronounced for larger
z(f) values because, for the case n = m considered here, the foreign antigens come as a
single term that may stand out. For large gact, finally, one gets close enough to the limit,
and the expected sub-exponential increase sets in (in our case, it is, in fact, roughly
linear). Nevertheless, it should be clear that, in spite of the slight non-optimality at
small threshold values, our tilted distributions still yield a far lower squared RE than
does simple sampling.

5.2.2 Analysis of the T-cell model

In this Section, we use our simulation method to obtain more detailed insight into the
phenomenon of statistical recognition in the T-cell model. As discussed before, the task
is to discriminate one foreign antigen type against a“noisy”background of a large number
of self antigens. We already know from Fig. 5.2 that, for threshold values that are not
too small, the activation probability in the presence of foreign antigens is several orders
of magnitude larger than the activation probability of the self-background, i.e. Eq. (3.6)
is satisfied. As discussed in [232], this distinction relies on z(f) > z(c), z(v) – basically,
what happens is that larger copy numbers of the foreign antigen “thicken” the tail of
the distribution of G(z(f)) (without changing its mean), so that the threshold is more
easily surpassed. The self-nonself distinction may, according to this model, be roughly
described as follows. For a given antigen (foreign or self), finding a “highly-stimulating”
T-cell receptor is a rare event; but if it occurs to a foreign antigen, it occurs manifold
since there are numerous copies, which all contribute the same large signal, since all
receptors of the T-cell involved are identical; the resulting stimulation rate is thus high.
In contrast, if it is a self antigen that finds a highly-stimulating receptor, the effect is less
pronounced due to the smaller copy numbers. Put this way, the toy model “explains”
the distinction solely on the basis of copy numbers; but see the Discussion for more
sophisticated effects that alleviate this requirement.

Following these intuitive arguments, we now aim at a more detailed picture of how
the self background looks, and how the foreign type stands out against it. To investigate
this, it is useful to consider the histograms of the total constitutive, variable, and foreign
stimulation rates, i.e., the contributions of the “constitutive sum”, the “variable sum”,
and the individual “foreign term” in the sum (3.3), either for all samples or for the
subset of samples for which G(zf) ≥ gact, for various gact (normalising by the number of
”successful” samples would result in an estimate of the conditional distribution). Since
this requires a higher resolution (and thus larger sample size) than the calculation of
the activation probabilities alone, such analysis would be practically impossible with
simple sampling. With IS, we again generated 10000 samples per gact value, from which
between 30 and 70 percent turned out to reach the threshold.

Figure 5.7 shows the resulting histograms when all samples are included, and Figs. 5.8
and 5.9 show the histograms for the subset of samples that have surpassed four represen-
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Figure 5.7: Histograms of the total stimulation rates of variable, constitutive, and foreign antigens, for
z(f) = 0 (left) and z(f) = 1000 (right), in the basic model (3.3), when all samples are included. Sample
size is 10000, and the vertical axis holds the number of samples whose total constitutive (variable,
foreign) stimulation rates fall into given intervals. Note that the scaling of the vertical axis varies across
diagrams.

rate \ gact 0 100 250 500 1000
variable 66.6 74.9 77.1 78.8 80.0

constitutive 22.2 59.2 277.7 590.6 1160

rate \ gact 0 100 250 500 1000
variable 12.7 13.9 14.5 14.9 15.1

constitutive 23.1 35.6 88.8 134.9 191.3
Table 5.1: Sample means (up) and sample standard deviations (below) of the histograms in Fig. 5.7
(left) and Fig. 5.8 (i.e., the self-only case).

tative threshold values, without and with foreign antigen. Tables 5.1 and 5.2 summarise
these results in terms of means and standard deviations. Finally, Fig. 5.10 shows the
joint empirical distribution for all pairs of variable, constitutive, and foreign stimulation
rates, again for various threshold values.

Let us start with the situation without foreign antigens, as displayed in Figs. 5.7 (left)
and 5.8 as well as Table 5.1. This already illustrates the fundamental difference between
variable and constitutive antigens. Judging from the large number (m(v) = 1500) of
individual terms in the sum at low copy number (z(v) = 50), the variable stimulation
rate is expected to be approximately normally distributed and fairly closely peaked
around its mean – at least as long as no restriction on G(z(f)) is involved – and, as the
Figure shows, this feature persists when G(z(f)) > gact, practically independently of the
threshold involved. So, the variable antigens form a kind of background that poses no
difficulty to foreign-self distinction: It is not very noisy, and it does not change with the
threshold.

In contrast, the distribution of the constitutive activation rates is wider; this is due to
the large copy numbers (z(c) = 500), the effect of which is not compensated by the smaller
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Figure 5.8: Histograms of the total stimulation rates of variable and constitutive antigens, for z(f) = 0,
in the basic model (3.3), for samples that reach a given threshold value (gact = 100 (upper left),
gact = 250 (upper right), gact = 500 (lower left), gact = 1000 (lower right)). Sample size is 10000, and
the vertical axis holds the number of samples that reach gact and whose total constitutive (variable,
foreign) stimulation rates falls into given intervals. Note that the scaling of both axes varies across
diagrams.

number of terms, m(c) = 50. Furthermore, the normal approximation is not expected
to be particularly good for the constitutive antigens – given the extreme asymmetry
of the W -distribution (see Fig. 3.2), the central limit theorem will not average out the
deviations at only m(c) = 50. In particular, the distribution remains asymmetric. With
increasing threshold, this distribution moves to the right. The reason for this is that, in
order to reach an increasing gact, the “tail events” of the constitutive or the variable sum
or both must be used, but it is “easier” (that is, more probable) to use the constitutive
one because it contains more atypical events. In the language of large deviation theory,
this is an example of the general principle that “large deviations are always done in the
the least unlikely of all the unlikely ways” [88, Ch. I]. In the language of biology, the
constitutive antigens are the “problem” of foreign-self distinction : Due to their high
copy numbers and incomplete averaging, fluctuations persist that occasionally induce an
immune response even in the absence of foreign antigens. This occurs if a T-cell receptor
happens to fit particularly well to one, or a number of, constitutive antigen types on
an APC; due to their large copy numbers, these few highly-stimulating types are then
sufficient to surpass the threshold (in contrast, several highly-stimulating types would
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Figure 5.9: Histograms of the total constitutive, variable and foreign stimulation rates for z(f) = 1000
in the basic model (3.3). Sample size is 10000, and the vertical axis holds the number of samples that
reach the threshold gact and whose total constitutive (variable, foreign) stimulation rate falls into a
given interval, for gact = 100 (upper left), gact = 250 (upper right), gact = 500 (lower left), gact = 1000
(lower right). The maximal stimulation rate for the foreign antigens is z(f)w(1) = 367.9. Note that the
scaling of both axes varies across diagrams.

be required for the variable antigens to elicit a reaction, which is too improbable).
Let us now turn to the picture with foreign antigen present (Figs. 5.7 (right), 5.9,

5.10, and Table 5.2). One salient feature here is that the variable stimulation rate
behaves exactly as in the“self-only”case: closely peaked around a small mean, unchanged
when G(z(f)) > gact is imposed. The picture is thus dominated by the interplay of
constitutive and foreign types. In line with Fig. 5.2, the situation is similar in the case
without restriction on G(z(f)) (Fig. 5.7, right) and the case when G(z(f)) ≥ 100 (Fig. 5.9,
upper left). In particular, the foreign stimulation rate is closely peaked at 0; only the
constitutive background has moved slightly to the right, exactly as in the “self-only”
case. For gact = 250 (Fig. 5.9, upper right), where, according to Fig. 5.2, foreign-self
distinction sets in, the foreign stimulation rate becomes prominent: The right branch
of the W -distribution now becomes populated, and the associated stimulation rates are
large due to the large copy numbers z(f) involved.

Still, for gact = 250, the foreign stimulation rate is close to 0 in a sizeable fraction
of the cases in which an immune reaction occurs – here, the reaction is brought about
by the constitutive background, which moves to the right just as in the “self-only” case
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rate \ gact 0 100 250 500 1000
variable 65.9 74.1 74.2 76.2 78.4

constitutive 21.8 55.9 129.5 270.4 821.1
foreign 0.9 4.0 184.8 279.6 302.2

rate \ gact 0 100 250 500 1000
variable 12.7 14.1 13.9 14.2 14.7

constitutive 22.4 42.0 90.4 109.1 163.7
foreign 6.7 18.5 112.2 54.5 39.2

Table 5.2: Sample means (top) and sample standard deviations (bottom) of the histograms in Fig. 5.7
(right) and Fig. 5.9 (i.e., the case with foreign antigens).

(but less pronounced). Fig. 5.10 shows that the constitutive and foreign stimulation
rates are, indeed, negatively correlated: as is to be expected, low foreign rates are com-
pensated by high constitutive rates and vice versa (in contrast, the variable background
hardly correlates with either the constitutive or the foreign stimulation rate). As in the
“self-only” case, therefore, the level of “unwanted” activation (“self-only” or “mainly self,
without appreciable foreign activation”) is set by the tail behaviour of the constitutive
background. However, if gact is increased further (Fig. 5.9, lower left), every T-cell be-
yond the threshold displays high stimuli for the foreign antigen, their distribution shifting
even further to the right and concentrating near the maximal stimulation rate given by
the maximum of the function w of Eq. (3.1), more precisely, by z(f)w(1). This maximum
can, of course, not change by imposing restrictions on G(z(f)); thus, any further increase
of gact (Fig. 5.9, lower right) must then be matched by the by now familiar shift of the
constitutive background. (This last panel is, however, less biologically realistic since the
probabilities involved are too small to be relevant – after all, with about 107 different
T-cell types, threshold values that yield activation probabilities far below 10−7 even in
the presence of foreign antigens cannot be very healthy.)

A further illustration of the onset of self-nonself distinction is presented in Fig. 5.11.
Here we consider

P
(
G(z(f))−z(f)Wn(c)+n(v)+1 > gact | G(z(f)) > gact

)
=

P
(
G(z(f))− z(f)Wn(c)+n(v)+1 > gact

)
P
(
G(z(f)) > gact

) ,

(5.17)
i.e., the probability that, in a T-cell that is activated in the presence of foreign antigen,
the self component alone would have been sufficient for the activation. From z(f) = 1000
onwards, this probability decreases to 0 quickly with increasing gact. Put differently, in
large parameter regions, the foreign antigens do indeed make the difference, which is the
decisive feature of self-nonself distinction.
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Figure 5.10: Pairwise joint empirical distributions of the total constitutive, variable, and foreign
stimulation rates, for those samples with G(z(f)) > gact in the basic model (3.3) (with z(f) = 1000).
Greyscales correspond to number of samples falling into 2D-intervals defined by total stimulation rates
of pairs of antigen types. Rows (from top to bottom): gact = 100, 250, 350, 500, 750, 1000; columns (from
left to right): constitutive (horizontal) – variable (vertical); foreign (horizontal) – variable (vertical);
foreign (horizontal) – constitutive (vertical). Lighter shading corresponds to higher frequencies.
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Figure 5.11: Fraction of samples whose self-component alone is above threshold, among those that
reach the threshold in the presence of z(f) foreign molecules, for various z(f) (i.e., IS simulation of the
probability in Eq. (5.17)). Sample size is 10000 for each gact value considered.
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Figure 5.12: Different categories of T-cells in dependence to their reaction to self antigens. The grey
areas mark the part of the T-cell repertoire that would be the desireable outcome of negative selection.

5.3 Negative Selection

In this second section of the T-cell activation analysis chapter we motivate and develop
extensions of the basic BRB model that incorporate negative selection. Again we use
our importance sampling approach to analyse these extensions.

From the analysis of the basic BRB model as presented in the previous section and
in [205, 232, 119] it follows that with this kind of model foreign-self discrimination is
possible if enough foreign antigens are presented and an adequate activation threshold is
chosen. As described in the introductory chapter and for example in [150, 132], there are
indications that dendritic cells have an antigen processing mechanism that is stimulated
by the parallel triggering of an innate receptor. Consequently, antigenic material from
pathogens is more efficiently processed and more pathogenic antigens are presented on
the DC surface. This would clearly speak for the relevance of the basic BRB model.
However, it is still unclear if similar mechanisms are in place for other APC such as
B cells or macrophages. Furthermore, it is thinkable that the impact of this positive
stimulation does not lead to an elevated presence of foreign antigens in comparison
to self antigens on the DC surface but is a necessity to have at least some of them
presented. This is the case if an (abundant) number of self antigens compete with the
foreign antigens for MHC molecules. Moreover, experiments show that only very few
cognate antigens are necessary to activate a T-cell [156]. The basic BRB model has
therefore to be modified in order to better reflect the reality.

One crucial assumption in the basic BRB model is that from the point of view of
every antigen the dissociation rate over the pool of all possible T-cell receptors follows
an exponential distribution. All the more so, this exponential distribution is the same for
all antigens. However, if we take a closer look on the T-cell repertoire we can intuitively
split it into different sets, see therefore Figure 5.12.

There is the set of T-cells that react, if at all, only very weakly to self antigens. Other
T-cells react very strongly to at least one self antigen and there are T-cells that react with
various intermediate strengths. Intuitively speaking, a T-cell repertoire which consists
only of T-cells from the first set and perhaps of parts of the last set, but definitely not
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of the second set would be preferable if not necessary in comparison to the original,
unconstrained T-cell repertoire. T-cells with a high probability of self activation are the
cause of autoimmune diseases and a T-cell repertoire without such cells is beneficial.
The question is how the peripheral T-cell repertoire is shaped such as to consist only of
beneficial T-cells.

In the introductory part of the thesis we described two selection processes in the
thymus. A T-cell undergoes positive selection by which it is tested if it is capable of
binding to a pMHC complex at all. This guarantees that only suitable T-cells enter the
periphery. In the basic BRB model it is assumed that this process is already completed.
The second process, negative selection, deletes all T-cell that react too strongly to self
antigens [184]. This process should, if working properly, provide for a peripheral T-
cell repertoire as described above. Negative selection is not included in the basic BRB
model as presented in the previous sections but in an extended version which is also
introduced in [205, 232]. Additionally, there exists a mathematical analysis of a related
T-cell activation model that uses a Bernoulli distribution instead of the W distribution
for the description of the stimulation rates [204]. We revisit the extended BRB model
and propose a second alternative extension. Both new models are then analysed.

5.3.1 BRB model with negative selection

In simple words negative selection in our modeling context works as follows. In the
thymic medulla a T-cell meets an APC loaded with a random ensemble of self antigens.
If the T-cell is stimulated too much by these antigens, the T-cell is removed from the pool
of T-cells. T-cells reside for at least 4 to 5 days in the medulla. Therefore they encounter
several APCs with random antigen loadings. Hence, all surviving T-cells should have a
very low probability of self activation. This process is included in the BRB model and
thereby changes the stimulation rate distribution of the self antigens.

In the BRB model, it is assumed that negative selection acts only upon constitutive
antigens. Originally, this was motivated by the idea that variable antigens, which are
tissue specific or only expressed under certain stress conditions, are not presented in the
thymus. This was proven to be wrong (see e.g. [115]). Nevertheless, it is justifiable to
concentrate on the constitutive antigens, as the stimulation rates of the variable antigens
play no major role in the basic BRB model (see our discussion on p. 58). The probability
of a T-cell to survive one round of negative selection in this model can be calculated as

P(survival of a T-cell) = P
(m(c)∑
j=1

z(c)Wj +
m(c)+m(v)∑
j=m(c)+1

z(v)Wj ≤ gthy

)
, (5.18)

where gthy is the thymic activation threshold [143]. This is the maximal stimulation rate
allowed to be induced by a random collection of self antigens and thus poses a constraint
to the stimulation distribution by self antigens. In accordance to Zint el al. gthy is set
to 140 [232]. This is equivalent to the assumption that the probability of a T-cell to
survive one meeting with an APC is about 95%. In the course of negative selection a
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T-cell encounters several APCs and is thereby challenged with different sets of antigens.
Henceforth we term these different meetings as rounds of negative selection and we
consider k rounds of negative selection for different values of k. The other variables
are the same as in the basic BRB model, that is m(c) = 50, m(v) = 1500, z(c) = 500,
z(v) = 50.

The question at this point is how negative selection can be modelled in the context of
the basic BRB model. In the following we present two different approaches.

1st variant of negative selection for the BRB model

In the proposed extension of van den Berg et al. and Zint et al. the number of different
antigen types or more exactly the number of classes of antigen types that induce the
same stimulus to a given T-cell is confined to m(c) [205, 232]. That is, a class of antigen is
defined as such every T-cell that encounters a member of the antigen class is stimulated
by this member in the same way as all the other members would do. Thereby we
effectively reduce the size of the set of possible self antigens from nearly infinite to only
m(c).

Although the idea of introducing such classes is biologically plausible if we remember
that TCRs ’see’ antigens as small amino acid strings and there are amino acids that are
relatively similar in their composition (atomic composition, charging ...), in our case the
number of classes m(c) is very small. It is a rather extreme case. Here, we put a very
strong constraint on the constitutive antigen repertoire but we consequently do not have
to deal with the setback of the need to meet to many different antigens. There is only
one possible mixture. Several rounds k of negative selection are then only necessary to
search through the space of variable antigen mixtures.

If we recall the definition of the BRB model (see Section 3), the stimulation rate
distributions are the basic ingredients in describing the meeting of a T-cell with a random
APC in the periphery. In order to incorporate negative selection into the framework of
the BRB model, T-cell deletion has to be reflected in the stimulation rate distributions
of the constitutive antigens. In line with the basic T-cell model it is impossible to
define a stimulation rate distribution for every self antigen, due to the vast amount of
possible self antigens. Therefore, van den Berg et al. and Zint et al. chose not to look
at single stimulation rate distributions at all but define negative selection in a way to
work on the distribution of the total sum of the constitutive stimulation rates [205, 232].

Mathematically speaking, they defined the random variables C :=
∑m(c)

j=1 z
(c)Wj (random

variable representing the total stimulation rate induced by all constitutive antigens on

the APC) and V :=
∑m(v)

j=1 z
(v)Wj (random variable representing the total stimulation

rate induced by all variable antigens on the APC) with distribution functions F (c) and
H(v). Negative selection only acts on the constitutive stimulation rate, such that C is
transformed to a new random variable Cneg. This random variable describes the total
constitutive stimulation rate after negative selection. Its distribution function can be
calculated following Bayes theorem, with the events A = {C ≤ c} and B = {C + V ≤
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gthy} as

F neg(c) = P(A|B) =
P(A ∪B)

P(B)
=

∫
1{c′≤c}H(gthy − c

′
)dF (c

′
)

P(B)
(5.19)

Building upon these considerations we can reformulate the total stimulation rate equa-
tion from the basic BRB model (eq. (3.3)).

