2 research outputs found

    Osteoprotegerin (OPG) expression by breast cancer cells in vitro and breast tumours in vivo - a role in tumour cell survival?

    No full text
    In addition to its role in bone turnover, osteoprotegerin (OPG) has been reported to bind to and inhibit Tumour necrosis factor-related apoptosis inducing ligand (TRAIL). TRAIL is produced in tumours by invading monocytes, inducing apoptosis in neoplastic cells sensitive to this cytokine. OPG production by tumour cells would therefore be a novel mechanism whereby cancer cells evade host defences and gain a growth advantage. In this study we show that OPG produced by breast cancer cells enhances tumour cell survival by inhibiting TRAIL-induced apoptosis. OPG expression by breast cancer cells (MDA-MB 436/231) grown in vitro was examined using PCR and ELISA, and the sensitivity of these cells to TRAIL was determined. The effects of OPG on TRAIL induced apoptosis was investigated by exposing MDA-MB 436 cells to TRAIL, in the presence or absence of OPG, followed by assessment of nuclear morphology. We found that the levels of OPG produced were sufficient to inhibit TRAIL-induced apoptosis, suggesting that OPG may play a role in tumour cell survival. We also examined the expression pattern of OPG in a selection of breast tumours (n=400) by immunohistochemistry, and related OPG expression to the clinico-pathological data for each tumour. OPG expression was found to be negatively correlated with increasing tumour grade. To our knowledge these results are the first to demonstrate that OPG can act as an endocrine survival factor for breast cancer cells, as well as reporting the expression patterns of OPG in a large cohort of human breast tumours

    Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival

    No full text
    Multiple myeloma is characterized by the growth of plasma cells in the bone marrow and the development of osteolytic bone disease. Myeloma cells are found closely associated with bone, and targeting this environment may therefore affect both the bone disease and the growth of myeloma cells. We have investigated the effect of the potent bisphosphonate, zoledronic acid, on the development of bone disease, tumor burden, and disease-free survival in the 5T2MM model of myeloma. 5T2MM murine myeloma cells were injected intravenously into C57BL/KaLwRij mice. After 8 weeks, all animals had a paraprotein. Animals were treated with zoledronic acid (120 microg/kg, subcutaneously, twice weekly) or vehicle, from the time of tumor cell injection or from paraprotein detection for 12 or 4 weeks, respectively. All animals injected with tumor cells developed osteolytic lesions, a decrease in cancellous bone volume, an increase in osteoclast perimeter, and a decrease in bone mineral density. Zoledronic acid prevented the formation of lesions, prevented cancellous bone loss and loss of bone mineral density, and reduced osteoclast perimeter. Zoledronic acid also decreased paraprotein concentration, decreased tumor burden, and reduced angiogenesis. In separate experiments, Kaplan-Meier analysis demonstrated a significant increase in survival after treatment with zoledronic acid when compared with control (47 vs. 35 days). A single dose of zoledronic acid was also shown to be effective in preventing the development of osteolytic bone disease. These data show that zoledronic acid is able to prevent the development of osteolytic bone disease, decrease tumor burden in bone, and increase survival in a model of established myeloma
    corecore