434 research outputs found
Use of the far infrared spectroscopy for NaCl and KCl minerals characterization : a case study of halides from Kłodawa in Poland
The paper presents research on chloride minerals of natural origin from Kłodawa (Poland), i.e., colorless, blue and purple halite as well as colorless sylvite. Selected samples of minerals were studied by chemical analysis (ICP-OES, ICP-MS, titration methods) and crystallographic measurements. Then, for the tested halides, research was carried out using far-infrared spectroscopy. Spectroscopic studies confirmed the simple way of distinguishing NaCl and KCl minerals using far-infrared spectroscopy, known in the literature. The novelty is that the article presents for the first time the experimental far infrared spectra of natural blue and purple halite. It was observed that the blue (178 cm−1) and purple (176 cm−1) halites have the strongest infrared band slightly shifted towards higher wavenumbers compared to colorless halite (174 cm−1). As part of the work, the infrared spectra of the crystal structure models of sodium and potassium chloride were calculated for the first time using the density functional theory (with the B3LYP functional and the 6-31G* basis set, 125-atom model). The proposed approach can be used not only as a powerful method differentiating NaCl and KCl minerals, but it can also help with understanding of different defects in crystal lattices for naturally occurring halides and crystals of other minerals
Temporal trends in the management of severe hyperglycemia among patients hospitalized with acute myocardial infarction [abstract]
Poster sesssionBackground: Elevated blood glucose (BG) is associated with an adverse prognosis in acute myocardial infarction (AMI) patients. While guidelines recommend insulin therapy to lower markedly elevated BG in AMI patients, it is unknown whether these recommendations have impacted BG management over time. Methods: We studied 39,775 AMI patients hospitalized from 2000 to 2008 in 55 US medical centers contributing to Health Facts, a national database with extensive data on in-hospital BG and insulin use. Using all available BG measures during the hospital stay, we restricted our analysis to patients with a mean BG ≥200mg/dl and examined temporal trends in insulin use with hierarchical logistic regression models. Results: Overall, 4330 patients (11% of the entire cohort) had mean hospitalization BG ≥ 200 mg/dL and this proportion decreased from 2000 to 2008 (12% to 8%, p for trend<0.001); 75% of these patients had diabetes. In total, 61% of AMI patients with mean BG ≥ 200 received any insulin and only 16% received intravenous (IV) insulin during hospitalization. Hierarchical multivariable models showed an increased likelihood of insulin use over time (Figure). However, about one in three patients continued to receive no treatment for markedly elevated BG. Conclusions: Despite some improvement over time, insulin treatment rates among hospitalized AMI patients with severe, sustained hyperglycemia remain low. These findings likely reflect continuing uncertainty regarding optimal BG management during AMI
Low-energy Coulomb excitation of Fe and Mn following in-beam decay of Mn
Sub-barrier Coulomb-excitation was performed on a mixed beam of Mn and
Fe, following in-trap decay of Mn at REX-ISOLDE,
CERN. The trapping and charge breeding times were varied in order to alter the
composition of the beam, which was measured by means of an ionisation chamber
at the zero-angle position of the Miniball array. A new transition was observed
at 418~keV, which has been tentatively associated to a
transition. This fixes the relative
positions of the -decaying and states in Mn for
the first time. Population of the state was observed in Fe
and the cross-section determined by normalisation to the Ag target
excitation, confirming the value measured in recoil-distance lifetime
experiments.Comment: 9 pages, 10 figure
Intraoperative blood pressure changes as a risk factor for anastomotic leakage in colorectal surgery
Anastomotic leakage is a serious complication after colorectal surgery. Pre- and intraoperative factors may contribute to failure of colorectal anastomosis. In this study we have tried to determine risk factors for anastomotic leakage, with special emphasis on intraoperative blood pressure changes. During a 24-month period, patients receiving a colorectal anastomosis were prospectively evaluated. For each patient preoperative characteristics, intraoperative adverse events and surgical outcome data were collected. Blood pressure changes were calculated as a relative decrease (> 25% and > 40%) from preoperative baseline values. During the study period, 285 patients underwent colorectal surgery with an anastomosis. Fifteen patients developed an anastomotic leakage (5.3%). All patients who developed a leakage had a left-sided procedure (P 40% decrease in diastolic blood pressure (P = 0.049)] were identified as univariate risk factors for anastomotic leakage. The development of an anastomotic leakage after colorectal surgery is related to surgical, patient and anaesthetic risk factors. A high preoperative diastolic blood pressure and profound intraoperative hypotension combined with complex surgery, marked by a blood loss of a parts per thousand yen250 mL and the occurrence of intraoperative adverse events, is associated with an increased risk of developing anastomotic leakag
Recommended from our members
Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report
This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models
Recommended from our members
Fire-protection research for DOE facilities: FY 82 year-end report
We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models
Recommended from our members
Fire protection research for DOE facilities: FY 83 year-end report
We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models
- …