Gneg(z(f)) := Cneg +
(m(v)∑
j=1

qz(v)Wj

)
+ z(f)Wm(v)+1, (5.20)

This means that a T-cell that survives negative selection and is released into the periph-
ery there meets APCs which are equipped with antigens, again. We assume that every
APC is equipped with antigens from all constitutive antigen classes and in total these
can only induce a stimulus that follows the newly calculated stimulation rate distribu-
tion F neg(c). Additionally the APC is also equipped with variable and foreign antigen
types whose stimulation rates all follow the original W distribution.

From the biological point of view this perception of negative selection can be also
interpreted in another way. Without the introduction of m(c) classes of constitutive
antigens we can assume to have a very large finite set of constitutive antigens. Their
stimulation rates are all identically distributed and the subset that is presented by an
APC is generated by choosing them without replacement. The resulting total stimulation
rate always follows the same distribution as our random variable C. So, if we let negative
selection act upon C, this can also be interpreted as if a given T-cell meets all mixtures
of antigens, that induce the same stimulus as the current realisation of C.

To illuminate this important point it is helpful to think of an example. With gthy

we introduce a selection threshold and with equation (5.19) it is clear that the total
stimulation rate after negative selection never surpasses this threshold as we only consider
events where the stimulation rate stays below gthy. From the perspective of a surviving
T-cell this implies that it has seen all possible antigen mixtures almost surely. It is safe
to say that for this T-cell there is no possibility to stimulate it with constitutive antigens
more than gthy. This assertion is true for every possible T-cell of the surviving T-cell
repertoire. Such a negative selection is of course impossible because of the time and
space constrains in the thymus if we consider the numbers in section 2.2.4. To introduce
several rounds k of negative selection is more or less useless as already implicitly a nearly
infinite k is assumed. Nevertheless, from a mathematical point of view it is possible and
biologically this would imply an even more thorough search not only through the space
of constitutive antigen mixtures but also through the additional variable antigen space.

2nd variant of negative selection for the BRB model

In this first approach to negative selection we comprised all individual constitutive stim-
ulation rate random variables in one total stimulation rate random variable. There is
of course also the second approach to negative selection, which is the opposite of this
first approach. Instead of working on the total constitutive sum, negative selection is
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here seen from the perspective of an individual stimulation rate W with distribution
function F (w) (by abuse of notation we again use F as the symbol for the distribution
function, but mark the difference to the previous F by the use of another argument for
the function).

We assume that for every possible antigen the stimulation rate it induces to all possible
T-cells follows the W distribution. Here, we sort of mark one antigen and observe its
meetings with different T-cells together with different other antigen types on different
APCs. If we repeat that for infinitely many meetings and keep track of the stimulation
rate this antigen induces to a T-cell during such a meeting and if the T-cell survives the
meeting with the APC we can calculate a new W neg distribution. The introduction of
more rounds of negative selection just means that we assume that a given T-cell meets
k APCs which are equipped with our particular antigen and induces always the same
stimulus to the T-cell. Only the other antigen types and thereby the total stimulus
changes. Of course the probability that this T-cell survives several meetings is much
lower. Hence, the W neg distribution should change even more. We assume that this
happens independently for every self antigen in the thymus. Therefore, we can transfer
the result for one particular self antigen to all other self antigens.

If we define the random variable R :=
∑m(c)

j=2 z
(c)Wj +

∑m(c)+m(v)

j=m(c)+1 z
(v)Wj with distribu-

tion function H(r) we can again use Bayes theorem to calculate the distribution of the
stimulation rate induced by one constitutive antigen to a random T-cell conditioned on
the survival of the T-cell during negative selection.

F neg(w) =

∫
1{w′≤w}H(gthy − z(c)w

′
)dF (w

′
)

P(B)
(5.21)

with B := {z(c)W +R ≤ gthy}
Implicitly this leads to a modification of the mean binding time T between a random

TCR and a random constitutive antigen as W = w(T ). This is the third way to think of
negative selection. For constitutive antigens the mean binding time to a randomly chosen
TCR of the mature T-cell repertoire is not any longer exponentially distributed. If we
define F (t) as the distribution function of T , the distribution of T neg can be calculated
by a minor modification of eq. (5.21)

F neg(t) =

∫
1{t′≤t}H(gthy − z(c)w(t

′
))dF (t

′
))

P(B)
(5.22)

Either F neg(w) or F neg(t) are used as the general distribution for either the individual
constitutive stimulation rates or the individual constitutive binding times. That is,
we assume that the independence condition of the stimulation rates also persists after
negative selection. Every constitutive antigen has the same modified stimulation rate
distribution.

These calculations enable us again to reformulate the basic total stimulation rate
equation:

Gneg(z(f)) :=
(m(c)∑
j=1

qz(c)W neg
j

)
+
(m(c)+m(v)∑
j=m(c)+1

qz(v)Wj

)
+ z(f)Wm(c)+m(v)+1, (5.23)
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with W neg
j = w(T neg)

For a better discrimination we denote the first approach to negative selection as com-
prised in equation (5.20) by case 1 and the second approach (eq. (5.23)) by case 2. The
calculations for the underlying distribution functions can be readily modified if we want
a T-cell to undergo k rounds of negative selection instead of just one.

In both cases, for a good foreign-self discrimination

1� P(Gneg(z(f)) ≥ gact)� P(Gneg(0)) (5.24)

has to hold for biologically relevant z(f). As discussed previously, the activation prob-
abilities have to be very low, because otherwise a T-cell would be in a constant attack
mode, not only against foreign intruders but also against the own body.

5.3.2 Simulation method

This section describes the development of a suitable simulation method, which makes
use of the previously developed importance sampling method.

In the extended BRB model two main problems arise with regard to an efficient
simulation of this model: The estimation of the stimulation rate distributions depending
on the survival of negative selection and the efficient simulation of eqs. (5.20) or (5.23).
In case 1 a straightforward naive approach would be a simulation with a huge number of
trials, where in every trial the constitutive and variable stimulation rates are generated
and summed up. If this total sum does not exceed gthy, the constitutive stimulation
rates are kept and new variable and foreign stimulation rates are generated and it is
evaluated if the sum of these stimulation rates exceeds the activation threshold gact. As
mentioned previously in the analysis of the basic BRB model, the second step of this
simulation is very inefficient because of the exponentially decreasing probabilities with
increasing activation thresholds. The first simulation step where it is evaluated if the
hypothetical T-cell survives leads to even more inefficiency as a percentage of trials is
lost at that point because the T-cell might be deleted. This is even more true if more
rounds of negative selection are included.

For case 2 the situation is similar. In fact, the straightforward naive simulation ap-
proach for only one round of negative selection is the same as for case 2. However, if
a newly generated T-cell survives this step the situation in the periphery is different.
Here, only one constitutive stimulation rate is kept and all other constitutive stimulation
rates and the variable and foreign stimulation rates are newly generated. Introducing
more rounds of negative selection also changes the negative selection process in compar-
ison to case 1. Only one constitutive stimulation rate is kept through all hypothetical
T-cell-APC meetings. All other stimulation rates (constitutive and variables) are newly
generated for every round of negative selection. Obviously this whole simulation pro-
cedure would be very inefficient and thus a good estimation of activation probabilities
would be prohibited. Therefore, we have to develop other simulation schemes.

Generally, in the context of importance sampling with exponential tilting two ways
of efficient simulation are thinkable. We could put eqs. (5.19) and (5.20) together and
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try to develop an importance sampling scheme with probably two tilting factors which
have to be numerically determined, one for the generation of constitutive stimulation
rates that do not exceed the thymic activation threshold, the other for the generation
of variable and foreign stimulation rates in the second step. This would pose a rather
involved problem especially as the second tilting factor would be dependent on the
first. For case 2 the formulation of the problem in such a way would be even more
complicated. We therefore chose an alternative approach in which we considered both
problems individually.

In the case of eq. (5.19) we needed the distributions for the variable and constitutive
sum before negative selection. Unfortunately, there exists no closed form expression for
either of them. Therefore, we chose to estimate F neg(c) via simple sampling. This was
possible since reaching the thymic activation threshold gthy is not a rare event. The

estimated distribution F̂ neg(c) is no longer a continuous but a discrete distribution (in
our calculations represented by the according discrete density in form of a histogram).
We evaluated it at 700 points from 0 to 140.

For the estimation of F neg(t) in eq. (5.22) we chose a different way. Here, we were in a
slightly better position. We needed the original distribution F (t) of the random variable
T , which is the exponential distribution by definition, over which we had to integrate.

We also needed the distribution H(r) of the random variable R :=
∑m(c)

j=2 z
(c)Wj +∑m(c)+m(v)

j=m(c)+1 z
(v)Wj. This was easy to estimate via simple sampling for the range from 0

to 140. The estimated distribution Ĥ(r) was then used for a numerical integration of
(5.22).

The estimation of the stimulation rate distributions after negative selection enabled
us to reuse our importance sampling method (see sec. 5.1.1 or [119]) for equations (5.20)
or (5.23). In both formulas we have sums of independent but not identically distributed
random variables. So they are part of the category of models for which our method is
applicable.

To apply the framework of our importance sampling approach to the extended BRB
model, we consider n = m := 1 + m(v) + m(f) (case 1) or n = m := m(c) + m(v) + m(f)

(case 2), where m(f) = 0 or m(f) = 1 depending on whether a foreign antigen is absent
or present, and identify Sm with Gneg(z(f))/m and a with gact/m. Tilting Sm with mϑ
then corresponds to tilting Gneg(z(f)) with ϑ. This, in turn, is equivalent to tilting
every summand in (5.20) or (5.23) with ϑ (since these summands are independent).
Tilting and sampling from the distribution F neg(c) of the constitutive sum Cneg (case
1) is easy as it is a discrete distribution. In case 2 in accordance to the simulation
method for the basic BRB model we do not directly generate random variables of the
tilted W neg but ’pull back’ the tilting parameter to the underlying distribution of T neg.
Thereby we avoid the numerical difficulties of W neg and get a precise simulation method.
To circumvent the speed limiting step of searching through the table of the discrete
distributions we again apply the so-called alias method for discrete random number
generation (see [119, 165, 113]).

Now with everything at hand we formulate the algorithm to simulate realisations
of Gneg(z(f)) and estimate P(Gneg ≥ gact). (For notational convenience, we will not
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distinguish between random variables and their realisations here). We will restrict us to
case 2, the other case follows readily

Algorithm 2: Estimation of the activation probabilities for the the second variant
of the extended BRB model

Input: activation threshold gact, foreign antigen copy number z(f), number of
samples N ∈ N

Result: estimate of P(Gneg(z(f)) ≥ gact)
calculate T neg (case 2)1

compute ϑ numerically such that (5.10) is satisfied; see [119] for the explicit2

procedure
calculate the tilted densities f̃ϑ,neg

qz(c) and f̃ϑα , α ∈ {qz(v), z(f)}, via (5.13)3

for i = 1, ..., N do4

for every summand j of (5.23) generate a sample (T̃ ϑ,neg
j )(i) or (T̃ ϑj )(i) according5

to its density f̃ϑ,neg

qz(c) or f̃ϑα(j) with the help of the alias method (here, the upper

index (i) is added to reflect sample i, and α(j) is the weighting factor of the
sum to which j belongs)
calculate6

(
Gneg(z(f))

)(i) =

m(c)∑
j=1

qz(c)w
(
(T̃ ϑ,neg
j )(i)

)+

m(c)+m(v)∑
j=m(c)+1

qz(v)w
(
(T̃ ϑj )(i)

)
+ z(f)w

(
(T̃ ϑ
m(c)+m(v)+1

)(i)
)

calculate the indicator function times the reweighting factor (i.e., the i-th7

summand in Eq. (4.9))
if (Gneg(z(f)))(i) ≥ gact then8

R(i) =
m∏
j=1

fα(j)((T̃ ϑj )(i))

f̃ϑα(j)((T̃ ϑj )(i))9

else10

R(i) = 011

end12

end13

calculate
(
P̂ ϑ
Pm

(A)
)
N

=

∑N
i=1R

(i)

N
, as estimate of P(Gneg(z(f)) > gact)14

5.3.3 Results

We used our simulation method to analyse the extended BRB model and the results
are shown and explained in this section. At first, we briefly show the impact of neg-
ative selection on the total constitutive stimulation distribution and the constitutive
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binding-time distribution, respectively. Afterwards, we show and analyse the activation
probabilities of both model variants keeping in mind eq. (5.24). Finally we explain how
these activation probabilities and the differences between the basic model and our two
variants of the extended model come about.

To get a first impression on the effect of negative selection, we present some results
from the estimations of (5.19), (5.22) and their counterparts for k = 100 rounds of
negative selection. During negative selection a certain amount of T-cells is killed. From
section 2.2.4 we know these are about 35−70% of all T-cells surviving positive selection.
If we analyse our negative selection calculation in order to assert that they reflect this
percentage we come into troubles. First of all, case 1 has two biological interpretations.
If we use the restricted repertoire idea then the estimation of the percentage of deleted
T-cells is straightforward. With one round of negative selection 5% of all T-cells are
deleted and with 100 rounds of negative selection about 20% vanish. However, if we
adopt the other interpretation of case 1 there is no way to calculate such numbers. In
the stimulation rate distribution all possible stimulations of mixtures of constitutive
antigens are hidden. Trimming of this distribution is equivalent to deleting all T-cells
that are stimulated so much by these different mixtures of constitutive antigens. A look
at case 2 reveals similar problems. From the point of view of one antigen and 1 round
of negative selection, again, 5% of all T-cells get killed. With 100 rounds of negative
selection we have about 99% killed T-cells. But this is only half of the truth, as this
calculation has to be done for all possible constitutive antigens. Even if there would be
exact numbers for the amount of constitutive antigens this would not help, because the
individual antigens are always shown in mixtures. Therefore, we would have to take into
account that in the 5% killed T-cells of one antigen there are T-cells that would have
also been killed by another antigen. All in all it suffices to say that we cannot draw a
connection from our models to the actual number of deleted T-cells .

k = 1 k = 100
experimental estimates 0.00043% 4.28%
case 1 restricted repertoire 5% 20%
case 1 whole repertoire ? (many more) ? (many more)
case 2 one antigen 5% 99%
case 2 all antigens ? ?

Table 5.3: Estimation of T-cell deletion by negative selection in the two model variants. The experi-
mental estimates follow from the estimated number of DCs a T-cell meets in the thymus and the overall
survival percentage (see sec. 2.2.4).

For both models the first step for the simulation is to calculate the distributions of
the constitutive sum Cneg or the binding time T neg after negative selection. Figures 5.13
and 5.14 show the estimated density functions before and after negative selection. For
case 1 the effect of one round of negative selection is striking but also consequential. The
complete tail down to a stimulation rate of 140 is cut off, because of the conditioning on
not surpassing gthy. Values in the neighbourhood of gthy are quite improbable because of
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Figure 5.13: case 1: estimated densities for the stimulation rate of the total constitutive sum before
negative selection (k = 0) and after k = 1 and k = 100 rounds of negative selection.
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Figure 5.14: case 2: densities of T before and after negative selection, for k = 1 and k = 100 rounds
of negative selection.

the effect of the variable sum. C has not to surpass gthy−V and very low values of V are
improbable. While the differences between no negative selection at all and introducing
one round of negative selection is enormous, the introduction of more rounds of negative
selection is not so eye-catching, but nevertheless recognisable. This is because already
with one round of negative selection the harshest condition, not to reach gthy has to be
met. More rounds of negative selection only explore more combinations of a realisation
of C with k different realisations of V . Consequently, the effect of negative selection in
terms of cutting the tail of the distribution diminishes with a growing number of negative
selection rounds.

The situation is different for case 2. One round of negative selection cuts only a
small part of the tail of T . This is a consequence of only looking at the role of one
antigen in a random mixture. Although the overall probability of such a mixture to
induce a stimulation rate gthy is relatively high as Fig. 5.13 clearly shows, this is not
true for a single antigen. High stimulation rates of one antigen are easily compensated
by low stimulation rates of other antigens in the mixture. With the introduction of
more negative selection rounds the situation changes. More and more combinations of
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this individual antigen together with different mixtures of other antigens are tested. It
becomes more probable that a high stimulation rate of the individual antigen is not
compensated by the other antigens at least one time in the many negative selection
rounds. This leads to a cut off of a considerable part of the tail of the exponentially
distributed binding time.

To summarise the first impressions of the 2 negative selection models, we have to
admit that they do not fit to the biologically realistic parameter range of T-cell deletion.
The effect of different rounds of negative selection is quite different for the 2 models and
it is interesting to see how this is reflected in the activation probabilities.

Activation probabilities

This section deals with the estimation and interpretation of the activation probabilities
of the two extended BRB models. In line with section 5.2 and [119] we estimated the
activation probabilities for the extended BRB model for gact ∈ {100, 150, ..., 1000} and
various values of z(f). We present our estimations and compare them to the results of
the basic BRB model.

We start with the analysis of case 1. Figure 5.15 shows the activation probabilities
for three different copy numbers of foreign antigen and only one round of negative se-
lection estimated via simple sampling (SS) and our simulation method (IS). The simple
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Figure 5.15: case 1: Activation curves for z(f) = 0, 500, 2000. Estimated via simple sampling (SS)
and our simulation method based on importance sampling (IS). The right figure is a clipping of the left
one, only showing the probabilities for thresholds between 0 and 400.

sampling estimations serve as confirmation of our results. Obviously, we estimated only
activation probabilities for low thresholds with SS, because of the exponentially decreas-
ing probabilities. For this relevant regime they support our results from the importance
sampling.

As expected, all three probability curves for three different values z(f) differ much with
increasing thresholds. Therefore, the condition (5.24) is fullfilled, as was already shown
for the basic BRB model. But if we compare the results from both models we can see
a great change in the order of magnitude of activation probability (see Fig. 5.16). In
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Figure 5.16: basic vs. case 1: A comparison of the activation probabilities for two different numbers
of foreign antigen with and without negative selection.

fact, what we can learn from this Figure is that the effect of negative selection on the
activation probability increases with decreasing copy number z(f). Consequently, with
negative selection foreign-self discrimination is possible for a whole different range of
parameters. In the basic model discrimination is hardly possible for z(f) = 500, whereas
in the extended model, we have a big difference in the order of magnitude of activation
probability for z(f) = 500 and gact = 250. This shows that foreign-self discrimination
is now possible for cases where foreign antigen copies are only as abundant as copies
of constitutive antigens. This is biologically much more plausible. These results can
be optimised even further if we assume more than one round of negative selection. In
Fig. 5.17 we show the activation probabilities for k = 1 and k = 100 rounds of negative
selection. The effect of allowing more than one negative selection round is again bigger
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Figure 5.17: case 1: A comparison of the activation probabilities for two different numbers of foreign
antigen with two different numbers of negative selection rounds (k = 1 and 100).
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for low z(f). All in all compared to the non-selection case the differences between 1 or
100 are not so big, but still relevant. This had to be expected if we think of the effect of
more rounds of negative selection on the stimulation rate distribution. Nevertheless, we
can see that there is a good foreign-self discrimination for even lower threshold values.
The same holds also if we decrease z(f), which we do not show here. It follows that,
assuming case 1 is a reasonable explanation for negative selection, the BRB model is
able to explain foreign-self activation for more biologically relevant parameters.

Next, we turn to negative selection as in case 2. In Figure 5.18 one can see the
activation probabilities for three different values of z(f) and k = 1, whereas in Fig. 5.19
you can see the same for k = 100. Evidently, the effect of negative selection is very low
for only one round compared to case 1.
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Figure 5.18: case 2: Activation curves for z(f) = 0, 500, 2000 and one round of negative selection
estimated via simple sampling (SS) and our simulation method (IS).

There is nearly no discrimination for z(f) = 500 and negative selection has, there-
fore, no effect. This goes in line with the observations made at the beginning of this
section, where we showed that there is hardly a change for the binding time densities
of the constitutive antigens. The situation is extremely different for a high number of
negative selection rounds. This can also be seen in the comparison with the basic model
(Fig. 5.20). Foreign-self discrimination is easily possible, even for lower threshold values
and a z(f) lower than 500. The results are comparable to case 1, as can be seen in Figure
5.21. The effect of negative selection is even slightly greater for case 2. Hence, also nega-
tive selection as in case 2 contributes significantly to a better foreign-self discrimination.

Stimulation rate histograms

As in section 5.2 and [119], we explain how this results come about by using stimula-
tion rate histograms. These are histograms of the empirical total stimulation rates of
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Figure 5.19: case 2: Activation curves for z(f) = 0, 500, 2000 and 100 rounds of negative selection
estimated via simple sampling (SS) and our simulation method (IS).
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Figure 5.20: case 2 vs. basic: Comparison of activation curves with no negative selection and 100
rounds of negative selection.

the constitutive, variable or foreign antigens. Again, we start with case 1. For better
comparability we choose in both cases k = 100. Figure 5.22 shows the histograms for 4
different activation thresholds. For the basic model we have shown that with increasing
thresholds, more and more probability mass is moved to higher stimulation rates for the
constitutive and foreign antigens. This movement is much faster for the foreign antigens.
This is just a consequence of the fact, that it is far more likely to get one high activa-
tion by foreign, than to get several higher stimulation rates of the constitutive antigens,
which would have the same effect as the foreign. We deal with rare events and they
happen in the least unlikely of all unlikely ways.

The histograms here are quite different in comparison to the basic model. Again, much
probability mass is moved to higher foreign stimulation rates, but there is hardly a change
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Figure 5.21: basic vs. case 1 vs. case 2: Comparison of the activation probabilities for z(f) = 500 and
model variant, that is, no negative selection, case 1 with k = 1 or k = 100, and case 2 with k = 1 and
k = 100.

of the constitutive stimulation rate distribution. Instead, the variable stimulation rate
distribution starts to move to higher stimulation rates. We know that this movement is
very improbable, otherwise it would have also occurred in the basic model. Consequently,
this is the explanation why the extended negative selection model allows for a far better
foreign-self discrimination. The reason for the different behaviour of the constitutive
stimulation rate follows from the process of negative selection. The probability to reach
a higher stimulation rate than 140 is zero after negative selection in case 1 and with more
and more rounds of negative selection the probability to reach values near 140 is also
reduced, which could also be seen in the estimations of the stimulation rate distribution.

As case 2 follows a quite different interpretation of negative selection, it is interesting
to see what happens here. Thus, in Figure 5.23 we show the stimulation rate histograms
for the same activation thresholds for the second case. The general behaviour of the
stimulation rates is similar to the ones for case 1, but there is also a big difference. The
constitutive stimulation rates are lower. Nearly all probability mass is situated at the left
border and this does not change much for increasing threshold values. The constitutive
antigens are taken out of the game nearly completely. This is why case 2 works better
than case 1 for 100 rounds of negative selection. But this also illustrates that the model
is unrealistic: In biological reality it is not possible to take the constitutive antigens out
completely.

The analysis of both extended BRB models reveals that negative selection can have
a huge impact on the foreign-self discrimination ability of a mature T-cell repertoire.
The activation probability and the number of foreign antigen copies z(f) can be signif-
icantly reduced without losing the ability of foreign-self discrimination. The activation
rate histograms show that by negative selection the peripheral mature T-cell repertoire
is changed in such a way that these T-cells have a higher probability of reacting to vari-
able antigens than to constitutive ones. It is important to underline that this higher
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Figure 5.22: Case 1: Histograms of the total constitutive, variable and foreign activation rates for
for z(f) = 500 in the negative selection model (5.20). Sample size is 10000, and the vertical axis
holds the number of samples that reach the threshold gact and whose total constitutive (variable,
foreign) activation rate falls into a given interval, for gact = 100 (upper left),gact250 (upper right),
gact = 350 (lower left), gact = 500 (lower right). The maximal activation rate for the foreign antigens is
z(f)w(1) = 183.95. Note that the scaling of both axes varies across diagrams.

probability is only relative to the probabilities for constitutive stimulation rates but not
to the foreign stimulation rate. Variable and foreign stimulation rates are the same as
in the basic BRB model.

5.3.4 Discussion

The results of the analysis of the two extended BRB models are very promising. However,
it is important to put them into the right context. The previous work in [205, 232, 119]
and sec. 5.2 has already shown that with a probabilistic description of a stimulation
mixture it is possible to describe foreign-self discrimination. Unfortunately it does not
work for biologically more relevant parameters. Nevertheless, it is a good starting point
for further investigations. Here, we concentrated on extensions of the basic model using
negative selection. It was previously shown in [205] and [232] that this extension promises
more biologically relevant results. As, until now, the mechanism of negative selection
is a field of active research, we chose to adopt two different views on negative selection
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Figure 5.23: Case 2: Histograms of the total constitutive, variable and foreign activation rates for
for z(f) = 500 in the negative selection model (5.20). Sample size is 10000, and the vertical axis
holds the number of samples that reach the threshold gact and whose total constitutive (variable,
foreign) activation rate falls into a given interval, for gact = 100 (upper left),gact250 (upper right),
gact = 350 (lower left), gact = 500 (lower right). The maximal activation rate for the foreign antigens is
z(f)w(1) = 183.95. Note that the scaling of both axes varies across diagrams.

which are both simplifications, again.
We explained before that one interpretation of case 1 implies a pool of constitutive

antigens which is very restricted to 50 classes with similar binding behaviours for all
T-cells. This is of course very unlikely, especially if we think of the many different
TCRs and antigen structures. In fact, under this assumption the very reason for the
adaptive immune system to exist would be undermined. The T-cell repertoire loses all
its flexibility and specificity. The second interpretation of case 1 is more promising.
Negative selection works on the total unrestricted T-cell repertoire. However, there is
also a big drawback. It is impossible to estimate how much of the pre-selection T-cell
repertoire will be deleted and how many rounds of negative selection a T-cell needs to
make sure it is not too autoreactive. Both parameters are important as they naturally
restrict the scope of negative selection. Experimental and theoretical research shows
that about 35% to 70% of the pre-selection T-cells survive negative selection. From
recent experiments the mean binding time of a T-cell to a DC could be estimated to
about 3min and the time of a T-cell in the medulla is restricted to about 5 days assume
a mean scanning time of 3min, which is the mean binding time between a T-cell and a
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DC during stage 1 in a lymph node (see Section 2.2.4). This leaves a T-cell with about
2400 DC meetings during negative selection. It is more than questionable if the extended
BRB model as in case 1 would meet this conditions.

Case 2 on the other hand only looks at one individual constitutive antigen and its
binding time and assumes that even after negative selection these binding times are
independent and identical. This is, although more realistic than case 1, still unlikely.
We estimated that for one antigen alone the survival propability of a T-cell is much lower
than the biologically realistic one. This estimation is true for every constitutive antigen
which reduces the survival probability again. This is true even if we consider that there
are many antigen mixtures that can delete one individual T-cell and therefore there are
dependencies between the killing rates of the individual antigens, that will reduce the
overall killing rate. Also the second condition of 2400 DC meetings is hard to meet.
We assumed 100 rounds of negative selection for one constitutive antigen in different
mixtures. This means that a T-cell has to meet every individual constitutive antigen in
100 mixture. There will be of course much overlap between these mixture, but, given
the huge number of possible self antigens 2400 DCs will not be sufficient to fullfill this
assumption.

Thus, it is obvious that the two extended BRB models are oversimplifications of the
biological reality that make the analyses of the model tractable. Nevertheless, there is
much to learn on the effects negative selection can have on a T-cell repertoire. We have
shown that both versions of the extended BRB model produce foreign-self discrimina-
tion for z(f) = 500 and even lower. In that range this parameter becomes biologically
plausible. This holds also for the activation probabilities themselves. We can find suit-
able activation thresholds, such that activation by foreign is no too improbable and on
the other hand activation only by self is improbable enough (see eq. (5.24)). From the
activation rate histograms we learn that through negative selection the impact of con-
stitutive antigens on the stimulation of peripheral T-cells is minimised drastically. The
formerly uninteresting variable antigens have to take their place which leads to the very
good foreign-self discrimination capabilities. In section 2.2.3 we mentioned that the old
assumption that this variable antigens are not present in the thymus is wrong. A new
extension of our models to include negative selection to variable antigens would therefore
be appropriate and could enhance foreign-self activation. However, a careful modeling
would be needed, such that the discussed problems with these models are not facilitated.

At this point we do not see how with this class of models the problem of biologically
unrealistic behaviour can be resolved and the estimated parameters for negative selection
be met. Both, case 1 and case 2 are extreme cases as the restriction to several classes
of antigens is not true as well as the assumption of total independence between all
the antigens concerning their stimulation ability. As the idea of restricting the T-cell
repertoire does not suffer from the backdraw of killing too much T-cells and needing
too much rounds of negative selection, it is appealing to use this idea. T-cells are
crossreactive, especially to antigens with similar amino acid sequences. This could pose
a possibility to introduce antigen classes. These will be considerably more than the few
we assumed here and negative selection will therefore not work as great, but foreign-self
discrimination should still be enhanced. It is also interesting to have a closer look on
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the effect of different presentation probabilities for different antigens inside and outside
the thymus. In [204] this problem was already investigated for a similar model but
with stimulation rates that are Bernoulli distributed. The authors could show that
the intuitive answer, that the ratio of presentation probabilities between the different
antigens should be similar inside and outside the thymus is right. It would be interesting
to see if this is true for our models and how robust foreign-self discrimination is, if there
is a sudden increase of presentation probability of some antigens in the periphery for
example due to cellular stress reactions.



Chapter 6

A discrete T-cell activation model

As a consequence of our previous results with the extended BRB models we formulate
a new model for the investigation of T-cell activation and negative selection. The ob-
jectives are to keep the basic ideas of the BRB model but try a different approach that
helps us to assess or include other important parameters such as the T-cell survival rate
and the number of possible APC meetings during negative selection.

The standard BRB model and its extensions work with two families of self antigen
types. These are the constitutive antigens resulting from all regularly produced pro-
teins/molecules (for example housekeeping proteins from the cells) and variable antigens
from proteins that are produced only under special circumstances or in certain tissues.
The difference between these two families in the model is reflected by a high copy num-
ber of constitutive antigens in contrast to a low copy number of variable antigens (see
page 33). Furthermore it is assumed that there are many more variable than constitutive
antigen types. By our previous analysis we could show that these variable antigens pose
no threat to foreign-self discrimination. But, thereby we tempered with the biological
reality. In Section 2.2.3 we introduced the tissue-restricted antigens. These are about
3000 antigens that are only expressed in certain tissues or during certain developmen-
tal stages (see Section 2.2.4). Hence, they are typical members of the variable antigen
family. However, there is a flaw in these considerations. Taking the body as a whole
this might be true, but in the special tissue they belong to, they are expressed in large
numbers and therefore qualify to be termed constitutive. Ignoring these antigens in neg-
ative selection leads to severe autoimmune reactions and we know that via pGE these
antigens are actually expressed randomly in the thymus [114]. Consequently, in our new
model we should not make a distinction between antigens that are expressed in low or
high copy numbers, as there are always situations in which antigens that are usually
expressed rarely are then expressed excessively.

There have to be tolerance mechanisms in place to prevent T-cell reaction to any self
antigen. It is still unclear how big the contributions of central tolerance and peripheral
tolerance are. For example, Muller and Bonhoffer argue that from the possible amount
of more than 106 self antigen types in a mouse only about 2 · 105 are presented in the
thymic medulla whereas for all the other types mechanims of peripheral tolerance are
responsible [138].

Even if we take this lower number for granted we have a problem with the model of
negative selection in the extended BRB model. One idea there was to introduce classes
of antigens types, where every class comprises all antigen types that induce a similar
stimulus to the TCRs (see page 65). Members of each of these 50 classes are presented

82
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by each APC during and after negative selection. With the above considerations and
numbers in mind this number of classes is clearly too small.

However, the idea of introducing antigen classes and thereby reducing the space of
distinguishable antigen types is very tempting. It is estimated that every T-cell can
bind to about 106 antigen types, where we have to keep in mind that this number refers
to the theoretical total amount of possible antigens [67]. Hence, the number of actual
antigens in a host to which a T-cell can bind should be much lower. Furthermore not all
these antigens bind long enough to induce activation stimuli. If we assume that all the
antigens activating one individual T-cell belong to one class of antigen types and these
types induce similar stimuli to the other T-cells we are back at a model with a discrete
set of antigen classes.

It is biologically reasonable to assume that there are 10 − 100 antigen types that
can activate an individual T-cell (because they are very similar at the molecular level).
Consequently, the amount of antigen classes can be restricted to 1000 − 10000 if every
class has similar numbers of members and we assume that 105 self antigens are presented
in the thymus. We have to ignore the other self antigens due to a lack of knowledge on
peripheral tolerance. This poses no problem if we assume that either peripheral tolerance
is really effective for these self antigens or if these self antigens are only expressed in low
numbers at all times and hence really belong to the family of variable antigens.

In the previous models we assumed the T-cell to ’see’ all antigens on an APC, which
are at least for the case of dendritic cells about 300000 [205, 52, 128]. However, if we
assume to investigate negative selection in combination with tissue restricted antigens,
these antigens are mostly presented by mTECs and only by some DCs that get the
antigenic material via mechanisms of crosspresentation from mTECs. These epithelial
cells express about 1− 5 · 104 MHC molecules and present about 90 different TRA types
besides other antigens [138, 52]. Hence, the number of antigens a T-cell sees is much
smaller than before. Even if we only investigate antigens that are regularly expressed in
all tissues and are mostly presented by DCs, we have to note that over the course of time
DCs lose pMHC molecules from their surface [85]. Therefore, at least thymus-homing
DCs that enter the thymus from the periphery might have lost antigens on their way into
the thymus and lose even more in the thymus. It is also true that T-cells scan only parts
of a dendritic cell and therefore do not see all antigens [85]. Consequently, a reduction
of the number of presented antigens is not only adequate for the thymus but also for the
periphery.

6.1 The model

With these facts at hand we are now able to establish a new, discrete model of T-
cell activation, where we speak of discrete because we assume to have a discrete set of
potentially immunogenic antigen classes in an organism.

The essence of BRB-like models is that a T-cell receives a total stimulation that is
composed of a mixture of signals induced by various antigens and has then to decide
if one of the stimulating antigens is foreign. One major difficulty for the analysis of
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these models is the stimulation rate W , where no closed form of its distribution exists.
Unlike Molina-Paris and van den Berg [204], we do not simplify this distribution in
order to make it mathematically tractable, but rely again on our previously described
importance sampling approach that should be suitable for the analysis of all BRB-like
models. In order to introduce a model that enables us to keep track of the negative
selection parameters, we follow our ideas from the previous section, that is we do not
assume an infinite space of different antigen types and we introduce classes of antigen
types. Each class consists of antigen types that induce similar stimuli to a given T-cell.
We furthermore assume that all these antigens appear in high frequencies and we ignore
all antigen types that are only expressed in low frequencies. An APC presents only
members of some of these antigen classes and not from all at once as we assumed for the
extended BRB model in Sec. 5.3.

This assumption leads to the definition of two variants of our model. The antigens
presented by an APC can either be sampled without replacement from the antigen
classes, such that each presented antigen type belongs to another class, or they can be
sampled with replacement, whereby we we do allow for multiple antigen types from the
same antigen class being presented by an APC. Accordingly we now define our T-cell
activation model for the sampling without replacement variant (abbreviated by ’swor’)
and afterwards for the sampling with replacement variant (abbreviated by ’swr’).

’swor’ variant of the discrete T-cell activation model

1. Let S := {1, 2, . . . , K} be the set of (high-frequency) self antigen classes. (We
do not consider low-frequency self antigens at all because we know they do not
matter).

2. Let T-cell i be defined by the individual stimulation rates induced by all self
antigen classes, i.e., Ti := (Wi1, . . . ,WiK). The Wij are i.i.d. ∼ g (see page 33 and
Figure 3.2), drawn once and fixed for the entire life of the T-cell. (This is a novel
aspect of the model.)

3. An APC r presents (and is defined by) a subset of size ns of all self antigen classes,
i.e., Ar ⊆ S, |Ar| = ns, where the Ar are independent of each other, and the
elements of every Ar are drawn from S independently and without replacement.
Every antigen is displayed at the same copy number zs. There are R + 1 APCs.

4. When Ti meets Ar, it adds together the stimulation rates it assigns to this APC’s
antigens, i.e., G

(Ar)
i (zf) =

(
qzs
∑

a∈Ar Wia

)
+ qzfWi,ns+1. The factor q = M/(zf +

zsns) is the displacement factor to ensure a constant total antigen number M on
an APC if we add foreign antigens.

5. Ti survives negative selection if G
(Ar)
i (0) < gthy, 1 ≤ r ≤ R.

6. A surviving T cell is then sent to the periphery and is activated if G
(AR+1)
i (zf) >

gact.
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’swr’ variant of the discrete T-cell activation model

In a similar way we can introduce our second model variant.

1. Let S := {1, 2, . . . , K} be the set of (high-frequency) self antigen classes.

2. Let T-cell i be defined by the individual stimulation rates induced by all self
antigen classes, i.e., Ti := (Wi1, . . . ,WiK). The Wij are i.i.d. ∼ g (see page 33 and
Figure 3.2), drawn once and fixed for the entire life of the T-cell.

3. An APC r presents (and is defined by) a multiset of size ns of all self antigen
classes, i.e., Ar = (S,m), where m is a function from S to N such that for each
s ∈ S, m(s) is the multiplicity of s and

∑
s∈Sm(s) = ns. In this case m follows a

multinomial distribution on the set S, where the probability to choose any s ∈ S
is 1/K and is realised by the sampling of ns antigens from the set S independently
and with replacement. Every antigen is displayed at the same copy number zs.
There are R + 1 APCs.

4. When Ti meets Ar, it adds together the stimulation rates it assigns to this APC’s
antigens, i.e., G

(Ar)
i (zf) =

(
qzs
∑

a∈Ar m(a)Wia

)
+ qzfWi,ns+1. The factor q =

M/(zf +zsns) is the displacement factor to ensure a constant total antigen number
M on an APC if we add foreign antigens.

5. Ti survives negative selection if G
(Ar)
i (0) < gthy, 1 ≤ r ≤ R.

6. A surviving T cell is then sent to the periphery and is activated if G
(AR+1)
i (zf) >

gact.

Choice of parameters

We analyse the model under the assumption that the number of copies of foreign antigens
zf is either 0 if no foreign antigen is present or zs if a foreign antigen is present. Note that
this is a significant restriction in contrast to the basic BRB model where we achieved
foreign-self discrimination by an increase in the copy number of the foreign antigen type.

We know from the previous analysis of the basic BRB model that under the assumption
of similar antigen copy numbers for self and foreign, foreign-self discrimination is not
possible. Although it does not follow exactly the basic BRB model this holds also for our
model before negative selection, as we will show in Section 6.3. Hence, we are confined
to negative selection in order to achieve foreign-self discrimination.

For the introduction of negative selection in this model we need two different pa-
rameters, the T-cell survival probability and the number of APC meetings. As already
mentioned previously the former is estimated to be in the range of 35−60% and the latter
is at most about 2400 (see Section 2.2.4). For our model we therefore choose R = 2000
APC meetings during negative selection for every T-cell and adjust the thymic activation
threshold gthy such that 50%(or 40%) of all T-cells survive the process (the adjustment
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of gthy is done via simulation. Note that this is not a difficult task, since neither survival
nor death is a rare event.). Especially the number of APC meetings R (also known
as rounds of negative selection) is still under discussion and there is experimental and
theoretical evidence that this number might either be much too high or that the variance
is quite high, that is some T-cells see much less APCs whereas some much more (see
therefore chapter 7). However, as this estimate results from the most recent experiments
we chose to adhere to them.

According to the previous section, we chose the number of antigen classes K to be
either 1000 or 10000. The number of sampled antigen classes ns is either 50 or 100.
These numbers will suffice to give us a good idea on how they affect negative selection
and therewith foreign-self discrimination in our model as we will see in Section 6.3.

6.2 Simulation approach

For the proper analysis of this model we have to solve the problem to estimate the
probability of T-cell activation in the periphery with and without foreign antigen. The
assumption that T-cell activation in general has to be a rare event also holds for this
model and an analytical or numerical calculation of these probabilities is impossible
because of the distribution of the stimulation rate W . Hence, a simulation method
is necessary for the estimation. Again, the easiest way is the straightforward simple
sampling approach, which consists just of sampling of a T-cell, letting this T-cell undergo
negative selection and afterwards meet an APC in the periphery. If this T-cell survives
and is activated we increase a counter and start the procedure again for a new T-cell.
At the end we divide our counter by the total number of procedure rounds and get the
estimate for the probabilities. This would be time-consuming even without negative
selection as we deal with rare events and to estimate the probability of such events a
huge amount of simulation trials is needed. By the inclusion of negative selection the
whole simulation procedure slows down even more. We therefore chose to reuse central
ideas of our importance sampling and create new heuristic simulation methods that fit
the model. Obviously, because we have two different variants of our model depending on
the way how the self antigens are sampled, we had to develop two different simulation
methods. We start with the method for the swor variant.

IS simulation for the swor variant

First of all we have to note that our model consists of 3 steps, creation of a T-cell,
checking whether it survives negative selection and testing its activation capability. If
we introduce the further assumption that every T-cell is only subjected to one APC
meeting in the periphery, we can interchange the order of these steps to introduce a more
efficient sampling scheme than simple sampling. The creation of a T-cell, the random
choice of antigens an APC presents in each selection step and for the activation test in
the periphery are independent events. Therefore, we can also choose the first ns antigens
for the activation test, then sample the stimulation rates of these antigens, check if the
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stimulation rate exceeds a given threshold gact and afterwards add the remaining antigen
stimulation rates and start negative selection. Note, that we arbitrarily chose to use the
first ns stimulation rates. We could have chosen any other combination of ns indices,
because one crucial assumption in our model is that we draw all stimulation rates W
independently and we do not superimpose any other restriction on the antigen repertoire
(such as, that some antigen classes are presented more often). The consequence is a
permutation invariance of the indices. This change of order enables us to reuse our
initial simulation method for the original BRB model, because the total stimulation rate
formula describing the stimulus that is induced to a T-cell Ti can be expressed as

Gi(zf) = qzs

ns∑
j=1

Wij + qzfWi,ns+1 (6.1)

Equation (6.1) is the same as equation (3.3) without the variable antigens. The first
step for the estimation of the activation probability of a random T-cell that has survived
negative selection, P(Gneg(zf) ≥ gact), is therefore to use the importance sampling scheme
we developed for this model (see algorithm 1). To include negative selection we just have
to add a minor modification. We want to estimate

P(G(R+1)(zf ) > gact | Ω) =
P(G(R+1)(zf ) > gact,Ω)

P(Ω)

= P(Ω | G(R+1)(zf ) > gact)
P(G(R+1)(zf ) > gact)

P(Ω)
,

(6.2)

where Ω is the event of surviving negative selection. The probability to survive negative
selection P(Ω) is predefined and we estimate the probability P(G

(R+1)
i (zf ) > gact) with

our usual importance sampling algorithm. The only new component is the factor P(Ω |
G(R+1)(zf ) > gact). We can estimate this probability if we extend our simulation. In our
algorithm we at first only generate the first ns stimulation rates according to the tilted
W ϑs, check whether G(zf) exceeds gact and calculate the reweighting factor. In addition
if the stimulus exceeds the threshold we now generate K−ns stimulation rates from the
untilted stimulation rate distribution and thereby get a complete T-cell. Next we let
this T-cell undergo negative selection. By counting the number of T-cells that survive
negative selection and dividing this number by the number of samples that reach the
activation threshold we get an estimate of P(Ω | G(R+1)(zf ) > gact).

An approximative IS simulation for the swor variant

Unfortunately, it turns out that this importance sampling scheme can be quite inefficient
for certain parameter combinations in our model. The higher the activation threshold,
the higher the ns stimuli have to be in order to induce a total stimulus which is higher
than the threshold. For the case of 1000 antigen classes it is quite probable that during
negative selection some of these antigens are seen together and hence the thymic activa-
tion threshold is reached. In fact, with increasing threshold values the number of T-cells



88 A discrete T-cell activation model

that survive decreases exponentially. This effect is even worse for the T-cells that induce
stimuli which exceed gact. Therefore we have to increase the number of sampled T-cells
drastically for higher threshold values to get a good estimator.

As a consequence we developed a second, more efficient but approximative importance
sampling scheme. The idea behind it is rather simple. At first we estimate a new
stimulation rate distribution after negative selection. We therefore generate T-cells Ti,
let them undergo negative selection and take all Wij of the surviving T-cells to create
a new empirical distribution of the post-selection stimulation rate. As T-cell survival is
not a rare event, this simple sampling approach is not too time consuming.

We now assume that generating T-cells from the original stimulation rate distribution
and letting them undergo negative selection leads to the same repertoire of surviving T-
cells as if we directly generate them from the post-selection stimulation rate distribution.
Hence, we can use this distribution instead of the original one in order to estimate T-cell
activation probabilities in our IS approach. Of course, this can only be approximatively
true, because we condition on the survival of negative selection and therefore the Wij

are not independent anymore. However, we will see that for our model the results of
this simulation approach are comparable to the ones of the IS scheme describe before.

In the result section 6.3 we will show that the estimations from both importance
sampling schemes are similar at least for the range of activation thresholds where we get
good estimates for our first method. As the second method does not have to deal with
the drawback of the first, we can use it to estimate probabilities for far higher activation
thresholds.

IS simulation for the swr variant

Antigen sampling with replacement changes the situation. All the considerations regard-
ing the independence of the different steps in the model and the permutation invariance
of the antigen indices still hold, but we do not have a constant copy number zs for every
antigen type presented. Instead we have random copy numbers. Equation (6.1) therefore
changes to

Gi(zf) = qzs
∑

s∈S:m(s)>0

KsWis + qzfWi,ns+1, (6.3)

where Ks = m(s) are (dependent) random variables with
∑ns

s=1 Ks = ns and follow a
multinomial distribution. While it might seem a notational overload to introduce these
random variables Ks as they are covered by the random multiplicity function m(.),
we feel that this will help to clarify our simulation approach which we develop in the
following.

In principle, equation (6.3) is also covered by the general theory of rare event sim-
ulation via exponential tilting. However, in our original importance sampling scheme
we assumed independence of the different summands (see section 5.1.1). Thereby, the
generating function of the total stimulus random variable in eq. (6.3) would factorise.
Here we have a dependence between the different summands and no factorisation of
the moment-generating function. Numerical calculations would require the knowledge
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of the joint probabilities, especially the (small) probabilities we are looking for in our
simulation.

We could of course just use the importance sampling scheme which we derived for
equation (6.1). This would be rather inefficient, depending on how the Ks actually look
like (only for an increasing set S of self antigen classes, the probability of sampling anti-
gen indices severalfold decreases, such that ultimately P(Ks = 1) → 1, s = 1, ..., ns,
which would be the case without replacement). In order to develop an efficient impor-
tance sampling scheme we can make use of the permutation invariance of the antigen
indices, again, as we did for the ’swor’ variant. In the context of this model variant
this means also that it does not matter to which antigen classes the multiplicity fac-
tors actually belong, once they are generated. Consequently, it also does not matter if
we create these Ks first and then sort them from highest to lowest, such that we have
Kπ(s1) > Kπ(s2) > ... > Kπ(sns ) with sj ∈ S and π a permutation of the indices. Only
afterwards we generate the stimulation rates W .

A first idea for a better IS scheme would be to define a related model for which it
is easy to compute tilting factors. We therefore estimate mean values K̄π(sj) for the
sorted multiplicity factors Kπ(sj) over a huge amount of T-cell APC meetings and define
a modified equation for the total stimulus induced to the T-cell Ti:

Gi(zf) = qzs

ns∑
j=1

K̄π(sj)Wij + qzfWi,ns+1. (6.4)

Computation of the tilting parameters is straightforward as the K̄π(sj) are constants. We
can then use these for the simulation of our original model.

However, we thereby ignore the stochastic nature of the Kπ(sj), which can, again, lead
to problems in our sampling scheme. To clarify this point we have to think about the
nature of the events we are about to estimate. We want to estimate rare events, in this
case reaching high activation stimuli. For this to happen we need either high stimulation
rates or (and this is the crucial point) not so high stimuli multiplied by high Kπ(s).

So, we do not only have the possibility to increase the probability to reach high stimuli
by tilting the stimulation rate distributions, but also by changes in the discrete Uniform
distribution U on S which guides the sampling with replacement of the antigen indices
and therewith the generation of the Kπ(sj).

In order to develop an IS scheme based on these considerations we, at first, go one step
further. According to the importance sampling procedure, tilting of the stimulation rate
distributions and changes of the uniform distribution both lead to the need of reweighting
back to the original distributions. We now consider these reweighting factors as the
’costs’ to get high stimuli and we want to minimise these costs. Equation (6.4) would be
useful if the costs for tilting the stimulation rate distribution are much lower than the
costs of changing U .

Let us now imagine we are in the opposite situation that the ’changing costs’ to
enhance the probability to choose a high stimulus antigen severalfold are much lower than
the ’tilting costs’ to elevate the probability to create a T-cell with many high stimuli.
In this situation it is appropriate to only change the discrete Uniform distribution U .



90 A discrete T-cell activation model

One possible importance sampling scheme that could be used in this situation works as
follows.

We just generate a large number L of T-cells Ti, sort the stimuli for every T-cell from
lowest to highest, such that we have T-cells T̃i = (Wi,π(1), ...,Wi,π(K)) with Wi,π(1) <
Wi,π(2) < ... < Wi,π(K) and π a permutation of the indices. We can then define a vector

V = (V1, ..., VK) with Vj = 1
L

∑L
i=1Wi,π(j), which we call mean stimulation rate vector.

This vector can be used to calculate an appropriate change of U . Again, we propose a
modified version of the exponential tilting. That is we are looking for an optimal ζ to
get a new distribution U ζ via tilting of the pj = 1

K
from the discrete uniform distribution

with eζVj :

pζj = exp(ζVj)
1

K
/C, (6.5)

as usual, C is the normalisation factor The optimal tilting parameter can be calculated
by solving

E

[
qzs

ns∑
i=j

VQi + qzfW
ζ
ns+1

]
= gact, Qi ∼ U ζ (6.6)

for ζ. The probability of T-cell activation is then calculated by generating and sorting
of a T-cell, choosing stimuli by sampling from U ζ and then checking if gact is exceeded
and reweight back to the original uniform distribution. So, the trick here is to enhance
the probability that a T-cell encounters an APC which primarily presents antigens that
induce high stimuli to the T-cell. See algorithm 3 for a summary of the method.

We now have importance sampling schemes for the two extreme cases, where tilting of
the stimulation rate distributions is either much more expensive or much cheaper than
tilting of U . However, in reality we do not know if any of these situations applies. For
many parameter settings it will be rather something in between. Hence, we have to go
one step further to get a really efficient importance sampling scheme and combine tilting
of the stimulation rate distributions and tilting of U . The main problem for this is that
we have to calculate optimal parameter pairs (ϑ, ζ). But the question is how we can
describe efficiency or optimality in the given context. In Section 5.1.3 we used ideas from
large deviation theory to derive an optimal IS scheme, where the optimality criterion is
based on the relative error η. For optimal tilting parameter pairs we therefore also want
to use this criterion, that is we are looking for (ϑ, ζ) given an activation threshold gact

that lead to the best possible reduction of η for a predefined number of samples.
In order to find such pairs we need two functions L1(ζ) and L2(ϑ). The first function

L1(ζ) is the logarithm of the moment-generating function of U ζ⊗ns
:

L1(ζ) := ns lnM1(zsqζ) (6.7)

where M1(.) is the moment-generating function of U .
The second function L2(ϑ) is defined as

L2(ϑ) :=
ns∑
j=1

lnM2(zsqK̄
ζ
π(sj)

ϑ) + lnM2(zfqϑ), (6.8)
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Algorithm 3: Estimation of the activation probabilities when only ζ is changed

Input: activation threshold gact, foreign copy number zf , number of antigen classes
per APC ns, total number of antigen classes K, density g of W , number of
samples N ∈ N, size L of the (large enough) T-cell repertoire

Result: estimate of P(G(zf) ≥ gact)
Preprocessing:1

generate a sorted T-cell repertoire {T̃i}1≤i≤L and calculate the mean stimulation2

rate vector V
compute ζ for gact by solving eq (6.6)3

calculate U ζ and gζ4

initialise estimators Egact5

Simulation start:6

for i = 1, ..., N do7

choose a T-cell T̃i randomly and uniformly from the repertoire8

draw random numbers Q1, ...., Qm from the tilted distribution U ζ and Wns+19

from gζ

if
(∑ns

j=1 q · zs ·WiQj + q · zf ·Wns+1 ≥ gact

)
then10

calculate the reweighting factor11

increase estimator Egact by the reweighting factor12

end13

end14

estimate P(G(zf) ≥ gact) by ̂P(G(zf) ≥ gact) = Egact/N15

resulting from the distribution of the a total stimulus random variable which is a modified
version of eq. (6.4):

Gϑ(zf) = qzs

ns∑
i=1

K̄ζ
π(sj)

W ϑ
i + qzfW

ϑ
ns+1, (6.9)

where M2(.) is the moment-generating function of the stimulation rate distribution and
the K̄ζ

π(sj)
are calculated as described previously but using U ζ instead of U . Note that ϑ

is implicitly dependent on ζ via this connection and we calculate ϑ by solving

E[Gϑ(zf)] = gact. (6.10)

This follows from our original importance sampling scheme (see Section 5.1.3).
With these two functions we can show via simulation that we minimise η if we estimate

parameters ζ and ϑ such that
L1(ζ) = L2(ϑ) (6.11)

holds. Unfortunately a mathematical proof of this result is still lacking.
However, this result enables us to develop a straightforward numerical method to

estimate the tilting parameters. We have to stepwise search through the space of possible
(ϑ, ζ) pairs. At first we start with a low value of ζ. We then generate ns antigen indices
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from U ζ and calculate how many times the individual indices are chosen and sort these
numbers Ks from highest to lowest to get the Kπ(sj). This is repeated several times and
we calculate the mean (K̄π(s1), ..., K̄π(sns )). Afterwards, we have to solve eq. (6.10) for
ϑ in the same way as we do in the original importance sampling scheme. Now we can
calculate L1(ζ) and L2(ϑ). The whole process is then started again with a higher ζ. We
stop if in step t− 1 L1 < L2 and in step t L1 > L2 or vice versa. At this point it would
be necessary to decrease ζ slightly, check again and so on. However, in order to speed
up the whole procedure we make an extra assumption. For not too big step sizes of ζ
and consequently ϑ we assume that L1 and L2 behave almost linearly. Therefore we
can calculate the intersection of the line L1

t−1, L
1
t with L2

t−1, L
2
t and from this result we

can extrapolate an almost optimal ζ and ϑ. This informal description is formalised in
algorithm 4

Algorithm 4: Calculation of the optimal tilting parameters

Input: activation threshold gact, foreign copy number zf , number of antigen classes
per APC ns, total number of antigen classes K, density g of W

Result: optimal ζ, optimal ϑ,(K̄π(s1), ..., K̄π(sns ))
initialise t = 01

set L1
0 = 0, L2

0 = 02

for ζ stepwise increasing do3

t = t+ 14

calculate U ζ5

initialise (K̄π(s1), ..., K̄π(sns ))6

for large number of samples M do7

generate ns indices via U ζ8

count the abundances with which the indices appear, sort them and denote9

them by (Kπ(s1), ..., Kπ(snS
))

(K̄π(s1), ..., K̄π(sns )) = (K̄π(s1), ..., K̄π(sns )) + (Kπ(s1), ..., Kπ(snS
))10

end11

(K̄π(s1), ..., K̄π(sns )) = (K̄π(s1), ..., K̄π(sns ))/M12

estimate ϑ from eq. (6.10)13

calculate L1
t and L2

t14

if L1
t−1<L

2
t−1 and L1

t>L
2
t or vice versa then15

break16

end17

end18

calculate the optimal ζ by calculation of the crossing point of the lines L1
t−1, L

1
t and19

L2
t−1, L

2
t

use ζ to estimate the optimal ϑ20

If we calculate the optimal tilting parameters for several gact, we can use the previous
optimal ζ as the starting point for our stepwise search for the next optimal ζ. Thereby
only very few search steps are needed. Alternatively, also a binary search for ζ would
be possible.
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Now that we have established a method to compute good tilting parameters for a
given activation threshold, we are ready to formulate the actual importance sampling
scheme for the T-cell model and antigen sampling with replacement. It is essentially
similar to our usual importance sampling scheme but with an additional step where we
simulate the Kπ(sj) out of the tilted uniform distribution as already described before. In
the end we therefore have to multiply the reweighting factors resulting from tilting the
W -distributions by the reweighting factors resulting from this first step. For the whole
algorithm see Alg.. 5

Algorithm 5: Estimation of the activation probabilities for the second model variant

Input: activation threshold gact, foreign copy number zf , number of antigen classes
per APC ns, total number of antigen classes K, density g of W , number of
samples N ∈ N

Result: estimate for P(G(zf) ≥ gact)
preprocessing: use Alg. 4 to calculate ζ,ϑ and (K̄π(s1), ..., K̄π(sns ))1

initialise estimator E = 02

for i = 1, ..., N do3

generate (Kπ(s1), ..., Kπ(sns )) from U ζ4

generate W1, ...,Wns+1 from gK̄π(s1)ϑ, ..., gK̄π(sns )ϑ, gϑ5

if qzs
∑ns

i=1Kπ(sj)Wi + qzfWns+1 > gact then6

calculate reweighting factors:7

r1 =
∏ns

i=1(psj/p
ζ
sj

)
Kπ(sj)8

r2 = [
∏ns

i=1 g(Wi)/g
K̄π(sj)

ϑ
(Wi)][·g(Wns+1)/gϑ(Wns+1)]9

E = E + r1r210

end11

end12

estimate activation probability by ̂P(G(zf) ≥ gact) = E/N13

So far we have ignored the new part of our discrete T-cell model, the negative selection
process. To estimate the activation probabilities after negative selection we propose to
use the same two approaches which we use for the swor variant.

First of all we can readily modify our simulation method to include negative selection
directly. Therefore for every sample, that is for every T-cell Ti, we generate ns stimulation
rates according to the algorithm and then generate the missing K−ns stimulation rates
from the untilted stimulation rate distribution in order to get a full T-cell. This T-cell
is then subjected to negative selection and only if it survives the reweighting factor is
added to the estimate.

This is exactly the same procedure as for the swor variant and it also has the same
problems. As a second simulation method, we therefore propose to again calculate a
new stimulation rate distribution after negative selection and use this distribution with
algorithm 5 for the stimuli induced by self antigens. Again, this is only an approximate
method which is not unbiased.
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In Section 6.3 we will show that also for this model variant both simulation methods
produce similar estimates, especially in light of the fact that we are not too concerned
with absolute accuracy but that we are seeking for differences in foreign-self discrimina-
tion that are measurable in powers of ten.

In this section we have established simulation methods for the estimation of activation
probabilities for our discrete T-cell activation model either assume antigen sampling with
or without replacement and with or without negative selection. We could reuse much of
the ideas we already used in the previous chapter and thereby ensure to have an efficient
sampling scheme. The next section is now devoted to a rigorous analysis of the model
by means of our simulation methods.

6.3 Results

As pointed out before, there are different parameters in the T-cell model that can be
varied and additionally we have two different ways to model the antigen selection process
by the APCs. Hence, in this section we will try to get an understanding of how these
parameters affect the outcome of the model and contrast the results of the model in the
swor variant with the results in the swr variant. For the probability estimations we used
10000 samples per threshold in the swor variant and 100000 samples per threshold in
the swr variant. We start with a basic parameter set. For this set we not only examine
foreign-self discrimination but also the negative selection process itself. As this process
is also stochastic it is interesting to see how this stochasticity effects the outcome of
negative selection. Furthermore we have examine the simulation methods with regard
to their efficiency. Afterwards we investigate the effect on foreign-self discrimination
if we introduce more classes of self antigens, increase the number of antigens classes
presented on an APC and finally combine both.

The basic parameter set

At first we start with a set S of K = 1000 antigen classes out of which ns = 50 are
presented on an APC with a total of M = 25000 antigens. Consequently, the number
of self antigen copies is zs = 500. In Figure 6.1 we show the results of our estimation of
the activation curves for the swor model (left) and the swr model (right) before negative
selection.

From here on we will proceed in the same manner throughout this section. That is,
for a given set of parameters we show the estimates for both model variants next to each
other, where the left one is always for sampling without replacement and the right one
for sampling with replacement.

Coming back to the activation curves, in both cases we can see that foreign-self dis-
crimination is not possible. In fact, activation only by self is slightly more probable
than activation with foreign included. This is a consequence of the displacement of self
antigens by foreign antigens. Obviously, the probability to get medium to high stimuli
from some presented self antigens is higher than to get a similar stimulus from the one
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Figure 6.1: Activation curves before negative selection for K = 1000 and ns = 50. In the swor case
(left) as well as in the swr case (right) no foreign-self discrimination is possible. A comparison of both
Figures also reveals that for this parameter combination the effect of sampling antigens severalfold in
the swr case is quite high. This is reflected in the much higher activation probability in the swr case
for a given threshold compared to the swor case. Note that the y-axis have different scales.

foreign stimulus. This is just due to the fact that self and foreign antigen stimulation
rates not only follow the same distribution but are also multiplied by the same copy
number and there are much more self stimuli generated than the single foreign one. By
the displacement the total stimulation rate loses some of the high self stimuli in favour
of (often) lower foreign stimuli. Mathematically speaking we distribute the expectation
on 51 instead of 50 i.i.d. random variables and this reduces the variability. For the swor
case we expected as much, since there is no difference from the actual BRB model besides
the lack of variable antigens. Moreover, if you compare these estimations with the ones
from our previous analysis of the BRB model, we can not only see qualitative but also
quantitative similarities (see Figure 5.2. This proves once again the minor importance
of the variable antigens on the activation curves (at least before negative selection).

For the swr case the differences between only self and with foreign activation probabil-
ities in favour of self activation are even a bit more accentuated. The reason for this is of
course also the displacement of self antigens. By construction of our simulation scheme
and as a consequence of dealing with rare events, there exists a correlation between the
two events of having a high stimulus antigen and presenting this antigen severalfold.
Introducing a foreign antigen to the APC means that we have to displace self antigens.
By the way we constructed the model this means that we remove more of these high
stimuli antigens that are presented severalfold than low stimuli antigens. This cannot
be compensated by the foreign antigen. Hence, the probability of getting a high enough
total stimulus is lowered a bit.

It is also necessary to compare the activation rates of the swr model with the swor
model. At a first glance on Figure 6.1, they seem similar. However, if we note the actual
values of the y-axis we can see that for a given activation threshold, the probability of
activation is much higher in the swr case in comparison to the swor case. To a certain
extent this result could have been deduced from the precalculated tilting parameters
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which we have not presented here. At least for this set of parameters it is obvious that
the randomness coming from sampling with replacement has a major influence on the
outcome of the model. In fact, here we reach similar estimates if we use algorithm 3
instead of algorithm 5 (data not shown).

It will now be interesting to see how negative selection affects the activation curves
in both cases. We chose to introduce two different thymic activation thresholds for each
model variant. One ensures that a T-cell has a probability of 50% to survive, the other
lowers this probability to 40%. Evidently, these thresholds have to be different for each
model variant due to the differences in the antigen sampling. To get a first idea on
how effective negative selection might be, we have a look on empirical estimates of the
W density before and after negative selection. We estimated them as probability mass
functions, that is as normalised histograms with a step-size of 3.6 · 10−4. For reasons
of simplicity we keep on calling them densities in the following. They are shown in
Figure 6.2
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Figure 6.2: Empirical estimates of the pre- (original) and post-selection densities of W (swor (left) -
swr (right)). We estimated them as probability mass functions (pmfs), that is as normalised histograms
with a step-size of 3.6·10−4. These estimates result from letting 107 randomly generated T-cells undergo
the negative selection process. The stimulation rate vectors of the surviving T-cells are then used to
compute the pmfs. In both cases the densities are compressed considerably in the horizontal direction
by negative selection. However, there are both qualitative and quantitative differences between the
post-selection densities of both model variants. In general negative selection in the swor case seems to
work a little better, that is we estimate a compression factor of about 0.61 (0.56 for 40%). The overall
compression factor in the swr case is about 0.67 (0.61 for 40%). Besides this quantitative difference,
there is also the qualitative differences that the post-selection densities in the swr case show two phases.
Up to a certain point they follow one super-exponentially decreasing slope and from this point on
they follow a different not so fast super-exponentially decreasing slope. We seem to have two different
compression factors depending on the stimulation rate. Thereby for a certain range of stimulation rates
their probability is lower in the swr case than it is in the swor case.

There are not too big differences in the effect of negative selection on the W density if
we compare both model variants. This is true if we either negatively select 50% or 60%
of all T-cells. The densities are horizontally compressed considerably. This points to
a strong effect of negative selection which should elevate the foreign-self discrimination
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capability in the model. However, it is also of note that there are some qualitative differ-
ences between both variants. In the swr case there seem to be two different compression
’processes’ at work. From a certain point on, the graph of the post-selection density
is not declining so fast as before. Thereby the effect of negative selection is reduced.
Instead of being compressed by more than a factor of 0.5 which is suggested by the
initial slope of the post-selection densities, for higher stimulation rates the density is
compressed by a factor of about 0.67, only (we calculate the compression factors just
by comparing the x-values of the densities at a y-value of 10−10). In the swor case the
post-selection density is continuous with an estimated compression factor of 0.61. Our
analysis of the BRB model indicates, however, that we need a compression factor of 0.5
or greater to enable safe foreign-self discrimination. This follows from the fact that if we
set zf = 2zs, we have a good foreign-self discrimination in that model. But if it suffices
to have 2Wf , this should also hold for 1

2
Ws instead of Ws and Wf instead of 2Wf .

We assume that the two-phasic behaviour of the swr post-selection density results
from the fact that we have the possibility to present an intermediate strength stimulus
severalfold and thereby also reach gthy. For the swor variant we do not have this advan-
tage and therefore less selection pressure on intermediate stimuli. However, we do not
know why we have a kink at this special point in the swr post-selection density.

Let us now turn to the results which are the very reason why we constructed this model,
the activation curves after negative selection. In Figure 6.3 we present our estimations
if we negatively select 50% of all T-cells.
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Figure 6.3: Activation curves after negative selection (swor (left) - swr (right)). We estimate the
activation probability of a random T-cell under the assumption that it survives the negative selection
process. The probabilities are estimated either by direct inclusion of negative selection in the original
sampling scheme or by making use of the post-selection distribution. With regard to foreign-self dis-
crimination, activation by foreign becomes more probable if we compare the results with the activation
probabilities before negative selection. But, there is still no foreign-self discrimination possible.

We see that negative selection has a recognisable effect. Nevertheless, it is far from
sufficient. For the swor case activation with foreign antigen is slightly more probable
than activation only by self. For the swr case activation with or without foreign antigen
are equiprobable. But we seek differences in probability in several orders of magnitude.
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Otherwise the model is not working properly. These results prove our assumption we got
from the post-selection densities. The situation does not change much if we negatively
select 60% of all T-cells as you can see in Figure 6.4
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Figure 6.4: Activation curves after negative selection (swor (left) - swr (right)). We assume that the
survival probability for a random T-cell is 40%. There is only a minor enhancement of the foreign-self
discrimination capability in comparison to the assumption that 50% of all T-cells survive.

The impact of deleting an additional 10% of the T-cells is not vital, as was to be
expected if we consider Figure 6.2. All in all we have to conclude that at least for our
given basic set of parameters and our simple model of negative selection, foreign-self
discrimination cannot be explained.

Brief analysis of the simulation methods

In this paragraph we analyse the efficiency of the simulation methods for the swor and
the swr variant. In case of the swor variant we do not expect surprising results as we use
the same algorithm as for the basic BRB model. For the swr variant we had to develop
a new algorithm so it will be interesting to see how efficiently it works in comparison.
For all the results presented in the following keep in mind that we used 10000 samples
per threshold for the swor variant and 100000 samples per threshold for the swr variant.

In line with our theoretical considerations in Section 4.2 and our analysis in Section 5.2
we use the relative error as the criterion to evaluate the efficiency of the simulations.
Recall that the relative error is just the standard deviation of our estimator divided
by the estimator (see equation (4.10)). Note that we used a ten times higher sample
size for the swr variant than we used for the swor variant. In Figure 6.5 we show the
relative errors for the estimation of the activation probabilities before negative selection
for both model variants. The relative error in the swor variant behaves very similar to
the relative error in the simulations of the basic BRB model (see Figure 5.5) and shows
the typical signs of asymptotic efficiency (subexponentially increasing relative error). In
the swr variant the relative error increases much faster and the method seems not to
be asymptotically efficient. However, the simulation method is still much more efficient
than simple sampling.
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Figure 6.5: Relative errors of the estimation of the activation probabilities before negative selection
(swor (left) - swr (right)). We used 10000 samples per threshold for the swor variant and 100000 samples
for the swr variant. The randomness in the multiplicities in the swr variant introduces a much higher
variance, which is reflected in the relative errors.
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Figure 6.6: Percentage of samples that reach the activation threshold before negative selection (swor
(left) - swr (right)). With increasing activation threshold the percentage of trials that reach the threshold
increases up to a value of 48%. In our simulation methods we tilt such that reaching the activation
threshold is the typical event, so these values are in the range of what was to be expected.

The core of both simulation methods is the tilting of the distributions such that
reaching the activation threshold becomes the typical event. This should be reflected
in the percentage of samples that reach a given activation threshold. In Figure 6.6 we
show these percentages for both model variants. With increasing threshold values the
percentages of samples that reach the threshold increases up to a value of 48% (swor).
This reflects that with increasing activation thresholds both sample mean and sample
median converge.

We already mentioned that including negative selection directly into our algorithms
is possible but has the defect that many samples are lost. Hence, if we want to estimate
activation probabilities for higher threshold values we need more samples. This was
the motivation to develop the approximate importance sampling algorithms that use
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Figure 6.7: Relative errors of the estimation of the activation probabilities after negative selection (swor
(left) - swr (right)). Negative selection is directly included in the simulation. We used 10000 samples
per threshold value for the swor variant and 100000 samples for the swr variant. For both variants the
relative error increases very fast. The reason for this is the exponentially decreasing number of samples
that reach the activation threshold (see Figure 6.8).
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Figure 6.8: Percentage of samples that reach the activation threshold after negative selection (swor
(left) - swr (right)). For both variants the percentage decreases to zero exponentially fast. This is the
reason why the approximate importance sampling method is needed for the estimation of activation
probabilities for higher threshold values.

the stimulation rate distributions after negative selection. To underline these claims we
show in Figures 6.7 and 6.8 the relative error and the percentage of samples that reach
a given activation threshold if we include negative selection directly.

Note that the percentage of samples that survive negative selection and reach the
activation threshold decreases exponentially. This leads to a faster increase of the relative
error in both model variants. Consequently, the sample size also needs to be exponentally
increasing.

Finally we examine the reweighting factors of the samples that reach a given acti-
vation threshold. This is interesting because the idea behind our importance sampling
algorithms is to generate the least unlikely events of all unlikely events. The reweight-
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Figure 6.9: Boxplots of the reweighting factors of all samples that reach a given activation thresh-
old (swor (left) - swr (right)). The boxes represent the quartiles and the whiskers the 0.025− and
0.975−quantiles.

ing factors can show us how well we achieve this goal. If our methods work as we
intend them to, most of the reweighting factors should have values not too much smaller
than the actual activation probabilities. In Figure 6.9 we present our analysis of the
reweighting factors per threshold in form of boxplots. These plots show the differences
between our simulation method for the swor and the swr variant and help to explain why
the former works much better than the latter. In case of the swor variant, the length
of the box (representing the quartiles) and the whiskers (representing the 0.025− and
0.975−quantiles) is first very small and then increases slowly. Furthermore, the length of
the upper whisker is much smaller than the length of the lower whisker. If we translate
this, it means that with increasing activation thresholds the events we generate are more
and more spread over the space of all events reflecting stimulation rates higher than the
activation threshold. Therefore we lose precision in our estimations. However, the bulk
of the events is still in the part of the space with the least unlikely events, therefore we
only lose precision very slowly.

In case of the swr variant, the situation looks different. Even for low activation
thresholds we have long boxes and whiskers and they get longer with increasing threshold
values. But, in contrast to the swor variant, this increase is slower. For very high
threshold values, the box and whisker length in both variants is comparable. The events
are not only more scattered, but also the bulk of our generated events does not fall
into the region with the least unlikely events. This explains why the precision of our
activation probability estimations in the the swr variant is much worse than for the swor
variant.

Brief analysis of the negative selection process

Before going on to change the parameters in our model we briefly have a closer look
at the random effects of negative selection on the peripheral T-cell repertoire. This is
interesting in itself as it should give us more insights into the scope of negative selection
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and perhaps lead to new ideas to improve the process (in a biologically meaningful way).
For a proper analysis we randomly generated a set of 100000 T-cells (via simple sampling,
that is without tilting of the W distributions). These T-cells had then to pass negative
selection. We did this for 100 repetitions and compared the sets of surviving T-cells.

These sets differed every time due to the stochasticity of negative selection, but these
differences had almost no impact on the estimated post-selection W neg density, that is
Figure 6.2 stays almost the same (data not shown). This is also reflected in the real
percentage of surviving T-cells. We chose a thymic activation threshold, such that 50%
of all T-cells survive. Nevertheless, this is only true for infinitely many T-cells. If we
repeat negative selection for a finite set of T-cells the survival percentage varies due
to stochastic effects. Luckily, the variance in the percentage of survivors is quite low.
Figure 6.10 shows that for all 100 repetitions the survival rate differed only up to 0.2
(swor) and 0.4 (swr) from our aim of a 50% survival rate.
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Figure 6.10: The histograms show the fraction of the original T-cell repertoire that survives negative
selection (swor (left) - swr (right)): 100 repetitions of negative selection on the same repertoire of
100000 T-cells. For both model variants the differences from the desired survival probability of 50% are
very low. Note that for both variants we estimate the threshold gthy only once, that is for a different
repertoire of T-cells we use the same threshold. The results which we present here are reproduceable
for any new repertoire of T-cells that is generated via the same method.

However, with regard to the actual sets of surviving T-cells the situation looks dif-
ferent. By a comparison of the 100 different T-cell sets we calculated that in the mean
the sets differed by 14% (swor) and 17% from each other (see Figure 6.11). Taking into
account the negligible differences in W neg, it follows that there is a certain interchange-
able subset of T-cells whose survival has no impact on the post-selection density. With
a view to the foreign-self discrimination capability of the peripheral T-cell repertoire
these T-cells pose a potential problem. They can neither be assigned unambiguously to
the class of T-cells that are too self reactive nor the class of T-cells that have a low self
reactivity. Given the fact that there is such a possible variance in the set of surviving
T-cells the question also arises how probable it is that too self reactive T-cells survive
negative selection.

With these first observations we have established some basic ideas on the scope and
effect of negative selection as well as on the differences and their implications of our



6.3 Results 103

0

50

100

150

200

250

300

350

13800 13900 14000 14100 14200 14300 14400 14500 14600 14700

# different T-cells between two surviving repertoires

0

50

100

150

200

250

300

16200 16300 16400 16500 16600 16700 16800 16900 17000

# different T-cells between two surviving repertoires

Figure 6.11: The histograms show the number of T-cells that are different between the survival
repertoires if we compare them pairwise (swor (left) - swr (right)): 100 repetitions of negative selection
on the same repertoire of 100000 T-cells. In the mean two surviving T-cell repertoires differ by about
14% (swor) or 17% (swr). This number indicates that there is a big subset of T-cells which cannot be
unambiguously characterised as too self reactive.

two model variants. Next we have a closer look on the inherent interactions between
the different parameters that guide our model. We restrict ourselves to a 50% negative
selection process, but change either the total number of antigen classes K, the number of
different classes ns per APC or both together. Again, we investigate the activation curves
before and after negative selection as well as our estimates of the empirical densities of
the stimulation rate W .

1st variant: increasing the total number of antigen classes K

We start by a 10-fold increase of the total antigen class number, that is we now assume
that there are K = 10000 antigen classes available. It is clear that this change of
parameter should not have any effect for our model in the swor variant before negative
selection. However, the negative selection process should be affected and hence also the
activation curves after negative selection. For the swr variant of our model we expect
notable changes also before negative selection as the probabilities to sample some antigen
types severalfold decrease notably. Figure 6.12 shows our estimates of the activation
curves for both model variants before negative selection.

Evidently, while the activation curves for the swor variant remain unchanged, those of
the swr variant change quite a bit. As was to be expected, the activation probabilities
approach those of the swor variant. Although the stochastic effects of sampling with
replacement still play a role, this role becomes a minor one in comparison to the outcome
for our model with the original parameter set.

The next question is again, what happens if we introduce negative selection. A first
idea of the effect of this process gives us Figure 6.13 with the post-selection densities.

We can see that the changes in the density of W are much less pronounced than they
were for the original parameter set. We have compression factors of 0.92 (swor) and
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Figure 6.12: Activation curves before negative selection if we assume an antigen set size of K = 10000
and keep the number of chose antigen types the same (ns = 50) (swor (left) - swr (right)). There
is no foreign-self discrimination possible. The activation curves of both model variants are not only
qualitatively but also quantitatively much more similar than for our original parameter set. This is due
to the fact that the probabilities to choose antigen types severalfold is much more reduced.
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Figure 6.13: Comparison of the empirical post-selection densities with the original density for both
model variants and K = 10000, ns = 50 (swor (left) - swr (right). The compression effect of negative
selection on the post-selection densities is considerably reduced in comparison to the model with the
original parameter set. The compression factors are estimated as 0.92 (swor) and 0.89 (swr).

0.89 (swr). The explanation for this has two reasons. For one it lies in the fact that
with 10 times more antigens, the empirical distribution of the stimulation rates of every
single T-cell resembles the W distribution much more than before. So even if the T-
cells with extremely high stimuli do not survive, the rest is not so different at all. Or
to put it another way, if we use some measure on how good a T-cell approximates the
W distribution, the variance in the outcome of the measurements would be decreased
quite a bit in comparison to the previous case. This is just a consequence of the law of
large numbers, by which one can show that if we construct an empirical W distribution
from the stimuli vector representing a T-cell, this empirical distribution converges to the
original W distribution almost surely for increasing size of antigen classes.
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Additionally, we only sample 50 antigens types (in the swr case even less) out of these
10000 and have only 2000 different APC meetings. This implies that some potentially
harmful stimuli combinations might be missed during negative selection. Taken together
this means, that if we perform the same analysis of the negative selection process as we
did before, the differences between the sets of surviving T-cells would be much greater,
because the role of pure chance in contrast to the stimuli composure of the single T-cells
is much enhanced.

All these considerations might also explain the fact that in the swr case we do not
have this special form of post-selection density anymore, where we could recognise a two-
phasic behaviour. We supposed that more intermediate strength antigens were sorted
out because they appear more often in higher copy numbers. This would be much harder
for this parameter set.

The less pronounced effect of negative selection is of course also reflected in the acti-
vation curves after negative selection.
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Figure 6.14: Activation curves after negative selection for the parameter set of K = 10000 antigens
out of which ns = 50 are chosen (swor (left) - swr (right)). These estimates were obtained by the direct
inclusion of negative selection in our simulation method, that is we do not make use of the post-selection
distribution. For both model variants negative selection does not enhance foreign-self discrimination.

In Figure 6.14 you can see that only the slope of the activation curves change, while the
differences between the activation probabilities with or without foreign remain similar.
At this point we have to say some words on our estimation of these probabilities, as
these also shed some light on the negative selection process again. Here, we chose to
only use our estimates from the simulation where we included negative selection into the
algorithm, that is we did not use the empirical densities after negative selection. The
reason for this is just that we did not have to deal with the drawback of losing to many
samples, especially samples that reach gact, during negative selection. In the original
setup with increasing threshold values the number of surviving T-cells decreased and
even more the number of T-cells that were stimulated to reach the threshold. Now, the
situation is different because of the decreased probability to have an APC that presents
a notable amount of the antigen types that induce the high stimuli to the T-cell. These
high (tilted) stimuli get lost in the background of the rest of the (untilted) stimuli. They
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might even be counteracted by very low stimuli that are presented much more often as
a consequence of the original W distribution. This illustrates the drawback of negative
selection for this parameter setup quite nicely, as obviously antigen combinations that
are potentially harmful are often not seen during negative selection, while they have a
good chance to appear in the periphery during the lifetime of a T-cell. Consequently,
our estimates seem not only to be good enough by our chosen simulation method, they
also might reflect the reality a little better. This information would be lost if we just
used the empirical density estimate for W after negative selection. Anyway, the results
are not expected to be very different, therefore we skip these additional simulations.

2nd variant: increasing the number of presented antigen classes ns

Instead we change the parameters in the model again. Out of a set of K = 1000
antigen types, ns = 100 are chosen to be present on an individual APC. As we keep the
total number antigens per APC constant, this implies that the copy number zs has to be
reduced from 500 to 250. From our previous simulations it is clear that we have to expect
that the activation curves are decreasing much faster than for the case with ns = 50 as
the individual antigens do not contribute as much to the total stimulation rate anymore.
Furthermore the possibility for the foreign stimulation rate to stand out against the
self background should be reduced even more, even after negative selection. The first
assumption is correct as can be seen in Figure 6.15 where we present the activation
curves for both model variants before negative selection. Interestingly, this effect also
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Figure 6.15: Activation curves for our model with K = 1000 and ns = 100 (swor (left) - swr (right)).
For both model variants the activation curves of ’only self’ and ’with foreign’ practically coincide. Hence,
foreign self discrimination is not possible. Although there is this qualitative similarity, both models are
quantitatively very different. The activation probabilities for the swor variant are much smaller than
for the swr variant. This is of course due to the fact that choosing antigen types severalfold is quite
probable in the swr variant and hence plays a major role.

appears for the swr variant. This implies than an increased probability to choose self
antigens severalfold cannot compensate for the effect of reducing the copy number zs.
In contrast to Figure 6.1 where the activation by ’only self’ was slightly higher than



6.3 Results 107

activation by ’with foreign’, here both activation curves coincide. This is an effect of the
central limit theorem. By introducing more antigens and reducing the copy number the
total stimulation rate distribution becomes more like a normal distribution, which also
implies that individual antigens that have high stimulation rates are compensated by
antigens with very low stimulation rates. In fact, because of the W distribution we have
an exponentially larger pool of very low stimulation rates to choose from in comparison
with few high stimulation rates.

Our second assumption is that negative selection has a minor effect on the foreign-self
discrimination capability in this model. Figure 6.16 shows the empirical post-selection
densities. We see that again these densities are compressed considerably in comparison
to the original density of W . Here, it actually seems to make more of a difference if we
use the swor or the swr variant. For the latter we can see that at least for our estimations
down to probabilities of 10−10 the two different slopes that can be seen in Figure 6.2 do
not appear. But it is also evident that the overall shrinking factor is larger (0.5). This
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Figure 6.16: Comparison of the empirical original W density with the empirical post-selection density
(swor (left) - swr (right)). In both model variants negative selection has a major effect. But there are
interesting quantitative differences. Compared to the original density the post-selection density of the
swr variant is compressed by a factor of 0.5, which is the best factor we achieved so far. The results for
the swor variant are much less promising. The estimated compression factor is only about 0.69.

is different for the swor model. Here, the density is only compressed by a factor of 0.69.
One explanation for these findings is that for the swr model choosing 100 antigen types
enhances the probability of choosing individual types severalfold is greatly increased.
Thereby also stimuli of lower strength can become important as they are multiplied by
the multiplicity factor. We assume that this effect is even more enhanced than it is for
the original parameter set, such that we do not see the two phases in the density but
only have the first slope with the bigger compression factor. Perhaps the kink could be
seen for even lower y-values.

For the swor model on the other hand, choosing more antigen types has quite the
opposite effect. Negative selection gets worse. The reason for this is that in the model
variant we are forced to choose 100 different antigens, which enhances the probability
to choose many antigens with low stimuli which counteract some possible high stimulus
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antigens.
It is now interesting to see whether these differences in the outcome of negative selec-

tion are also reflected in the activation curves after negative selection. Unfortunately,
there are no differences (see Figure 6.17). For both cases there activation only by self or
with foreign antigen is equiprobable. The explanation for this goes into the same direc-
tion in both cases. To get a good foreign-self discrimination the probability of having a
high stimulus by foreign has to be higher than the probability to get a similar high stim-
ulus by any of the self antigens or a combination thereof. However, with the possibility
of choosing 100 antigens, we might have a low probability to have a T-cell with such a
stimulus in the peripheral repertoire, but we can compensate this by choosing several
antigens with medium strength stimuli. This is even more true in the swr variant, where
we have a quite high probability of choosing antigen types severalfold. Hence, the only
effect of negative selection under those circumstances is that the activation probabilities
decrease faster than in the case without negative selection.
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Figure 6.17: Activation curves after negative selection for the parameter set K = 1000, ns = 100,
zs = 250 (swor (left) - swr (right)). For both model variants foreign-self discrimination is impossible.

3rd variant: increasing the total number of antigen classes K and the number of presented
antigen classes ns

For the sake of completeness we finally combine the changes of both parameters and
now assume to have K = 10000 antigen types, out of which ns = 100 are chosen. As a
consequence of our previous results we have to expect that this parameter combination
presents the worst case scenario. Which means similar results for both model variants
as the swr variant approaches the swor variant, nearly no effect on the post-selection
densities and thereby also no enhancement of foreign-self discrimination capability. Fig-
ures 6.18, 6.19 and 6.20 support these expectations.

In summary, we can see that for either model variant a change in the parameters
to different (more biologically plausible?) values decreases the, even before, almost
negligible foreign-self discrimination capability of the model. This leaves us with different
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Figure 6.18: Activation curves for K = 10000 antigen out of which ns = 100 are chosen (swor (left) -
swr (right)). For both model variants there is not difference in activation probability. Hence, foreign-self
discrimination is not possible.
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Figure 6.19: Empirical densities before and after negative selection for the model with K = 10000
and ns = 100 (swor (left) - swr (right)). There is no noticeable difference between both model variants.

possibilities to move on, some of which we will mention in the discussion in the next
section. However, we chose to pick out one before, as it turns out that this has quite an
impact on foreign-self discrimination without the need to change the model any further
and therewith the simulation method.

4th variant: changing the parameter τ̄ of the exponentially distributed binding time

Throughout this thesis we stuck to the original parameter for the heart of the BRB
model, the exponential distribution describing the binding event between antigen and
T-cell receptor (see page 32). But there are of course other values thinkable for this
distribution than the one we adopted for our model. So, we now change this parameter
from τ̄ = 0.04 to τ̄ = 0.03. Figure 6.21 shows that before negative selection we have
the same qualitative behaviour as we have for the original parameters. For both model
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Figure 6.20: Activation curves after negative selection for K = 10000 and ns = 100 (swor (left) - swr
(right)). Activation with and without foreign antigen present has the same probability. This is true for
both model variants. Furthermore even the actual probabilities are very similar in both variants given
the same activation threshold.

variants there is no foreign-self discrimination possible.
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Figure 6.21: Activation curves before negative selection for K = 1000, ns = 50 and τ̄ = 0.03 (swor
(left) - swr (right)). Foreign-self discrimination is not possible.

However, if we come to negative selection the situation changes drastically. This can
be already deduced from the post-selection densities (see Figure 6.22). In comparison
to the original density the post-selection densities are compressed considerably. For
the swor variant we estimate a compression factor of 0.25 and for the swr variant we
estimate a compression factor of 0.31. Already from these numbers we can assume that
this has a noticeable effect on the foreign-self discrimination capability in the model.
This is confirmed by our estimates of the activation curves after negative selection (see
Fig. 6.23).

For both variants activation by foreign is much more probable than activation without
foreign. These differences suffice to enable foreign-self discrimination.

A comparison of the densities in Figure 6.22 and Figure 6.2 reveals why negative se-
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Figure 6.22: Comparison of the densities before and after negative selection in the case of τ̄ = 0.03
(swor (left) - swr (right)). We have a much bigger effect of negative selection. For both model variants
the shrinking factors are considerably higher than for the original parameters. (compression factors:
0.25 (swor) and 0.31 (swr).
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Figure 6.23: Activation curves after negative selection for τ̄ = 0.03 (swor (left) - swr (right)). For
both model variants we see a big difference in activation probabilities with and without foreign antigen
present. These differences are great enough to finally enable foreign-self discrimination.

lection is doing a much better job here than for the model with the basic parameter set.
The long tail of the pre-selection density with τ̄ = 0.03 is thinned out considerably in
comparison to the pre-selection density with τ = 0.04. This enables negative selection
not only to cut off the part of the tail with the high stimulus events (as was already pos-
sible before) but also the part of the tail with the intermediate stimulus events. Before, it
was quite probable that several self antigens with intermediate stimuli are presented to-
gether such that, if added together, they exceed a high foreign antigen stimulus. Thereby
foreign-self discrimination is obscured. This probability is now significantly reduced.

6.4 Discussion

In this section we discuss the results of the previous section and formulate consequences.
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The unquestionable main result of our simulation is the fact that our new model as
such is not capable of foreign-self discrimination in our tested parameter range if we do
not change the parameters of the original BRB model. With the basic and extended BRB
models in mind one could argue that an increase in the copy number of foreign antigens
could improve the situation. This is certainly right. However, our restriction of the same
copy number for foreign and self antigens is carefully considered. With this new model
our intention was to become biologically more plausible. As already mentioned before,
T-cell activation is possible for very low numbers of foreign antigen copies. A good T-cell
activation model should therefore be capable of explaining foreign-self discrimination in
such settings. Hence, if anything our restriction should be much harder, allowing less
foreign antigen copies than the other way around. Another important argument in this
context is discussed at the end of this section.

However, there are different other starting points to change our model in order to
improve foreign-self discrimination. Before changing something in the model itself, it is
necessary to revisit all details of the existing model. Here, this is, above all, the stimu-
lation rate distribution which is the key element of the T-cell activation model. It starts
with the question if the exponential distribution is really the best description for the
dissociation process. If so, another question is whether the parameter for the underlying
exponential distribution describing the dissociation probability of a TCR and a pMHC
can be changed and if this has any effect. Already in the original paper of the BRB
model a lognormal distribution is proposed as it can be motivated by the Arrhenius law
[205]. Zint el al. could show that even without negative selection this distribution leads
to better discrimination capabilities for smaller zf [232]. Our change of the parameter
τ̄ therefore had two different motivations. First of all there is no experimental evidence
that only points to the original factor of τ̄ = 0.04. The resolution is simply not sufficient.
Moreover, many models, that assume a Bernoulli distribution instead of our W distri-
bution, estimate the probability of a T-cell recognising an antigen to be in the range of
10−5 − 10−4 [127]. If we compare this with our original W distribution, it suggests that
the tail of the W distribution is too thick. Secondly, our change to τ̄ = 0.03 leads to
a stimulation rate distribution that is quite similar to the stimulation rate distribution
resulting from an underlying lognormal distribution. Therefore, we could explore this
idea without having to recalculate too much for our simulations. Although this change
of parameter seems to be a minor one, the effect on foreign-self discrimination is a major
one. This is the first time we really have a model that is capable of foreign-self discrim-
ination where all the antigen types appear with the same copy number (swor variant)
and even better, if there is the possibility to have more copies of some self antigens (swr
variant).

There are of course also changes in the equation w(τ) thinkable. First of all we have
to note, that here changes are only relevant that concern the leading, increasing part of
w(τ). The other part barely plays any role because of the very fast decreasing exponential
distribution of T . All these changes have to be supported by experimental evidence if
possible. One recent promising result in this context is a remodelling of the underlying
kinetic-proofreading concept. In the original model a TCR is dephosphorylated instantly
after the dissociation of a pMHC. However, if a short time-delay is introduced and the
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briefly dissociated pMHC molecule has a high association rate it probably rebinds to the
TCR and could complete the phosphorylation chain in order to trigger the TCR [62].

Recent experiments have also revealed another important mechanism. It seems that
a T-cell is able to integrate activation signals over several APC meetings [85]. This
opens up a new interesting possibility to change our model. One interpretation of signal
integration is the introduction of a new sum of signals over different APC meetings of a
single T-cell. Thereby, we would cover all three levels of interactions that could influence
T-cell activation, as demanded for example in [35]. We have the first level of a single
TCR that meets a pMHC, the second level of all TCRs on a T-cell and all pMHCs on
an APC and finally the third level of one T-cell and several APCs. We tested this idea
in a model where we just assumed that a T-cell meets k APCs and is totally activated
if it is activated by l of these APCs. Some first results obtained by simple sampling
and a T-cell repertoire of 20000 T-cells without negative selection are shown in Figure
6.24. We estimated the activation probabilities if a T-cell meets 10 or 20 APCs in a
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Figure 6.24: A simple sampling estimation of activation probabilities for a T-cell repertoire of 20000
T-cells under the signal integration model. For the left graph we allowed for 10 APC meetings out of
which 5 carried the same foreign antigen type and a T-cell was fully activated if it was activated in 5
APC meetings. For the right graph we changed this parameters to 20 APC meetings.

row and integrates the single activation signals which might occur as a consequence of a
T-cell-APC meeting. Five of these APCs were equipped with the same foreign antigen
type. The other APCs presented only self antigens. We assumed that the T-cell is
totally activated if it has received 5 activation signals. In both situations this T-cell
repertoire that has not been negative selected shows signs of foreign-self discrimination
capability. This is of course a very crude model with flaws. A more realistic model could
look more like a queueing model, where for every time step (or every APC meeting)
one signal leaves the queue. The queue length here would be 10 or 20 and we have two
different signals, activation or not activation. If there are 5 or more activation signals in
the queue the T-cell is finally activated. However, even our model gives us a first idea
of the potential of signal integration.

Another open question is how we can change negative selection such that its outcome
does not vary so much and is, if possible, the optimal peripheral T-cell repertoire. Some
preliminary results indicate that the introduction of signal integration at least reduces
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the variance in the outcome if we run the same original T-cell repertoire through neg-
ative selection several times and compare the resulting sets. In order to make more
improvements it is necessary to understand this process better both experimentally and
theoretically. This is the topic of the next chapter.

Furthermore there is one interesting point to learn from the empirical post-selection
densities in the last chapter for both model variants. Evidently, it seems to lead to a more
effective T-cell deletion during negative selection if we have the possibility to present
antigen types severalfold. This seems to be the case because it puts more selection
pressure on stimuli of intermediate strength. A thymic environment which favours such
an antigen expression should therefore be favourable with respect to our model.

It is of course also possible that the idea of TCR triggering as used in the thesis is
wrong. Another approach that has recently become popular is the triggering of TCRs
by receptor deformation [123, 124, 197]. One idea in this context is that the TCR is
triggered by the pulling force that is induced by the movements of the APC and the
T-cell on a TCR-pMHC binding. It is thinkable to adapt serial-triggering and our type
of mixture models in order to capture this assumption.

Finally, we have to discuss one open question that has not been investigated in this
thesis and the modeling literature it is based on. In all these mixture models we define
foreign-self discrimination by the difference between activation curves for activation with
and without foreign antigen. Thereby, we ignore one very crucial point. If activated a
T-cell attacks or helps to attack the pathogen that is the source of its cognate antigen. It
is therefore necessary that the T-cell receives the strongest activation stimulus from the
foreign antigen otherwise it would cause an autoimmune reaction. This seems obvious.
However, the way we defined T-cell activation does not capture this. We have to analyse
in our models if, when a T-cell is activated, the foreign stimulus really was the strongest.
It would be even better if this stimulus would be much stronger than any other self
stimulus. This is especially true for the basic BRB model, but also for the extended
BRB models because here the stimulus intensity is intensified by raising the foreign
antigen copy number zf .

In summary the analysis of our new model brought us many new insights on the effect
of negative selection in mixture models. We could describe its flaws and benefits and
finally present a parameter set for which we could show foreign-self discrimination for
biologically more plausible parameters than in all models before. This is a new result
which underlines the strength of this type of model. It is clear that this is only the
starting point for further investigations. These include the need for better experimental
estimates on all the different parameters and many different possibilities to expand or
edit the model to incorporate new ideas such as presented in this section.



Chapter 7

A model for T-cell migration in the thymic

medulla

The important site for T-cell development is the thymus. In this organ every T-cell
develops its unique receptor and has to survive different selection processes. We already
highlighted the whole developmental process in the background section 2.2. There and
also in the other sections of this thesis we pointed out the importance of the negative
selection process as the supposed key element in the creation of a peripheral T-cell
repertoire that is anergic if challenged with self antigens but reacts on an encounter
with foreign antigens. Despite its importance much of the experimental and theoret-
ical research is very recent and there are still many things unknown. One prominent
example for this is the discovery of the promiscuous gene expression mechanism for tis-
sue restricted antigens [107]. This discovery directly affects models that try to explain
foreign-self discrimination and tolerance induction in the periphery. Generally, it is in-
sufficient to include negative selection as a kind of black box that somehow shapes the
T-cell repertoire. Models that try to explain T-cell activation in the periphery should
also be applicable to the negative selection process and with this two key ingredients
put together the foreign-self discrimination capability of peripheral T-cells should be
elucidated. A general assumption in many T-cell activation models is that activation
depends on the binding time between a TCR and a pMHC molecule and the TCRs of all
T-cells that survived negative selection have short binding times to all self antigens. A
crucial test for such a model is therefore to reproduce this assumption when the T-cell
activation model is applied to the negative selection process. In the last chapter we
already did this with our new model and could show that the outcome is very much
dependent on certain parameters. In this model we included a very simplistic form of
negative selection. Although we assume that changes in the negative selection process
cannot improve the situation too much it would be preferable to have a more detailed
and realistic model of negative selection to totally exclude this argument.

In this section we therefore start to develop a model of T-cell migration in the thymic
medulla. These dynamics primarily include T-cell movement and interaction with den-
dritic and medullary epithelial cells. The reason for this is that they are the key-players
in the negative selection process and also constitute the majority of cells in the thymic
medulla. In its basic features our model shares similarities with a model of T-cell move-
ment and decision making in a lymph node from Zheng et al. [231] and is different from
a much more detailed model of T-cell migration in the lymph node based on the cellular
Potts model [14, 15, 13].

For reasons of computational tractability we model T-cell movement in the medulla
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not in a continuous 3−dimensional space but on a 3−dimensional lattice. Every node in
the lattice can either be uninhabited or occupied by a T-cell, a DC or an mTEC alone or
occupied by a DC or mTEC together with a T-cell. In a first version we even allow the
occupation of a node by more than one T-cell. We furthermore restrict our simulation
to a small section of the thymic medulla, again, due to computational tractability but
also because information might be lost in a too big and complicated model. Primary,
in our very basic model we are only interested in the number of mTECs and/or DCs
an individual T-cell meets while migrating through the medulla. We can also equip the
mTECs with tissue-restricted antigens. Thereby we can get some important information
such as the probability of a T-cell to explore all tissue-restricted antigens if these are
only presented by mTECs. In the course of modeling we omit any T-cell activation and
negative selection mechanisms. These can be introduced at a later stage.

A model as we have in mind needs some basic parameters and assumptions. We have
to create a realistic 3−dimensional setting, that is we have to define the number of nodes
and their distance in our lattice and need to put the appropriate numbers of DCs and
mTECs in an appropriate spatial distribution on our lattice. Furthermore, we have to
describe the T-cell movement and the event of a T-cell-DC/mTEC meeting. As most of
the experimental data is based on research on mice we built up an in silico section of a
murine thymic medulla.

Recent multi-photon microscopy experiments on living mice or explanted organs helped
to characterise T-cell movement at least in lymph nodes and the thymic cortex [134,
135, 136, 11, 24]. As there is no reason to assume that T-cell movement in the thymic
medulla differs too much from the movement in these other tissues we use their results.
It was determined that T-cell movement follows a random walk, where a T-cell moves
into the same direction on the order of 10µm and then changes its direction randomly.
The average speed was determined to be 9 − 12µm/min [133, 134]. This leads to a
straightforward definition of our lattice. The distance between two nodes is just this
10µm and one time step in our model is 1 minute. We chose to use two different lattice
sizes (300× 300× 300µm and 500× 500× 500µm which corresponds to 30× 30× 30 or
50 × 50 × 50 nodes), for two reasons. On the one hand simulations with these two lat-
tices should lead to similar results, otherwise there are inconsistencies in the simulation.
The smaller lattice which can be used for much faster simulations can therefore be used
as a comparison with the bigger lattice. On the other hand there are more modeling
possibilities in the bigger model. If we start to expand the model, we could, for exam-
ple, introduce a more directed fashion of T-cell movement as a new assumption. This
would lead to difficulties for the smaller model variant as we assume periodic boundary
conditions in our model. If a T-cell leaves our lattice it enters again on the other site.
Zheng et al. argue that this kind of lattice presentation does not lead to artifacts on
long time and length scales [231]. This condition is certainly met with our lattice size
and a simulation period that takes about 5 days, the time a T-cell spends in the medulla
during negative selection.

In order to create a realistic biological setting we cannot just put mTECs and DCs
randomly into our lattice, representing a section of the medulla. Instead, there are
distinct mTEC and DC areas [162, 199, 18]. For the number of mTECs and the number
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of mTEC areas we take the numbers from section 2.2.4. We randomly create these
mTEC areas and fill the rest of the grid with the appropriate number of DCs. As we
only simulate a section of the murine thymic medulla we had to obtain estimates of
all these numbers. In order to get suitable numbers we had to use different sources of
experimental data and merge them. As we could not obtain exact data on the size of the
murine thymic medulla we used data obtained from dissections of the human thymus
and assumed similar proportions for the murine thymic medulla. It is important to note
that we assume to simulate a medulla of a young individual as the thymus size changes
much with ageing. From experimental data in [186] we estimate the size of the human
thymic medulla for a child of 1 − 10y as 3 − 5cm3. The weight of the thymus at that
age is between 22− 30g [186, 31]. The weight of the murine thymus is about 100mg in
[98] and 50mg in [148, 99]. We thus calculated the size of the murine thymic medulla as
0.01− 0.02cm3.

In a next step we had to calculate the number of DCs and mTECs in our section
of the medulla. The smaller section fills an area of 0.000027cm3, the bigger one fills
0.000125cm3. The number of DCs per 10mg thymus is estimated to be 1− 5 · 105 [161].
Most of these DCs are in the medulla. We estimate this number as 4 · 105. It follows
that in our smaller section there are 5400 and in the bigger 25200 DCs. These will be
randomly placed on the free nodes after the mTECs are placed.

For the mTECs we have a different situation. These form clusters, called mTEC islets
and these islets again form bigger clusters called mTEC areas. The number of mTECs
in the medulla is estimated to be in the range of 300000 and there are about 1800 mTEC
islets [162, 199, 18]. Thus, there are about 166 mTECs per islet. The numbers from the
literature seem to be much smaller (5 − 45 mTECs), but we have to be careful, since
these where estimated for 2 dimensions (Rodewald, personal communication).

The (2 dimensional) size of an mTEC islet is measured to be between 60 × 40µm
and 170 × 170µm. We here assume a general diameter of 100µm. An mTEC islet is
modeled as a cuboid. This fits better with the lattice model and a simple calculation
shows that assuming the islets as a sphere would not allow for enough space for 166
mTECs given an mTEC radius of 10 − 15µm. Hence, the volume filled with islets is
about 0.0018cm3, which is 9− 18% of the total volume of the medulla. For our smaller
medullary section this means that we have a total mTEC area of 2.43 − 4.8610−6cm3.
It follows that we have 2 − 5 mTECs islets filled with 330 − 830 mTECs. The total
mTEC area thus shapes a 14 × 14 × 14 − 17 × 17 × 17 sub-lattice of our small lattice.
For our bigger medullary section the mTEC area is about 1.12 − 2.2510−5cm3. Hence,
there are 10− 23 mTEC islets filled with 1660− 3818. This translates into a sub-lattice
of 23 × 23 × 23 − 28 × 28 × 28. If we compare our calculated numbers of mTECs per
section and medullary volume to a simple percentile calculation given the total amount
of mTECs and the ratios of total medullary volume to the volume of the section the
results are very much comparable. Therefore our assumption of mTEC islets as cuboids
seems to be reasonable. All important numbers are summarised in tables 7.1 and 7.2.
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small lattice big lattice
mTECs 330 1660
mTEC islets 2 10
sub-lattice size 14× 14× 14 23× 23× 23
DCs 5400 25000

Table 7.1: Estimated parameter values for a medulla size of 0.02cm3.

small lattice big lattice
mTECs 830 3818
mTEC islets 5 23
sub-lattice size 17× 17× 17 28× 28× 28
DCs 10800 50000

Table 7.2: Estimated parameter values for a medulla size of 0.01cm3.

7.1 Simulation method

For the simulation of T-cell migration in the thymic medulla we have to consider two
different steps. In a preprocessing step the artificial medulla is generated and afterwards
the main procedure, the T-cell migration simulation, starts.

At first we randomly distribute the mTECs over the sub-lattice representing the total
mTEC area in our artificial medullary section. We then assume that 3 mTEC islets form
an mTEC area and divide the sub-lattice into equally sized parts. These parts are the
actual mTEC areas and are randomly placed into our model. It is not allowed to have
more than one mTEC per node. Hence, we check for this condition and place all mTECs
that do not fullfill this condition randomly somewhere else on the lattice. Afterwards
all dendritic cells are also placed randomly such that no node is filled with two DCs or
an mTEC and a DC.

There are of course different ways of generation thinkable. We could try to place
the mTEC areas not just randomly but by trying to reproduce microscopic images of
medullary sections from experiments [162]. However, as we do not know if there is a
specific structure involved in the development of the medulla and we furthermore do not
assume any specific position of our section in the medulla, the random arrangement is
justified. The same is true for the replacement of mTECs that share a node with another
mTEC. These are placed randomly everywhere and not only in an mTEC area. This
mirrors the fact that there may be very small mTEC spots or single mTECs that are
not in an mTEC area. A restriction to an mTEC area is of course also possible as well
as a replacement only to the borders of the mTEC areas, whereby such an area would
lose its artificial cuboid form.

The main step of the simulation, the T-cell migration, is relatively simple to establish.
A T-cell can be in one of two different modes. In the ’scanning mode’ it can either share
a node with a DC/mTEC or be at a node next to a DC. A T-cell can scan a DC at
neighboring nodes because of the long dendrites of a dendritic cell. In our first primitive
implementation we do not superimpose any kind of scanning and activation mechanism
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but only assume a mean scanning time of 3min, which is the mean binding time between
a T-cell and a DC during stage 1 in a lymph node [85, 231]. Thus, for every time-step
we generate a Bernoulli random variable with mean 0.25 and if it is 1 the T-cell moves
on (if T is the waiting time to generate a 1 then T − 1 is geometrically distributed and
one can show that E(T ) = 1

0.25
). We have to point out that in the literature one can

find different values for this mean binding/scanning time and this question is currently
under investigation [14, 15, 13]. An exponential or Poisson distribution might be more
realistic than the Bernoulli distribution. The other mode of a T-cell is the ’movement
mode’. The T-cell is not bound to any cell and moves freely from node to node. This
is implemented by randomly choosing one of the three coordinates of the T-cell and
randomly in- or decrementing this coordinate by 1. Thereby, a kind of random walk is
established. As mentioned before we assume periodic boundary conditions. If a T-cell
leaves the lattice on one side it enters the lattice on the opposite.

We now have a basic T-cell migration model for the thymic medulla at hand. It is easily
possible to change this model by changing the mean scanning time of T-cells, change
T-cell movement from totally random to perhaps a directed random walk, change the
settings for the environment or allow the simultaneous scanning of several DCs/mTECs
by one T-cell. It is also easy to extend the model by for example introducing a special
scanning and/or activation model and/or equip the mTECs and DCs with self antigens.

7.2 Results

Although the model is very basic, there are already questions that can be asked and
answered by it. We can compare our artificial medullary section to real microscopic
images of medullary sections from experiments and we can estimate the number of (dif-
ferent) DCs and mTECs a single T-cell meets during a 5 day cycle of migration. We also
introduce a first extension of the model by equipping the mTECs with tissue restricted
antigens. This allows us to test if the mTECs alone are sufficient to guarantee that a T-
cell meets all these TRAs during negative selection. This is crucially important because
otherwise autoimmune reactions are quite probable as shown in several experiments, see
for example [117, 194, 199].

In our model we did not specify an environment in the medulla but generate it ran-
domly under some constrains. In Figure 7.1 one such realisation is shown from two dif-
ferent perspectives. We do not show the dendritic cells as these are distributed uniformly
over the free nodes, but concentrate on the mTECs. It is evident that the desired struc-
ture of different mTEC areas and rare single mTECs outside these areas is generated.
This kind of visualisation gives a good overview over the three-dimensional composition
of our artificial medullary section. However, it is not suitable for comparisons with re-
sults from experiments. In experiments the results are visualised by microscopic images
of thin slices of the thymic medulla. Therefore, we imitate this procedure by keeping one
coordinate constant and visualising the other coordinates in a 2D image as can be seen
in Figure 7.2 for different constant x1 coordinates. A comparison of our four example
images with images from [162] is difficult. If we take Figures 1g and 1j from [162] we get
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Figure 7.1: Example of a medullary section generated randomly by our simulation from two different
perspectives. Only the mTECs are shown.

a picture of the mTEC/DC composition of a medullary area in two dimensions. This
looks roughly qualitatively similar to medullary areas in our images. For future work a
more specific comparison with experimentally generated images is of course desireable
but for a first model our generated environments seem to be sufficient.

In the second step we introduce the T-cells. These are randomly placed on the lattice
and start to move in a random fashion when the simulation is started. Figure 7.3 shows
the movement of a T-cell during 7200 time steps. This corresponds to a migration time of
5 days. For reasons of visibility we again did not plot the dendritic cells. The right figure
is a zoomed-in version of the left figure. There, we visualised the points where a T-cell
was connected to an mTEC/DC for 3 time steps or longer by circles. The figures show
the random walk like movement of the T-cells for the timesteps where it is not bound to
mTECs or DCs as well as the jumps at the boundaries because of the periodic boundary
conditions. These assumptions are therefore met and the simulation behaves in the
intended way. Although the dendritic cells are not shown it is evident from the circles
that a T-cells does not move freely very much but is bound to either DCs or mTECs.
The T-cells seem to use the time they have efficiently. Long times of movement without
DC/mTEC encounters would lead to a very inefficient negative selection process. T-cell
migration and the development of the medullary microenvironement should be guided
in a way to enable as many encounters as possible such that a T-cell sees as many self
antigens as possible. However, we can also see that a T-cell revisits some positions and
thereby some mTECs or DCs. At first glance this seems inefficient, but if we assume
that a T-cell only scans parts of a DC this looks different. Most probably the T-cell just
sees another part of the self antigen repertoire on the DC surface.

We repeated our simulations for 10 randomly generated microenvironments and 100
randomly placed T-cells and estimated the number of mTECs/DCs a T-cell encounters.
The results can be seen in Figure 7.4. We compare the number of mTEC/DC hits
for the four different scenarios emerging from taking either the big or small lattice and
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Figure 7.2: Four cuts through the example model in Figure 7.1. The cuts where done at x1 =
10, 20, 30, 40. The black dots are again the mTECs, whereas the black crosses are dendritic cells. A
comparison to the Figures in [162] is difficult. If we take Figures 1g and 1j together we get a picture
of the distribution of mTECs and DCs in an islet and this seems qualitatively similar to mTEC islet
regions in our figures.

assuming a total medulla size of 0.1cm3 or 0.2cm3. The histograms show that in all
cases the number of hits seem to approach a Gaussian curve. The only difference is
the mean of this curve, which is for the smaller medulla about 1800 and for the bigger
medulla about 1700. This is an interesting result, because by doubling the size of the
medulla, the number of mTECs and DCs are halved for our section. It follows, that
although our lattice is less crowded with mTECs and DCs, it is crowded enough such
that a single T-cell meets only 100 fewer mTECs/DCs. Furthermore, we see that the
maximal average number of hits, 2400, is never reached in our small test simulations.
This might be important for estimations in models of negative selection. For our model
in the previous sections we assumed for example 2000 APC meetings during negative
selection. Another lesson to learn from the histograms is that the results for the small
and the big lattice are not too different. Therefore, the smaller lattice, which leads to a
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Figure 7.3: Visualisation of one T-cell movement trajectory through our artificial medullary environ-
ment. The right picture is a zoomed version of the left picture.
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Figure 7.4: Histograms of the number of mTEC/DC hits of a T-cell calculated from 10 different
microenvironments with 100 T-cells that migrated for 5 days. Upper left: 30×3 lattice, 0.02 total
medulla size; Upper right: 30×3 lattice, 0.01 total medulla size; Lower left: 50×3 lattice, 0.02 total
medulla size; Lower right: 50×3 lattice, 0.01 total medulla size.
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Figure 7.5: Histograms of the number of mTEC hits of a T-cell calculated from 10 different microen-
vironment with 100 T-cells that migrated for 5 days. Upper left: 30×3 lattice, 0.02 total medulla size;
Upper right: 30×3 lattice, 0.01 total medulla size; Lower left: 50×3 lattice, 0.02 total medulla size;
Lower right: 50×3 lattice, 0.01 total medulla size.

speed up of the simulation, should be suitable for many simulatory test scenarios.

Having clarified these first general facts of our simulation, we now turn to the inves-
tigation of promiscuous gene expression in our model. In a first attempt, we assume
that only the mTECs are involved in presenting tissue restricted antigens. In Figure 7.5
we show the number of only the mTEC hits for the same experimental settings as in
the last paragraph. In contrast to Figure 7.4 the number of mTEC hits follows quite
different distributions for the different parameter settings. For a medulla size of 0.01
(upper and lower right figure) the hit distribution looks quite similar with a mean hit
number of about 50. Here, a Gaussian-like shape is not met, in contrast to the case
where we have the 30×3 lattice and a 0.02cm3 medulla size. The mean number of mTEC
hits is also higher with about 70. The biggest discrepancy occurs for the 50×3 lattice and
0.02cm3 medulla size. The mTEC hit distribution is shaped similar to an exponential
distribution with a mean hit number of about 10.

Given the fact, that under our assumptions a T-cell has to meet as many mTECs as
possible, the variance in all hit distributions and the differences of the mean number of
mTEC hits are significant. Obviously, the number of mTEC hits is very much dependent
on the model parameters and the positioning of the individual T-cells on the lattice.
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Figure 7.6: Histograms of the number different tissue restricted antigens a T-cell sees. Calculated
from 10 different microenvironment with 100 T-cells that migrated for 5 days. Upper left: 30×3 lattice,
0.02 total medulla size; Upper right: 30×3 lattice, 0.01 total medulla size; Lower left: 50×3 lattice, 0.02
total medulla size; Lower right: 50×3 lattice, 0.01 total medulla size.

This can be even better illustrated if we go one step further. Until now we only
observed mTEC and DC encounters. However, we can equip the mTECs with tissue
restricted antigens and estimate how many of these a T-cell sees during negative selection.
From the literature we know that every TRA is expressed by about 3% of all mTECs. It
follows that one mTEC expresses about 90 randomly chosen TRAs. In our simulation we
can follow how many of the 3000 different TRAs one T-cell observes. Furthermore every
TRA on an mTEC is replaced by another every 20 hours. This is especially helpful for
the purpose of our simulations, because the T-cells cannot leave the lattice but reenter
when leaving and will most probably meet several mTECs/DCs more than one time on
their journey. The results can be seen in Figure 7.6. The scenario settings are again
the same as described before. The most eyecatching message from this Figure is that
(nearly) no T-cell sees all tissue restricted antigens, given that only mTECs present
them. Even more, there is a wide variance in the number of seen TRAs over all T-cells.
This contradicts the overall goal to see all TRAs almost surely. In any circumstances it
is obvious that promiscuous gene expression just by mTECs does not work. This speaks
strongly for the mechanism of crosspresentation of TRAs from mTECs to dendritic cells.
By this mechanism TRAs are transferred to DCs and presented by them.
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Despite its simple structure without any specific T-cell activation mechanism, this
simulation gives already some first answers. We could estimate the number of meetings
between T-cells and mTECs/DCs together and for mTECs alone. This can help to
specify where the boundaries of self antigen detection in the thymus are. Furthermore,
we could give evidence why a mechanism of TRA delivery to DCs as discussed in the
literature is really necessary. To ensure a meeting of a T-cell with all TRAs the number
of mTECs is simply to low.

7.3 Discussion

The model of T-cell migration which we developed in this chapter is still quite simple.
However, it has the potential to be developed further in different direction in order to
reflect the reality as well as possible. It is the kind of model that is well suited for
information transfer from and to biological experiments. You can test hypotheses in the
model, integrate new findings and later on try to show the outcomes of the simulations
in experiments.

However, before expanding the model we have to get better estimates for the param-
eters. We extrapolated the numbers for the medullary microenvironment from different
numbers of different sources. It should not be to hard to measure all of them in a single
experimental setting. Nevertheless, from our perspective the estimated numbers seem to
be quite reasonable. We cover a range of values, such that between about 20% and 50%
of the thymic medulla is filled with DCs and mTECs. Much larger or lower numbers are
unrealistic given the experimental evidence, like images of sections of the medulla, and
also the fact that there are also many T-cells, other cell types and structural fibers in
the medulla.

There are different possibilities to go on from here. In general, it would be interesting
to see if the clustering of mTECs has a measureable effect on the rate of T-cell-mTEC
meetings. It could also have an effect on the crosspresentation of TRAs. The model is
also suited to test different hypotheses of how crosspresentation works. In this context it
should be also possible to compare the effect of random TRA presentation in contrast to
tissue emulation by mTECs or mTEC groups. The former was shown by experiments.
However, it would be interesting to quantify the benefits of this kind of TRA presenta-
tion. We assume that the reason lies in the random walk migration of a single T-cell.
This kind of migration does not guarantee that the T-cell meets with enough mTECs to
see all different tissues. This directly leads to the question, if a T-cell really follows such
a random walk or if this movement is somehow directed. Without superimposing a spe-
cialised structure on the microenvironment, such as tissue emulation, we do not see any
benefit in a directed movement, but this question is definitely worth it to explore. One
further important point is to investigate changes in the binding time behaviour between
T-cell and mTECs/DCs and measure how these affect all the other values. Especially for
shorter binding times, it seems important to us to ask how many self antigens that are
presented by a given mTEC/DC are actually seen by the T-cell. This should be of great
help for pursuing our overall goal, the quantification of the effect of negative selection on
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the peripheral T-cell repertoire. We should be able to evaluate by the simulation how
many antigens a T-cell sees and how this number is distributed. These are important
information for the consideration of any T-cell activation mechanism and mechanisms
of peripheral tolerance.

All the ideas formulated so far are still very general. If we have answered these, it
is time to really include models of T-cell activation into the T-cell migration model.
In line with our modeling approach in the previous chapter, we propose to use a (big
enough) artificial self antigen repertoire and compare the outcome of negative selection
for various T-cell activation models from the literature. This should give insights into
the negative selection process itself and it should help to develop, prove or disprove ideas
on T-cell activation.



Chapter 8

Summary

In this chapter we recapitulate the results of this thesis, highlight their significance and
finally give an outlook on how further research should be based on these results. As we
already have independent discussion sections in most of the chapters, we do not go into
the details again, but elucidate the results on a more general level.

Chapter 2 and 3

Let us start with the introductory chapters 2 and 3. These chapters are a review on
the recent experimental and theoretical findings with regard to T-cell development and
T-cell activation in order to facilitate modeling approaches. Especially, we concentrate
on one very important point if it comes to modeling, namely experimental estimates
for possible parameters which can be used in a model and the introduction of already
existing models from which one can go on.

This review clarifies some points in particular. For one, T-cell development and T-cell
activation actually are highly complex processes if all molecular details are included.
This complexity magnifies if one furthermore tries to include the influence of possible
interactions between a T-cell and other cells of the immune system. Hence, it is necessary
to find the adequate level of abstraction. It is neither helpful to become too obsessed
with the details (Occam’s razor) nor is it helpful if by accident important facets of T-cell
activation are ignored. In this thesis we try to explain foreign-self discrimination and we
therefore took the liberty to ignore many of these molecular interactions. Only further
experimental research will be able to show if this can be justified.

Furthermore, we highlighted why we think that T-cell activation should not be ex-
plained via deterministic models. Instead we proposed to define it as a problem of
statistical recognition. This also motivated why we introduced the BRB model of T-cell
activation and used this as the starting point for our investigations.

Finally we showed that the BRB model can really only be seen as a starting point,
because there are recent experimental findings that do not contradict the model itself
but need to be included in extensions of this model.

Chapter 5

In chapter 5 we developed our importance sampling method for the simulation of a
special type of probabilistic models. We proved that this method fullfills a certain
efficiency criterion, such that we only need subexponentially more samples to get a good

127



128 Summary

estimate for exponentially decreasing probabilities. In fact, for the BRB model we only
have to increase the sample size linearly and gain a speed-up by a factor of 1000. Again,
we want to point out that this method is not restricted in its use only to the BRB
model of T-cell activation but to a much more general set of models. It is therefore a
result in its own that can be seen separate from our results with regard to foreign-self
discrimination of T-cells.

We used this importance sampling method in order to estimate T-cell activation prob-
abilities in the BRB model. These results were already obtained before with the help of
other methods. However, our results are much more exact and, what is more important,
we could extract more information out of our simulations in order to really explain how
foreign-self discrimination comes about in the BRB model. This was possible because
with the help of our simulation results we could ’zoom’ into the tail events which cause
the T-cell activation. This was important, because it lead to new ideas for the further
modeling process.

Foreign-self discrimination in the basic BRB model is only achieved if there are much
more copies of the foreign antigen than copies of the individual self antigen types on
an APC. The reality looks different and therefore we need additional mechanisms which
influence the foreign-self discrimination capability of the peripheral T-cell repertoire.
One such mechanism can be negative selection, the process that tries to sort out T-cells
that are too self-reactive before they are released into the periphery. A first extension
of the BRB model therefore also includes this process and we could back up the already
established results that thereby foreign-self discrimination is possible for much lower
copy numbers of the foreign antigen. Furthermore we introduced a second way to include
negative selection into the BRB model and showed that thereby also a better foreign-self
discrimination can be established. For both extensions we used our simulation method
to explain the effect of negative selection and thereby why foreign-self discrimination
works better. However, we also came to the conclusion that both extensions do not
reflect the biological reality well enough.

Chapter 6

Hence, in chapter 6 we tried to overcome the defects of the BRB model and its extensions
by proposing a new model of T-cell activation. Several of our conclusions from the
introductory chapters combined with the central aspects of the BRB model resulted in
this new model. The essential new aspect in the model is, that we reduce the space of
self antigen types to a discrete set. Every T-cell can then be represented by a vector
of the different stimulation rates induced by the set of self antigens to this T-cell. Our
model includes negative selection and we assume the same copy number for both, foreign
and self antigen types, but have several other parameters which can be varied. We
developed two different model variants, because we assume two different ways how an
antigen presenting cell collects and presents antigens. For the estimation of the activation
probabilities in our model we where able to adapt our original importance sampling
method when it comes to one model variant. For the other model variant we had to
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develop another importance sampling method, which is related to our previous method
but the parameter estimation here is heuristic and much more involved.

We investigated the foreign-self discrimination capability and the effect of negative
selection for different values of our model parameters. Thereby, we got important insights
into the effect of negative selection in our model and the defects of certain parameter
value combinations on the the foreign-self discrimination capability of the model.

Finally we could show that we have to change the value of the exponential binding
time distribution in order to enhance foreign-self discrimination in our model. This is
also biologically reasonable as there is no conclusive evidence on what the exact value
of this parameter really is. In fact, the probability that a T-cell recognizes a random
antigen is often estimated in the range of 10−5 − 10−4 [127]. If we adopt this number,
than this argues for the new parameter value. Otherwise the tail of the stimulation rate
distribution is not thin enough. It is interesting to see that by our change we actually
reduce the probability for an antigen to induce a high stimulus to a random T-cell. This
is true for both, foreign and self antigens. However, we could show that thereby the
effect of negative selection is drastically increased and thus a potential peripheral T-cell
repertoire is much more depleted of too self-reactive T-cells than it is for the original
parameter value.

Chapter 7

As a consequence of our review in chapter 2 and our results in chapter 6 we concluded
that negative selection in itself is a process that has to be investigated more thoroughly.
Until now the scope of negative selection, that is its capability to sort our self-reactive
T-cells, is only estimated by measurements of the number of T-cells before and after
negative selection. Until very recently, the thymic medulla and thereby all processes
in there had to be seen as a black box, because it was impossible to experimentally
investigate it. This is gradually changing and therefore new possibilities for modeling
negative selection open up. We used these recent results to model T-cell migration in
the thymic medulla. This model is only a very simple first proposition. Exemplarily
we estimated the number of APCs and the number of tissue-restricted antigens a T-cell
encounters during negative selection. Our estimates show a great variance. As this
would greatly decrease the efficacy of negative selection, we assume that our first model
is too simple and we are missing important facts. However, this is exactly the kind of
model whose further development benefits on the one hand from further experimental
research and can on the other hand also influence further experimental research. A
deeper understanding of negative selection is necessary to develop new therapies for
many different diseases.

8.1 Outlook

Our work delivers answers on how foreign-self discrimination of T-cells can be explained
by means of probabilistic models. With our new model we have the possibility to explain
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the mechanism for biological reasonable parameter values. However, our research also
points out where we have to investigate in more detail in order to either develop this
kind of model further or reject it ultimately.

First of all further research with regard to the mean binding time distribution is
needed. Besides the exponential distribution also other distributions are possible. Van
den Berg et al. already argue for a log-normal distribution because it can be derived from
certain physical properties [205]. Zint el al. could show that foreign-self discrimination
is enhanced if we change from exponential to log-normal in the BRB model [232]. On
the theoretical level, we have to investigate how changes in the parameter τ̄ of the
exponential distribution or a change to another distribution and all the other model
parameters together can explain foreign-self discrimination. On the experimental level,
we have to try to get better estimates for all of these parameters, because this will
ultimately show if our model can really work. We are aware of the fact that for this the
development of new experimental methods is needed. However, we think that this effort
is justified as the results would not only be helpful for our model but also in general and
bring us a step nearer to the true explanation of foreign-self discrimination by T-cells.

Furthermore, we have to revisit our model in the light of new experimental findings.
In the sections 3.1 and 6.4 we already mentioned several of these. Often is is possible
to even include them in our model as we exemplarily showed in section 6.4 for the
mechanism of signal integration. Other findings might lead to new models which can
nevertheless include central ideas gained in this thesis, as we argued for the mechanism
of T-cell activation via receptor deformation.

Finally, we opened up a second line of research with our model of T-cell migration in
the thymic medulla. This is worthwhile in its own because it can help to get ideas on
how we can manipulate negative selection in order to have a peripheral T-cell repertoire
that reacts to pathogens to which they, at the moment, hardly react. It is also helpful
for the understanding of autoimmune reactions and how we perhaps can prevent them.
As already pointed out, our model should be the opener to a fruitful discussion between
experimentalist and modelers in order to pursue this target together. However, we must
not forget that negative selection is also an integral part of our T-cell activation model
and therefore all new knowledge on negative selection directly influences our attempts
to explain foreign-self discrimination of T-cells.
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